summaryrefslogtreecommitdiffstats
path: root/ArmPkg/Library/ArmMmuLib/AArch64/ArmMmuLibCore.c
blob: d66df3e17a02a17c71b4ff947963de3f584320a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
/** @file
*  File managing the MMU for ARMv8 architecture
*
*  Copyright (c) 2011-2014, ARM Limited. All rights reserved.
*  Copyright (c) 2016, Linaro Limited. All rights reserved.
*  Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
*
*  This program and the accompanying materials
*  are licensed and made available under the terms and conditions of the BSD License
*  which accompanies this distribution.  The full text of the license may be found at
*  http://opensource.org/licenses/bsd-license.php
*
*  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
*  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/

#include <Uefi.h>
#include <Chipset/AArch64.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/ArmLib.h>
#include <Library/ArmMmuLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>

// We use this index definition to define an invalid block entry
#define TT_ATTR_INDX_INVALID    ((UINT32)~0)

STATIC
UINT64
ArmMemoryAttributeToPageAttribute (
  IN ARM_MEMORY_REGION_ATTRIBUTES  Attributes
  )
{
  switch (Attributes) {
  case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_NONSHAREABLE:
  case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK_NONSHAREABLE:
    return TT_ATTR_INDX_MEMORY_WRITE_BACK;

  case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
  case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
    return TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;

  case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
  case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
    return TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;

  // Uncached and device mappings are treated as outer shareable by default,
  case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
  case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
    return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;

  default:
    ASSERT(0);
  case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
  case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
    if (ArmReadCurrentEL () == AARCH64_EL2)
      return TT_ATTR_INDX_DEVICE_MEMORY | TT_XN_MASK;
    else
      return TT_ATTR_INDX_DEVICE_MEMORY | TT_UXN_MASK | TT_PXN_MASK;
  }
}

UINT64
PageAttributeToGcdAttribute (
  IN UINT64 PageAttributes
  )
{
  UINT64  GcdAttributes;

  switch (PageAttributes & TT_ATTR_INDX_MASK) {
  case TT_ATTR_INDX_DEVICE_MEMORY:
    GcdAttributes = EFI_MEMORY_UC;
    break;
  case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:
    GcdAttributes = EFI_MEMORY_WC;
    break;
  case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:
    GcdAttributes = EFI_MEMORY_WT;
    break;
  case TT_ATTR_INDX_MEMORY_WRITE_BACK:
    GcdAttributes = EFI_MEMORY_WB;
    break;
  default:
    DEBUG ((EFI_D_ERROR, "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n", PageAttributes));
    ASSERT (0);
    // The Global Coherency Domain (GCD) value is defined as a bit set.
    // Returning 0 means no attribute has been set.
    GcdAttributes = 0;
  }

  // Determine protection attributes
  if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) || ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {
    // Read only cases map to write-protect
    GcdAttributes |= EFI_MEMORY_RO;
  }

  // Process eXecute Never attribute
  if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0 ) {
    GcdAttributes |= EFI_MEMORY_XP;
  }

  return GcdAttributes;
}

#define MIN_T0SZ        16
#define BITS_PER_LEVEL  9

VOID
GetRootTranslationTableInfo (
  IN UINTN     T0SZ,
  OUT UINTN   *TableLevel,
  OUT UINTN   *TableEntryCount
  )
{
  // Get the level of the root table
  if (TableLevel) {
    *TableLevel = (T0SZ - MIN_T0SZ) / BITS_PER_LEVEL;
  }

  if (TableEntryCount) {
    *TableEntryCount = 1UL << (BITS_PER_LEVEL - (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL);
  }
}

STATIC
VOID
ReplaceLiveEntry (
  IN  UINT64  *Entry,
  IN  UINT64  Value
  )
{
  if (!ArmMmuEnabled ()) {
    *Entry = Value;
  } else {
    ArmReplaceLiveTranslationEntry (Entry, Value);
  }
}

STATIC
VOID
LookupAddresstoRootTable (
  IN  UINT64  MaxAddress,
  OUT UINTN  *T0SZ,
  OUT UINTN  *TableEntryCount
  )
{
  UINTN TopBit;

