summaryrefslogtreecommitdiffstats
path: root/BaseTools/Source/C/GenFw/Elf32Convert.c
blob: 7c8a065678ac1f28b08eba1130d46fcf5d5a6848 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
/** @file
Elf32 Convert solution

Copyright (c) 2010 - 2021, Intel Corporation. All rights reserved.<BR>
Portions copyright (c) 2013, ARM Ltd. All rights reserved.<BR>
Portions Copyright (c) 2020, Hewlett Packard Enterprise Development LP. All rights reserved.<BR>

SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "WinNtInclude.h"

#ifndef __GNUC__
#include <windows.h>
#include <io.h>
#endif
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>

#include <Common/UefiBaseTypes.h>
#include <IndustryStandard/PeImage.h>

#include "PeCoffLib.h"
#include "EfiUtilityMsgs.h"

#include "GenFw.h"
#include "ElfConvert.h"
#include "Elf32Convert.h"

STATIC
VOID
ScanSections32 (
  VOID
  );

STATIC
BOOLEAN
WriteSections32 (
  SECTION_FILTER_TYPES  FilterType
  );

STATIC
VOID
WriteRelocations32 (
  VOID
  );

STATIC
VOID
WriteDebug32 (
  VOID
  );

STATIC
VOID
SetImageSize32 (
  VOID
  );

STATIC
VOID
CleanUp32 (
  VOID
  );

//
// Rename ELF32 structures to common names to help when porting to ELF64.
//
typedef Elf32_Shdr Elf_Shdr;
typedef Elf32_Ehdr Elf_Ehdr;
typedef Elf32_Rel Elf_Rel;
typedef Elf32_Sym Elf_Sym;
typedef Elf32_Phdr Elf_Phdr;
typedef Elf32_Dyn Elf_Dyn;
#define ELFCLASS ELFCLASS32
#define ELF_R_TYPE(r) ELF32_R_TYPE(r)
#define ELF_R_SYM(r) ELF32_R_SYM(r)

//
// Well known ELF structures.
//
STATIC Elf_Ehdr *mEhdr;
STATIC Elf_Shdr *mShdrBase;
STATIC Elf_Phdr *mPhdrBase;

//
// Coff information
//
STATIC UINT32 mCoffAlignment = 0x20;

//
// PE section alignment.
//
STATIC const UINT16 mCoffNbrSections = 4;

//
// ELF sections to offset in Coff file.
//
STATIC UINT32 *mCoffSectionsOffset = NULL;

//
// Offsets in COFF file
//
STATIC UINT32 mNtHdrOffset;
STATIC UINT32 mTextOffset;
STATIC UINT32 mDataOffset;
STATIC UINT32 mHiiRsrcOffset;
STATIC UINT32 mRelocOffset;
STATIC UINT32 mDebugOffset;

//
// Initialization Function
//
BOOLEAN
InitializeElf32 (
  UINT8               *FileBuffer,
  ELF_FUNCTION_TABLE  *ElfFunctions
  )
{
  //
  // Initialize data pointer and structures.
  //
  mEhdr = (Elf_Ehdr*) FileBuffer;

  //
  // Check the ELF32 specific header information.
  //
  if (mEhdr->e_ident[EI_CLASS] != ELFCLASS32) {
    Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS32");
    return FALSE;
  }
  if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) {
    Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB");
    return FALSE;
  }
  if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) {
    Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN");
    return FALSE;
  }
  if (!((mEhdr->e_machine == EM_386) || (mEhdr->e_machine == EM_ARM) || (mEhdr->e_machine == EM_RISCV))) {
    Warning (NULL, 0, 3000, "Unsupported", "ELF e_machine is not Elf32 machine.");
  }
  if (mEhdr->e_version != EV_CURRENT) {
    Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT);
    return FALSE;
  }

  //
  // Update section header pointers
  //
  mShdrBase  = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff);
  mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff);

  //
  // Create COFF Section offset buffer and zero.
  //
  mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32));
  if (mCoffSectionsOffset == NULL) {
    Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
    return FALSE;
  }
  memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32));

