summaryrefslogtreecommitdiffstats
path: root/ArmVirtPkg/PrePi/AArch64/ModuleEntryPoint.S
blob: 34d6abecb0ac40d260464d36a0ea2e64a0bd4f12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
//
//  Copyright (c) 2011-2013, ARM Limited. All rights reserved.
//  Copyright (c) 2015-2016, Linaro Limited. All rights reserved.
//
//  SPDX-License-Identifier: BSD-2-Clause-Patent
//
//

#include <AsmMacroIoLibV8.h>

ASM_FUNC(_ModuleEntryPoint)
  //
  // We are built as a ET_DYN PIE executable, so we need to process all
  // relative relocations regardless of whether or not we are executing from
  // the same offset we were linked at. This is only possible if we are
  // running from RAM.
  //
  adr   x8, __reloc_base
  adr   x9, __reloc_start
  adr   x10, __reloc_end

.Lreloc_loop:
  cmp   x9, x10
  bhs   .Lreloc_done

  //
  // AArch64 uses the ELF64 RELA format, which means each entry in the
  // relocation table consists of
  //
  //   UINT64 offset          : the relative offset of the value that needs to
  //                            be relocated
  //   UINT64 info            : relocation type and symbol index (the latter is
  //                            not used for R_AARCH64_RELATIVE relocations)
  //   UINT64 addend          : value to be added to the value being relocated
  //
  ldp   x11, x12, [x9], #24   // read offset into x11 and info into x12
  cmp   x12, #0x403           // check info == R_AARCH64_RELATIVE?
  bne   .Lreloc_loop          // not a relative relocation? then skip

  ldr   x12, [x9, #-8]        // read addend into x12
  add   x12, x12, x8          // add reloc base to addend to get relocated value
  str   x12, [x11, x8]        // write relocated value at offset
  b     .Lreloc_loop
.Lreloc_done:

  bl    ASM_PFX(DiscoverDramFromDt)

  // Get ID of this CPU in Multicore system
  bl    ASM_PFX(ArmReadMpidr)
  // Keep a copy of the MpId register value
  mov   x20, x0

// Check if we can install the stack at the top of the System Memory or if we need
// to install the stacks at the bottom of the Firmware Device (case the FD is located
// at the top of the DRAM)
_SetupStackPosition:
  // Compute Top of System Memory
  ldr   x1, PcdGet64 (PcdSystemMemoryBase)
  ldr   x2, PcdGet64 (PcdSystemMemorySize)
  sub   x2, x2, #1
  add   x1, x1, x2      // x1 = SystemMemoryTop = PcdSystemMemoryBase + PcdSystemMemorySize

  // Calculate Top of the Firmware Device
  ldr   x2, PcdGet64 (PcdFdBaseAddress)
  MOV32 (w3, FixedPcdGet32 (PcdFdSize) - 1)
  add   x3, x3, x2      // x3 = FdTop = PcdFdBaseAddress + PcdFdSize

  // UEFI Memory Size (stacks are allocated in this region)
  MOV32 (x4, FixedPcdGet32(PcdSystemMemoryUefiRegionSize))

  //
  // Reserve the memory for the UEFI region (contain stacks on its top)
  //

  // Calculate how much space there is between the top of the Firmware and the Top of the System Memory
  subs  x0, x1, x3   // x0 = SystemMemoryTop - FdTop
  b.mi  _SetupStack  // Jump if negative (FdTop > SystemMemoryTop). Case when the PrePi is in XIP memory outside of the DRAM
  cmp   x0, x4
  b.ge  _SetupStack

  // Case the top of stacks is the FdBaseAddress
  mov   x1, x2

_SetupStack:
  // x1 contains the top of the stack (and the UEFI Memory)

  // Because the 'push' instruction is equivalent to 'stmdb' (decrement before), we need to increment
  // one to the top of the stack. We check if incrementing one does not overflow (case of DRAM at the
  // top of the memory space)
  adds  x21, x1, #1
  b.cs  _SetupOverflowStack