  // Check the parameters are not NULL
  ASSERT ((T0SZ != NULL) && (TableEntryCount != NULL));

  // Look for the highest bit set in MaxAddress
  for (TopBit = 63; TopBit != 0; TopBit--) {
    if ((1ULL << TopBit) & MaxAddress) {
      // MaxAddress top bit is found
      TopBit = TopBit + 1;
      break;
    }
  }
  ASSERT (TopBit != 0);

  // Calculate T0SZ from the top bit of the MaxAddress
  *T0SZ = 64 - TopBit;

  // Get the Table info from T0SZ
  GetRootTranslationTableInfo (*T0SZ, NULL, TableEntryCount);
}

STATIC
UINT64*
GetBlockEntryListFromAddress (
  IN  UINT64       *RootTable,
  IN  UINT64        RegionStart,
  OUT UINTN        *TableLevel,
  IN OUT UINT64    *BlockEntrySize,
  OUT UINT64      **LastBlockEntry
  )
{
  UINTN   RootTableLevel;
  UINTN   RootTableEntryCount;
  UINT64 *TranslationTable;
  UINT64 *BlockEntry;
  UINT64 *SubTableBlockEntry;
  UINT64  BlockEntryAddress;
  UINTN   BaseAddressAlignment;
  UINTN   PageLevel;
  UINTN   Index;
  UINTN   IndexLevel;
  UINTN   T0SZ;
  UINT64  Attributes;
  UINT64  TableAttributes;

  // Initialize variable
  BlockEntry = NULL;

  // Ensure the parameters are valid
  if (!(TableLevel && BlockEntrySize && LastBlockEntry)) {
    ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
    return NULL;
  }

  // Ensure the Region is aligned on 4KB boundary
  if ((RegionStart & (SIZE_4KB - 1)) != 0) {
    ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
    return NULL;
  }

  // Ensure the required size is aligned on 4KB boundary and not 0
  if ((*BlockEntrySize & (SIZE_4KB - 1)) != 0 || *BlockEntrySize == 0) {
    ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
    return NULL;
  }

  T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
  // Get the Table info from T0SZ
  GetRootTranslationTableInfo (T0SZ, &RootTableLevel, &RootTableEntryCount);

  // If the start address is 0x0 then we use the size of the region to identify the alignment
  if (RegionStart == 0) {
    // Identify the highest possible alignment for the Region Size
    BaseAddressAlignment = LowBitSet64 (*BlockEntrySize);
  } else {
    // Identify the highest possible alignment for the Base Address
    BaseAddressAlignment = LowBitSet64 (RegionStart);
  }

  // Identify the Page Level the RegionStart must belong to. Note that PageLevel
  // should be at least 1 since block translations are not supported at level 0
  PageLevel = MAX (3 - ((BaseAddressAlignment - 12) / 9), 1);

  // If the required size is smaller than the current block size then we need to go to the page below.
  // The PageLevel was calculated on the Base Address alignment but did not take in account the alignment
  // of the allocation size
  while (*BlockEntrySize < TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel)) {
    // It does not fit so we need to go a page level above
    PageLevel++;
  }

  //
  // Get the Table Descriptor for the corresponding PageLevel. We need to decompose RegionStart to get appropriate entries
  //

  TranslationTable = RootTable;
  for (IndexLevel = RootTableLevel; IndexLevel <= PageLevel; IndexLevel++) {
    BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel, RegionStart);

    if ((IndexLevel != 3) && ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
      // Go to the next table
      TranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);

      // If we are at the last level then update the last level to next level
      if (IndexLevel == PageLevel) {
        // Enter the next level
        PageLevel++;
      }
    } else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {
      // If we are not at the last level then we need to split this BlockEntry
      if (IndexLevel != PageLevel) {
        // Retrieve the attributes from the block entry
        Attributes = *BlockEntry & TT_ATTRIBUTES_MASK;

