summaryrefslogtreecommitdiffstats
path: root/ArmPkg/Library/ArmMmuLib/AArch64/ArmMmuLibCore.c
blob: 89da40fd8eec630467ecc63b3f970a51e03832d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/** @file
*  File managing the MMU for ARMv8 architecture
*
*  Copyright (c) 2011-2020, ARM Limited. All rights reserved.
*  Copyright (c) 2016, Linaro Limited. All rights reserved.
*  Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
*
*  SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/

#include <Uefi.h>
#include <Chipset/AArch64.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/ArmLib.h>
#include <Library/ArmMmuLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>

STATIC
UINT64
ArmMemoryAttributeToPageAttribute (
  IN ARM_MEMORY_REGION_ATTRIBUTES  Attributes
  )
{
  switch (Attributes) {
    case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_NONSHAREABLE:
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK_NONSHAREABLE:
      return TT_ATTR_INDX_MEMORY_WRITE_BACK;

    case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
      return TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;

    case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
      return TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;

    // Uncached and device mappings are treated as outer shareable by default,
    case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
      return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;

    default:
      ASSERT (0);
    case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
    case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
      if (ArmReadCurrentEL () == AARCH64_EL2) {
        return TT_ATTR_INDX_DEVICE_MEMORY | TT_XN_MASK;
      } else {
        return TT_ATTR_INDX_DEVICE_MEMORY | TT_UXN_MASK | TT_PXN_MASK;
      }
  }
}

#define MIN_T0SZ        16
#define BITS_PER_LEVEL  9
#define MAX_VA_BITS     48

STATIC
UINTN
GetRootTableEntryCount (
  IN  UINTN  T0SZ
  )
{
  return TT_ENTRY_COUNT >> (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL;
}

STATIC
UINTN
GetRootTableLevel (
  IN  UINTN  T0SZ
  )
{
  return (T0SZ - MIN_T0SZ) / BITS_PER_LEVEL;
}

STATIC
VOID
ReplaceTableEntry (
  IN  UINT64   *Entry,
  IN  UINT64   Value,
  IN  UINT64   RegionStart,
  IN  BOOLEAN  IsLiveBlockMapping
  )
{
  if (!ArmMmuEnabled () || !IsLiveBlockMapping) {
    *Entry = Value;
    ArmUpdateTranslationTableEntry (Entry, (VOID *)(UINTN)RegionStart);
  } else {
    ArmReplaceLiveTranslationEntry (Entry, Value, RegionStart);
  }
}

STATIC
VOID
FreePageTablesRecursive (
  IN  UINT64  *TranslationTable,
  IN  UINTN   Level
  )
{
  UINTN  Index;

  ASSERT (Level <= 3);

  if (Level < 3) {
    for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
      if ((TranslationTable[Index] & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY) {
        FreePageTablesRecursive (
          (VOID *)(UINTN)(TranslationTable[Index] &
                          TT_ADDRESS_MASK_BLOCK_ENTRY),
          Level + 1
          );
      }
    }
  }

  FreePages (TranslationTable, 1);
}

STATIC
BOOLEAN
IsBlockEntry (
  IN  UINT64  Entry,
  IN  UINTN   Level
  )
{
  if (Level == 3) {
    return (Entry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY_LEVEL3;
  }

  return (Entry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY;
}

STATIC
BOOLEAN
IsTableEntry (
  IN  UINT64  Entry,
  IN  UINTN   Level
  )
{
  if (Level == 3) {
    //
    // TT_TYPE_TABLE_ENTRY aliases TT_TYPE_BLOCK_ENTRY_LEVEL3
    // so we need to take the level into account as well.
    //
    return FALSE;
  }

  return (Entry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY;
}

STATIC
EFI_STATUS
UpdateRegionMappingRecursive (
  IN  UINT64  RegionStart,
  IN  UINT64  RegionEnd,
  IN  UINT64  AttributeSetMask,
  IN  UINT64  AttributeClearMask,
  IN  UINT64  *PageTable,
  IN  UINTN   Level
  )
{
  UINTN       BlockShift;
  UINT64      BlockMask;
  UINT64      BlockEnd;
  UINT64      *Entry;
  UINT64      EntryValue;
  VOID        *TranslationTable;
  EFI_STATUS  Status;

  ASSERT (((RegionStart | RegionEnd) & EFI_PAGE_MASK) == 0);