_SetupAlignedStack:
  mov   x1, x21
  b     _GetBaseUefiMemory

_SetupOverflowStack:
  // Case memory at the top of the address space. Ensure the top of the stack is EFI_PAGE_SIZE
  // aligned (4KB)
  and   x1, x1, ~EFI_PAGE_MASK

_GetBaseUefiMemory:
  // Calculate the Base of the UEFI Memory
  sub   x21, x1, x4

_GetStackBase:
  // r1 = The top of the Mpcore Stacks
  mov   sp, x1

  // Stack for the primary core = PrimaryCoreStack
  MOV32 (x2, FixedPcdGet32(PcdCPUCorePrimaryStackSize))
  sub   x22, x1, x2

  mov   x0, x20
  mov   x1, x21
  mov   x2, x22

  // Set the frame pointer to NULL so any backtraces terminate here
  mov   x29, xzr

  // Jump to PrePiCore C code
  //    x0 = MpId
  //    x1 = UefiMemoryBase
  //    x2 = StacksBase
  bl    ASM_PFX(CEntryPoint)

_NeverReturn:
  b _NeverReturn

// VOID
// DiscoverDramFromDt (
//   VOID   *DeviceTreeBaseAddress,   // passed by loader in x0
//   VOID   *ImageBase                // passed by FDF trampoline in x1
//   );
ASM_PFX(DiscoverDramFromDt):
  //
  // If we are booting from RAM using the Linux kernel boot protocol, x0 will
  // point to the DTB image in memory. Otherwise, use the default value defined
  // by the platform.
  //
  cbnz  x0, 0f
  ldr   x0, PcdGet64 (PcdDeviceTreeInitialBaseAddress)

0:mov   x29, x30            // preserve LR
  mov   x28, x0             // preserve DTB pointer
  mov   x27, x1             // preserve base of image pointer

  //
  // The base of the runtime image has been preserved in x1. Check whether
  // the expected magic number can be found in the header.
  //
  ldr   w8, .LArm64LinuxMagic
  ldr   w9, [x1, #0x38]
  cmp   w8, w9
  bne   .Lout

  //
  //
  // OK, so far so good. We have confirmed that we likely have a DTB and are
  // booting via the arm64 Linux boot protocol. Update the base-of-image PCD
  // to the actual relocated value, and add the shift of PcdFdBaseAddress to
  // PcdFvBaseAddress as well
  //
  adr   x8, PcdGet64 (PcdFdBaseAddress)
  adr   x9, PcdGet64 (PcdFvBaseAddress)
  ldr   x6, [x8]
  ldr   x7, [x9]
  sub   x7, x7, x6
  add   x7, x7, x1
  str   x1, [x8]
  str   x7, [x9]

  //
  // Discover the memory size and offset from the DTB, and record in the
  // respective PCDs. This will also return false if a corrupt DTB is
  // encountered. Since we are calling a C function, use the window at the
  // beginning of the FD image as a temp stack.
  //
  adr   x1, PcdGet64 (PcdSystemMemoryBase)
  adr   x2, PcdGet64 (PcdSystemMemorySize)
  mov   sp, x7
  bl    FindMemnode
  cbz   x0, .Lout

  //
  // Copy the DTB to the slack space right after the 64 byte arm64/Linux style
  // image header at the base of this image (defined in the FDF), and record the
  // pointer in PcdDeviceTreeInitialBaseAddress.
  //
  adr   x8, PcdGet64 (PcdDeviceTreeInitialBaseAddress)
  add   x27, x27, #0x40
  str   x27, [x8]

  mov   x0, x27
  mov   x1, x28
  bl    CopyFdt

.Lout:
  ret    x29

.LArm64LinuxMagic:
  .byte   0x41, 0x52, 0x4d, 0x64