        // Convert the block entry attributes into Table descriptor attributes
        TableAttributes = TT_TABLE_AP_NO_PERMISSION;
        if (Attributes & TT_NS) {
          TableAttributes = TT_TABLE_NS;
        }

        // Get the address corresponding at this entry
        BlockEntryAddress = RegionStart;
        BlockEntryAddress = BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
        // Shift back to right to set zero before the effective address
        BlockEntryAddress = BlockEntryAddress << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);

        // Set the correct entry type for the next page level
        if ((IndexLevel + 1) == 3) {
          Attributes |= TT_TYPE_BLOCK_ENTRY_LEVEL3;
        } else {
          Attributes |= TT_TYPE_BLOCK_ENTRY;
        }

        // Create a new translation table
        TranslationTable = AllocatePages (1);
        if (TranslationTable == NULL) {
          return NULL;
        }

        // Populate the newly created lower level table
        SubTableBlockEntry = TranslationTable;
        for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
          *SubTableBlockEntry = Attributes | (BlockEntryAddress + (Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));
          SubTableBlockEntry++;
        }

        // Fill the BlockEntry with the new TranslationTable
        ReplaceLiveEntry (BlockEntry,
          ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TableAttributes | TT_TYPE_TABLE_ENTRY);
      }
    } else {
      if (IndexLevel != PageLevel) {
        //
        // Case when we have an Invalid Entry and we are at a page level above of the one targetted.
        //

        // Create a new translation table
        TranslationTable = AllocatePages (1);
        if (TranslationTable == NULL) {
          return NULL;
        }

        ZeroMem (TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));

        // Fill the new BlockEntry with the TranslationTable
        *BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TT_TYPE_TABLE_ENTRY;
      }
    }
  }

  // Expose the found PageLevel to the caller
  *TableLevel = PageLevel;

  // Now, we have the Table Level we can get the Block Size associated to this table
  *BlockEntrySize = TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel);

  // The last block of the root table depends on the number of entry in this table,
  // otherwise it is always the (TT_ENTRY_COUNT - 1)th entry in the table.
  *LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable,
      (PageLevel == RootTableLevel) ? RootTableEntryCount : TT_ENTRY_COUNT);

  return BlockEntry;
}

STATIC
EFI_STATUS
UpdateRegionMapping (
  IN  UINT64  *RootTable,
  IN  UINT64  RegionStart,
  IN  UINT64  RegionLength,
  IN  UINT64  Attributes,
  IN  UINT64  BlockEntryMask
  )
{
  UINT32  Type;
  UINT64  *BlockEntry;
  UINT64  *LastBlockEntry;
  UINT64  BlockEntrySize;
  UINTN   TableLevel;

  // Ensure the Length is aligned on 4KB boundary
  if ((RegionLength == 0) || ((RegionLength & (SIZE_4KB - 1)) != 0)) {
    ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
    return EFI_INVALID_PARAMETER;
  }

  do {
    // Get the first Block Entry that matches the Virtual Address and also the information on the Table Descriptor
    // such as the the size of the Block Entry and the address of the last BlockEntry of the Table Descriptor
    BlockEntrySize = RegionLength;
    BlockEntry = GetBlockEntryListFromAddress (RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);
    if (BlockEntry == NULL) {
      // GetBlockEntryListFromAddress() return NULL when it fails to allocate new pages from the Translation Tables
      return EFI_OUT_OF_RESOURCES;
    }

    if (TableLevel != 3) {
      Type = TT_TYPE_BLOCK_ENTRY;
    } else {
      Type = TT_TYPE_BLOCK_ENTRY_LEVEL3;
    }

    do {
      // Fill the Block Entry with attribute and output block address
      *BlockEntry &= BlockEntryMask;
      *BlockEntry |= (RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;

      // Go to the next BlockEntry
      RegionStart += BlockEntrySize;
      RegionLength -= BlockEntrySize;
      BlockEntry++;