  BlockShift = (Level + 1) * BITS_PER_LEVEL + MIN_T0SZ;
  BlockMask  = MAX_UINT64 >> BlockShift;

  DEBUG ((
    DEBUG_VERBOSE,
    "%a(%d): %llx - %llx set %lx clr %lx\n",
    __FUNCTION__,
    Level,
    RegionStart,
    RegionEnd,
    AttributeSetMask,
    AttributeClearMask
    ));

  for ( ; RegionStart < RegionEnd; RegionStart = BlockEnd) {
    BlockEnd = MIN (RegionEnd, (RegionStart | BlockMask) + 1);
    Entry    = &PageTable[(RegionStart >> (64 - BlockShift)) & (TT_ENTRY_COUNT - 1)];

    //
    // If RegionStart or BlockEnd is not aligned to the block size at this
    // level, we will have to create a table mapping in order to map less
    // than a block, and recurse to create the block or page entries at
    // the next level. No block mappings are allowed at all at level 0,
    // so in that case, we have to recurse unconditionally.
    // If we are changing a table entry and the AttributeClearMask is non-zero,
    // we cannot replace it with a block entry without potentially losing
    // attribute information, so keep the table entry in that case.
    //
    if ((Level == 0) || (((RegionStart | BlockEnd) & BlockMask) != 0) ||
        (IsTableEntry (*Entry, Level) && (AttributeClearMask != 0)))
    {
      ASSERT (Level < 3);

      if (!IsTableEntry (*Entry, Level)) {
        //
        // No table entry exists yet, so we need to allocate a page table
        // for the next level.
        //
        TranslationTable = AllocatePages (1);
        if (TranslationTable == NULL) {
          return EFI_OUT_OF_RESOURCES;
        }

        if (!ArmMmuEnabled ()) {
          //
          // Make sure we are not inadvertently hitting in the caches
          // when populating the page tables.
          //
          InvalidateDataCacheRange (TranslationTable, EFI_PAGE_SIZE);
        }

        ZeroMem (TranslationTable, EFI_PAGE_SIZE);

        if (IsBlockEntry (*Entry, Level)) {
          //
          // We are splitting an existing block entry, so we have to populate
          // the new table with the attributes of the block entry it replaces.
          //
          Status = UpdateRegionMappingRecursive (
                     RegionStart & ~BlockMask,
                     (RegionStart | BlockMask) + 1,
                     *Entry & TT_ATTRIBUTES_MASK,
                     0,
                     TranslationTable,
                     Level + 1
                     );
          if (EFI_ERROR (Status)) {
            //
            // The range we passed to UpdateRegionMappingRecursive () is block
            // aligned, so it is guaranteed that no further pages were allocated
            // by it, and so we only have to free the page we allocated here.
            //
            FreePages (TranslationTable, 1);
            return Status;
          }
        }
      } else {
        TranslationTable = (VOID *)(UINTN)(*Entry & TT_ADDRESS_MASK_BLOCK_ENTRY);
      }

      //
      // Recurse to the next level
      //
      Status = UpdateRegionMappingRecursive (
                 RegionStart,
                 BlockEnd,
                 AttributeSetMask,
                 AttributeClearMask,
                 TranslationTable,
                 Level + 1
                 );
      if (EFI_ERROR (Status)) {
        if (!IsTableEntry (*Entry, Level)) {
          //
          // We are creating a new table entry, so on failure, we can free all
          // allocations we made recursively, given that the whole subhierarchy
          // has not been wired into the live page tables yet. (This is not
          // possible for existing table entries, since we cannot revert the
          // modifications we made to the subhierarchy it represents.)
          //
          FreePageTablesRecursive (TranslationTable, Level + 1);
        }

        return Status;
      }

      if (!IsTableEntry (*Entry, Level)) {
        EntryValue = (UINTN)TranslationTable | TT_TYPE_TABLE_ENTRY;
        ReplaceTableEntry (
          Entry,
          EntryValue,
          RegionStart,
          IsBlockEntry (*Entry, Level)
          );
      }
    } else {
      EntryValue  = (*Entry & AttributeClearMask) | AttributeSetMask;
      EntryValue |= RegionStart;
      EntryValue |= (Level == 3) ? TT_TYPE_BLOCK_ENTRY_LEVEL3
                                 : TT_TYPE_BLOCK_ENTRY;