      // Break the inner loop when next block is a table
      // Rerun GetBlockEntryListFromAddress to avoid page table memory leak
      if (TableLevel != 3 && BlockEntry <= LastBlockEntry &&
          (*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY) {
            break;
      }
    } while ((RegionLength >= BlockEntrySize) && (BlockEntry <= LastBlockEntry));
  } while (RegionLength != 0);

  return EFI_SUCCESS;
}

STATIC
EFI_STATUS
FillTranslationTable (
  IN  UINT64                        *RootTable,
  IN  ARM_MEMORY_REGION_DESCRIPTOR  *MemoryRegion
  )
{
  return UpdateRegionMapping (
           RootTable,
           MemoryRegion->VirtualBase,
           MemoryRegion->Length,
           ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF,
           0
           );
}

STATIC
UINT64
GcdAttributeToPageAttribute (
  IN UINT64 GcdAttributes
  )
{
  UINT64 PageAttributes;

  switch (GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) {
  case EFI_MEMORY_UC:
    PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;
    break;
  case EFI_MEMORY_WC:
    PageAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
    break;
  case EFI_MEMORY_WT:
    PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
    break;
  case EFI_MEMORY_WB:
    PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
    break;
  default:
    PageAttributes = TT_ATTR_INDX_MASK;
    break;
  }

  if ((GcdAttributes & EFI_MEMORY_XP) != 0 ||
      (GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) == EFI_MEMORY_UC) {
    if (ArmReadCurrentEL () == AARCH64_EL2) {
      PageAttributes |= TT_XN_MASK;
    } else {
      PageAttributes |= TT_UXN_MASK | TT_PXN_MASK;
    }
  }

  if ((GcdAttributes & EFI_MEMORY_RO) != 0) {
    PageAttributes |= TT_AP_RO_RO;
  }

  return PageAttributes | TT_AF;
}

EFI_STATUS
ArmSetMemoryAttributes (
  IN EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN UINT64                    Length,
  IN UINT64                    Attributes
  )
{
  EFI_STATUS                   Status;
  UINT64                      *TranslationTable;
  UINT64                       PageAttributes;
  UINT64                       PageAttributeMask;

  PageAttributes = GcdAttributeToPageAttribute (Attributes);
  PageAttributeMask = 0;

  if ((Attributes & EFI_MEMORY_CACHETYPE_MASK) == 0) {
    //
    // No memory type was set in Attributes, so we are going to update the
    // permissions only.
    //
    PageAttributes &= TT_AP_MASK | TT_UXN_MASK | TT_PXN_MASK;
    PageAttributeMask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK |
                          TT_PXN_MASK | TT_XN_MASK);
  }

  TranslationTable = ArmGetTTBR0BaseAddress ();

  Status = UpdateRegionMapping (
             TranslationTable,
             BaseAddress,
             Length,
             PageAttributes,
             PageAttributeMask);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  // Invalidate all TLB entries so changes are synced
  ArmInvalidateTlb ();

  return EFI_SUCCESS;
}

STATIC
EFI_STATUS
SetMemoryRegionAttribute (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN  UINT64                    Length,
  IN  UINT64                    Attributes,
  IN  UINT64                    BlockEntryMask
  )
{
  EFI_STATUS                   Status;
  UINT64                       *RootTable;

  RootTable = ArmGetTTBR0BaseAddress ();

  Status = UpdateRegionMapping (RootTable, BaseAddress, Length, Attributes, BlockEntryMask);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  // Invalidate all TLB entries so changes are synced
  ArmInvalidateTlb ();

  return EFI_SUCCESS;
}

EFI_STATUS
ArmSetMemoryRegionNoExec (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN  UINT64                    Length
  )
{
  UINT64    Val;

  if (ArmReadCurrentEL () == AARCH64_EL1) {
    Val = TT_PXN_MASK | TT_UXN_MASK;
  } else {
    Val = TT_XN_MASK;
  }

  return SetMemoryRegionAttribute (
           BaseAddress,
           Length,
           Val,
           ~TT_ADDRESS_MASK_BLOCK_ENTRY);
}

EFI_STATUS
ArmClearMemoryRegionNoExec (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN  UINT64                    Length
  )
{
  UINT64 Mask;