      if (IsTableEntry (*Entry, Level)) {
        //
        // We are replacing a table entry with a block entry. This is only
        // possible if we are keeping none of the original attributes.
        // We can free the table entry's page table, and all the ones below
        // it, since we are dropping the only possible reference to it.
        //
        ASSERT (AttributeClearMask == 0);
        TranslationTable = (VOID *)(UINTN)(*Entry & TT_ADDRESS_MASK_BLOCK_ENTRY);
        ReplaceTableEntry (Entry, EntryValue, RegionStart, TRUE);
        FreePageTablesRecursive (TranslationTable, Level + 1);
      } else {
        ReplaceTableEntry (Entry, EntryValue, RegionStart, FALSE);
      }
    }
  }

  return EFI_SUCCESS;
}

STATIC
EFI_STATUS
UpdateRegionMapping (
  IN  UINT64  RegionStart,
  IN  UINT64  RegionLength,
  IN  UINT64  AttributeSetMask,
  IN  UINT64  AttributeClearMask
  )
{
  UINTN  T0SZ;

  if (((RegionStart | RegionLength) & EFI_PAGE_MASK) != 0) {
    return EFI_INVALID_PARAMETER;
  }

  T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;

  return UpdateRegionMappingRecursive (
           RegionStart,
           RegionStart + RegionLength,
           AttributeSetMask,
           AttributeClearMask,
           ArmGetTTBR0BaseAddress (),
           GetRootTableLevel (T0SZ)
           );
}

STATIC
EFI_STATUS
FillTranslationTable (
  IN  UINT64                        *RootTable,
  IN  ARM_MEMORY_REGION_DESCRIPTOR  *MemoryRegion
  )
{
  return UpdateRegionMapping (
           MemoryRegion->VirtualBase,
           MemoryRegion->Length,
           ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF,
           0
           );
}

STATIC
UINT64
GcdAttributeToPageAttribute (
  IN UINT64  GcdAttributes
  )
{
  UINT64  PageAttributes;

  switch (GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) {
    case EFI_MEMORY_UC:
      PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;
      break;
    case EFI_MEMORY_WC:
      PageAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
      break;
    case EFI_MEMORY_WT:
      PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
      break;
    case EFI_MEMORY_WB:
      PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
      break;
    default:
      PageAttributes = TT_ATTR_INDX_MASK;
      break;
  }

  if (((GcdAttributes & EFI_MEMORY_XP) != 0) ||
      ((GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) == EFI_MEMORY_UC))
  {
    if (ArmReadCurrentEL () == AARCH64_EL2) {
      PageAttributes |= TT_XN_MASK;
    } else {
      PageAttributes |= TT_UXN_MASK | TT_PXN_MASK;
    }
  }

  if ((GcdAttributes & EFI_MEMORY_RO) != 0) {
    PageAttributes |= TT_AP_RO_RO;
  }

  return PageAttributes | TT_AF;
}

EFI_STATUS
ArmSetMemoryAttributes (
  IN EFI_PHYSICAL_ADDRESS  BaseAddress,
  IN UINT64                Length,
  IN UINT64                Attributes
  )
{
  UINT64  PageAttributes;
  UINT64  PageAttributeMask;

  PageAttributes    = GcdAttributeToPageAttribute (Attributes);
  PageAttributeMask = 0;

  if ((Attributes & EFI_MEMORY_CACHETYPE_MASK) == 0) {
    //
    // No memory type was set in Attributes, so we are going to update the
    // permissions only.
    //
    PageAttributes   &= TT_AP_MASK | TT_UXN_MASK | TT_PXN_MASK;
    PageAttributeMask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK |
                          TT_PXN_MASK | TT_XN_MASK);
  }

  return UpdateRegionMapping (
           BaseAddress,
           Length,
           PageAttributes,
           PageAttributeMask
           );
}

STATIC
EFI_STATUS
SetMemoryRegionAttribute (
  IN  EFI_PHYSICAL_ADDRESS  BaseAddress,
  IN  UINT64                Length,
  IN  UINT64                Attributes,
  IN  UINT64                BlockEntryMask
  )
{
  return UpdateRegionMapping (BaseAddress, Length, Attributes, BlockEntryMask);
}