  // XN maps to UXN in the EL1&0 translation regime
  Mask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_PXN_MASK | TT_XN_MASK);

  return SetMemoryRegionAttribute (
           BaseAddress,
           Length,
           0,
           Mask);
}

EFI_STATUS
ArmSetMemoryRegionReadOnly (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN  UINT64                    Length
  )
{
  return SetMemoryRegionAttribute (
           BaseAddress,
           Length,
           TT_AP_RO_RO,
           ~TT_ADDRESS_MASK_BLOCK_ENTRY);
}

EFI_STATUS
ArmClearMemoryRegionReadOnly (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress,
  IN  UINT64                    Length
  )
{
  return SetMemoryRegionAttribute (
           BaseAddress,
           Length,
           TT_AP_RW_RW,
           ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK));
}

EFI_STATUS
EFIAPI
ArmConfigureMmu (
  IN  ARM_MEMORY_REGION_DESCRIPTOR  *MemoryTable,
  OUT VOID                         **TranslationTableBase OPTIONAL,
  OUT UINTN                         *TranslationTableSize OPTIONAL
  )
{
  VOID*                         TranslationTable;
  UINT32                        TranslationTableAttribute;
  UINT64                        MaxAddress;
  UINTN                         T0SZ;
  UINTN                         RootTableEntryCount;
  UINT64                        TCR;
  EFI_STATUS                    Status;

  if(MemoryTable == NULL) {
    ASSERT (MemoryTable != NULL);
    return EFI_INVALID_PARAMETER;
  }

  //
  // Limit the virtual address space to what we can actually use: UEFI
  // mandates a 1:1 mapping, so no point in making the virtual address
  // space larger than the physical address space. We also have to take
  // into account the architectural limitations that result from UEFI's
  // use of 4 KB pages.
  //
  MaxAddress = MIN (LShiftU64 (1ULL, ArmGetPhysicalAddressBits ()) - 1,
                    MAX_ALLOC_ADDRESS);

  // Lookup the Table Level to get the information
  LookupAddresstoRootTable (MaxAddress, &T0SZ, &RootTableEntryCount);

  //
  // Set TCR that allows us to retrieve T0SZ in the subsequent functions
  //
  // Ideally we will be running at EL2, but should support EL1 as well.
  // UEFI should not run at EL3.
  if (ArmReadCurrentEL () == AARCH64_EL2) {
    //Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
    TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;

    // Set the Physical Address Size using MaxAddress
    if (MaxAddress < SIZE_4GB) {
      TCR |= TCR_PS_4GB;
    } else if (MaxAddress < SIZE_64GB) {
      TCR |= TCR_PS_64GB;
    } else if (MaxAddress < SIZE_1TB) {
      TCR |= TCR_PS_1TB;
    } else if (MaxAddress < SIZE_4TB) {
      TCR |= TCR_PS_4TB;
    } else if (MaxAddress < SIZE_16TB) {
      TCR |= TCR_PS_16TB;
    } else if (MaxAddress < SIZE_256TB) {
      TCR |= TCR_PS_256TB;
    } else {
      DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
      ASSERT (0); // Bigger than 48-bit memory space are not supported
      return EFI_UNSUPPORTED;
    }
  } else if (ArmReadCurrentEL () == AARCH64_EL1) {
    // Due to Cortex-A57 erratum #822227 we must set TG1[1] == 1, regardless of EPD1.
    TCR = T0SZ | TCR_TG0_4KB | TCR_TG1_4KB | TCR_EPD1;

    // Set the Physical Address Size using MaxAddress
    if (MaxAddress < SIZE_4GB) {
      TCR |= TCR_IPS_4GB;
    } else if (MaxAddress < SIZE_64GB) {
      TCR |= TCR_IPS_64GB;
    } else if (MaxAddress < SIZE_1TB) {
      TCR |= TCR_IPS_1TB;
    } else if (MaxAddress < SIZE_4TB) {
      TCR |= TCR_IPS_4TB;
    } else if (MaxAddress < SIZE_16TB) {
      TCR |= TCR_IPS_16TB;
    } else if (MaxAddress < SIZE_256TB) {
      TCR |= TCR_IPS_256TB;
    } else {
      DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
      ASSERT (0); // Bigger than 48-bit memory space are not supported
      return EFI_UNSUPPORTED;
    }
  } else {
    ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
    return EFI_UNSUPPORTED;
  }

  //
  // Translation table walks are always cache coherent on ARMv8-A, so cache
  // maintenance on page tables is never needed. Since there is a risk of
  // loss of coherency when using mismatched attributes, and given that memory
  // is mapped cacheable except for extraordinary cases (such as non-coherent
  // DMA), have the page table walker perform cached accesses as well, and
  // assert below that that matches the attributes we use for CPU accesses to
  // the region.
  //
  TCR |= TCR_SH_INNER_SHAREABLE |
         TCR_RGN_OUTER_WRITE_BACK_ALLOC |
         TCR_RGN_INNER_WRITE_BACK_ALLOC;

  // Set TCR
  ArmSetTCR (TCR);

  // Allocate pages for translation table
  TranslationTable = AllocatePages (1);
  if (TranslationTable == NULL) {
    return EFI_OUT_OF_RESOURCES;
  }
  // We set TTBR0 just after allocating the table to retrieve its location from the subsequent
  // functions without needing to pass this value across the functions. The MMU is only enabled
  // after the translation tables are populated.
  ArmSetTTBR0 (TranslationTable);

  if (TranslationTableBase != NULL) {
    *TranslationTableBase = TranslationTable;
  }

  if (TranslationTableSize != NULL) {
    *TranslationTableSize = RootTableEntryCount * sizeof(UINT64);
  }

  ZeroMem (TranslationTable, RootTableEntryCount * sizeof(UINT64));

  // Disable MMU and caches. ArmDisableMmu() also invalidates the TLBs
  ArmDisableMmu ();
  ArmDisableDataCache ();
  ArmDisableInstructionCache ();

  // Make sure nothing sneaked into the cache
  ArmCleanInvalidateDataCache ();
  ArmInvalidateInstructionCache ();

  TranslationTableAttribute = TT_ATTR_INDX_INVALID;
  while (MemoryTable->Length != 0) {

    DEBUG_CODE_BEGIN ();
      // Find the memory attribute for the Translation Table
      if ((UINTN)TranslationTable >= MemoryTable->PhysicalBase &&
          (UINTN)TranslationTable + EFI_PAGE_SIZE <= MemoryTable->PhysicalBase +
                                                          MemoryTable->Length) {
        TranslationTableAttribute = MemoryTable->Attributes;
      }
    DEBUG_CODE_END ();

    Status = FillTranslationTable (TranslationTable, MemoryTable);
    if (EFI_ERROR (Status)) {
      goto FREE_TRANSLATION_TABLE;
    }
    MemoryTable++;
  }

  ASSERT (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK ||
          TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK);

  ArmSetMAIR (MAIR_ATTR(TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) |                      // mapped to EFI_MEMORY_UC
              MAIR_ATTR(TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC
              MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT
              MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK));       // mapped to EFI_MEMORY_WB

  ArmDisableAlignmentCheck ();
  ArmEnableStackAlignmentCheck ();
  ArmEnableInstructionCache ();
  ArmEnableDataCache ();

  ArmEnableMmu ();
  return EFI_SUCCESS;

FREE_TRANSLATION_TABLE:
  FreePages (TranslationTable, 1);
  return Status;
}

RETURN_STATUS
EFIAPI
ArmMmuBaseLibConstructor (
  VOID
  )
{
  extern UINT32 ArmReplaceLiveTranslationEntrySize;

  //
  // The ArmReplaceLiveTranslationEntry () helper function may be invoked
  // with the MMU off so we have to ensure that it gets cleaned to the PoC
  //
  WriteBackDataCacheRange (ArmReplaceLiveTranslationEntry,
    ArmReplaceLiveTranslationEntrySize);

  return RETURN_SUCCESS;
}