EFI_STATUS
ArmSetMemoryRegionNoExec (
  IN  EFI_PHYSICAL_ADDRESS  BaseAddress,
  IN  UINT64                Length
  )
{
  UINT64  Val;

  if (ArmReadCurrentEL () == AARCH64_EL1) {
    Val = TT_PXN_MASK | TT_UXN_MASK;
  } else {
    Val = TT_XN_MASK;
  }

  return SetMemoryRegionAttribute (
           BaseAddress,
           Length,
           Val,
           ~TT_ADDRESS_MASK_BLOCK_ENTRY
           );
}

EFI_STATUS
ArmClearMemoryRegionNoExec (
  IN  EFI_PHYSICAL_ADDRESS  BaseAddress,
  IN  UINT64                Length
  )
{
  UINT64  Mask;

  // XN maps to UXN in the EL1&0 translation regime
  Mask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_PXN_MASK | TT_XN_MASK);

  return SetMemoryRegionAttribute (
           BaseAddress,
           Length,
           0,
           Mask
           );
}

EFI_STATUS
ArmSetMemoryRegionReadOnly (
  IN  EFI_PHYSICAL_ADDRESS  BaseAddress,
  IN  UINT64                Length
  )
{
  return SetMemoryRegionAttribute (
           BaseAddress,
           Length,
           TT_AP_RO_RO,
           ~TT_ADDRESS_MASK_BLOCK_ENTRY
           );
}

EFI_STATUS
ArmClearMemoryRegionReadOnly (
  IN  EFI_PHYSICAL_ADDRESS  BaseAddress,
  IN  UINT64                Length
  )
{
  return SetMemoryRegionAttribute (
           BaseAddress,
           Length,
           TT_AP_RW_RW,
           ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK)
           );
}

EFI_STATUS
EFIAPI
ArmConfigureMmu (
  IN  ARM_MEMORY_REGION_DESCRIPTOR  *MemoryTable,
  OUT VOID                          **TranslationTableBase OPTIONAL,
  OUT UINTN                         *TranslationTableSize OPTIONAL
  )
{
  VOID        *TranslationTable;
  UINTN       MaxAddressBits;
  UINT64      MaxAddress;
  UINTN       T0SZ;
  UINTN       RootTableEntryCount;
  UINT64      TCR;
  EFI_STATUS  Status;

  if (MemoryTable == NULL) {
    ASSERT (MemoryTable != NULL);
    return EFI_INVALID_PARAMETER;
  }

  //
  // Limit the virtual address space to what we can actually use: UEFI
  // mandates a 1:1 mapping, so no point in making the virtual address
  // space larger than the physical address space. We also have to take
  // into account the architectural limitations that result from UEFI's
  // use of 4 KB pages.
  //
  MaxAddressBits = MIN (ArmGetPhysicalAddressBits (), MAX_VA_BITS);
  MaxAddress     = LShiftU64 (1ULL, MaxAddressBits) - 1;

  T0SZ                = 64 - MaxAddressBits;
  RootTableEntryCount = GetRootTableEntryCount (T0SZ);

  //
  // Set TCR that allows us to retrieve T0SZ in the subsequent functions
  //
  // Ideally we will be running at EL2, but should support EL1 as well.
  // UEFI should not run at EL3.
  if (ArmReadCurrentEL () == AARCH64_EL2) {
    // Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
    TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;

    // Set the Physical Address Size using MaxAddress
    if (MaxAddress < SIZE_4GB) {
      TCR |= TCR_PS_4GB;
    } else if (MaxAddress < SIZE_64GB) {
      TCR |= TCR_PS_64GB;
    } else if (MaxAddress < SIZE_1TB) {
      TCR |= TCR_PS_1TB;
    } else if (MaxAddress < SIZE_4TB) {
      TCR |= TCR_PS_4TB;
    } else if (MaxAddress < SIZE_16TB) {
      TCR |= TCR_PS_16TB;
    } else if (MaxAddress < SIZE_256TB) {
      TCR |= TCR_PS_256TB;
    } else {
      DEBUG ((
        DEBUG_ERROR,
        "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n",
        MaxAddress
        ));
      ASSERT (0); // Bigger than 48-bit memory space are not supported
      return EFI_UNSUPPORTED;
    }
  } else if (ArmReadCurrentEL () == AARCH64_EL1) {
    // Due to Cortex-A57 erratum #822227 we must set TG1[1] == 1, regardless of EPD1.
    TCR = T0SZ | TCR_TG0_4KB | TCR_TG1_4KB | TCR_EPD1;

    // Set the Physical Address Size using MaxAddress
    if (MaxAddress < SIZE_4GB) {
      TCR |= TCR_IPS_4GB;
    } else if (MaxAddress < SIZE_64GB) {
      TCR |= TCR_IPS_64GB;
    } else if (MaxAddress < SIZE_1TB) {
      TCR |= TCR_IPS_1TB;
    } else if (MaxAddress < SIZE_4TB) {
      TCR |= TCR_IPS_4TB;
    } else if (MaxAddress < SIZE_16TB) {
      TCR |= TCR_IPS_16TB;
    } else if (MaxAddress < SIZE_256TB) {
      TCR |= TCR_IPS_256TB;
    } else {
      DEBUG ((
        DEBUG_ERROR,
        "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n",
        MaxAddress
        ));
      ASSERT (0); // Bigger than 48-bit memory space are not supported
      return EFI_UNSUPPORTED;
    }
  } else {
    ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
    return EFI_UNSUPPORTED;
  }

  //
  // Translation table walks are always cache coherent on ARMv8-A, so cache
  // maintenance on page tables is never needed. Since there is a risk of
  // loss of coherency when using mismatched attributes, and given that memory
  // is mapped cacheable except for extraordinary cases (such as non-coherent
  // DMA), have the page table walker perform cached accesses as well, and
  // assert below that that matches the attributes we use for CPU accesses to
  // the region.
  //
  TCR |= TCR_SH_INNER_SHAREABLE |
         TCR_RGN_OUTER_WRITE_BACK_ALLOC |
         TCR_RGN_INNER_WRITE_BACK_ALLOC;

  // Set TCR
  ArmSetTCR (TCR);

  // Allocate pages for translation table
  TranslationTable = AllocatePages (1);
  if (TranslationTable == NULL) {
    return EFI_OUT_OF_RESOURCES;
  }

  //
  // We set TTBR0 just after allocating the table to retrieve its location from
  // the subsequent functions without needing to pass this value across the
  // functions. The MMU is only enabled after the translation tables are
  // populated.
  //
  ArmSetTTBR0 (TranslationTable);

  if (TranslationTableBase != NULL) {
    *TranslationTableBase = TranslationTable;
  }

  if (TranslationTableSize != NULL) {
    *TranslationTableSize = RootTableEntryCount * sizeof (UINT64);
  }

  //
  // Make sure we are not inadvertently hitting in the caches
  // when populating the page tables.
  //
  InvalidateDataCacheRange (
    TranslationTable,
    RootTableEntryCount * sizeof (UINT64)
    );
  ZeroMem (TranslationTable, RootTableEntryCount * sizeof (UINT64));

  while (MemoryTable->Length != 0) {
    Status = FillTranslationTable (TranslationTable, MemoryTable);
    if (EFI_ERROR (Status)) {
      goto FreeTranslationTable;
    }

    MemoryTable++;
  }

  //
  // EFI_MEMORY_UC ==> MAIR_ATTR_DEVICE_MEMORY
  // EFI_MEMORY_WC ==> MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE
  // EFI_MEMORY_WT ==> MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH
  // EFI_MEMORY_WB ==> MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK
  //
  ArmSetMAIR (
    MAIR_ATTR (TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY)               |
    MAIR_ATTR (TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) |
    MAIR_ATTR (TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) |
    MAIR_ATTR (TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)
    );

  ArmDisableAlignmentCheck ();
  ArmEnableStackAlignmentCheck ();
  ArmEnableInstructionCache ();
  ArmEnableDataCache ();

  ArmEnableMmu ();
  return EFI_SUCCESS;

FreeTranslationTable:
  FreePages (TranslationTable, 1);
  return Status;
}

RETURN_STATUS
EFIAPI
ArmMmuBaseLibConstructor (
  VOID
  )
{
  extern UINT32  ArmReplaceLiveTranslationEntrySize;

  //
  // The ArmReplaceLiveTranslationEntry () helper function may be invoked
  // with the MMU off so we have to ensure that it gets cleaned to the PoC
  //
  WriteBackDataCacheRange (
    (VOID *)(UINTN)ArmReplaceLiveTranslationEntry,
    ArmReplaceLiveTranslationEntrySize
    );

  return RETURN_SUCCESS;
}