  //
  // Fill in function pointers.
  //
  ElfFunctions->ScanSections = ScanSections32;
  ElfFunctions->WriteSections = WriteSections32;
  ElfFunctions->WriteRelocations = WriteRelocations32;
  ElfFunctions->WriteDebug = WriteDebug32;
  ElfFunctions->SetImageSize = SetImageSize32;
  ElfFunctions->CleanUp = CleanUp32;

  return TRUE;
}


//
// Header by Index functions
//
STATIC
Elf_Shdr*
GetShdrByIndex (
  UINT32 Num
  )
{
  if (Num >= mEhdr->e_shnum) {
    Error (NULL, 0, 3000, "Invalid", "GetShdrByIndex: Index %u is too high.", Num);
    exit(EXIT_FAILURE);
  }

  return (Elf_Shdr*)((UINT8*)mShdrBase + Num * mEhdr->e_shentsize);
}

STATIC
Elf_Phdr*
GetPhdrByIndex (
  UINT32 num
  )
{
  if (num >= mEhdr->e_phnum) {
    Error (NULL, 0, 3000, "Invalid", "GetPhdrByIndex: Index %u is too high.", num);
    exit(EXIT_FAILURE);
  }

  return (Elf_Phdr *)((UINT8*)mPhdrBase + num * mEhdr->e_phentsize);
}

STATIC
UINT32
CoffAlign (
  UINT32 Offset
  )
{
  return (Offset + mCoffAlignment - 1) & ~(mCoffAlignment - 1);
}

STATIC
UINT32
DebugRvaAlign (
  UINT32 Offset
  )
{
  return (Offset + 3) & ~3;
}

//
// filter functions
//
STATIC
BOOLEAN
IsTextShdr (
  Elf_Shdr *Shdr
  )
{
  return (BOOLEAN) ((Shdr->sh_flags & (SHF_EXECINSTR | SHF_ALLOC)) == (SHF_EXECINSTR | SHF_ALLOC));
}

STATIC
BOOLEAN
IsHiiRsrcShdr (
  Elf_Shdr *Shdr
  )
{
  Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);

  return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_HII_SECTION_NAME) == 0);
}

STATIC
BOOLEAN
IsDataShdr (
  Elf_Shdr *Shdr
  )
{
  if (IsHiiRsrcShdr(Shdr)) {
    return FALSE;
  }
  return (BOOLEAN) (Shdr->sh_flags & (SHF_EXECINSTR | SHF_WRITE | SHF_ALLOC)) == (SHF_ALLOC | SHF_WRITE);
}

STATIC
BOOLEAN
IsStrtabShdr (
  Elf_Shdr *Shdr
  )
{
  Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);

  return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_STRTAB_SECTION_NAME) == 0);
}

STATIC
Elf_Shdr *
FindStrtabShdr (
  VOID
  )
{
  UINT32 i;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsStrtabShdr(shdr)) {
      return shdr;
    }
  }
  return NULL;
}

STATIC
const UINT8 *
GetSymName (
  Elf_Sym *Sym
  )
{
  Elf_Shdr *StrtabShdr;
  UINT8    *StrtabContents;
  BOOLEAN  foundEnd;
  UINT32   i;

  if (Sym->st_name == 0) {
    return NULL;
  }

  StrtabShdr = FindStrtabShdr();
  if (StrtabShdr == NULL) {
    return NULL;
  }

  assert(Sym->st_name < StrtabShdr->sh_size);

  StrtabContents = (UINT8*)mEhdr + StrtabShdr->sh_offset;

  foundEnd = FALSE;
  for (i = Sym->st_name; (i < StrtabShdr->sh_size) && !foundEnd; i++) {
    foundEnd = (BOOLEAN)(StrtabContents[i] == 0);
  }
  assert(foundEnd);

  return StrtabContents + Sym->st_name;
}

//
// Elf functions interface implementation
//

STATIC
VOID
ScanSections32 (
  VOID
  )
{
  UINT32                          i;
  EFI_IMAGE_DOS_HEADER            *DosHdr;
  EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
  UINT32                          CoffEntry;
  UINT32                          SectionCount;
  BOOLEAN                         FoundSection;

  CoffEntry = 0;
  mCoffOffset = 0;

  //
  // Coff file start with a DOS header.
  //
  mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
  mNtHdrOffset = mCoffOffset;
  switch (mEhdr->e_machine) {
  case EM_386:
  case EM_ARM:
    mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
  break;
  default:
    VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine);
    mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
  break;
  }

  mTableOffset = mCoffOffset;
  mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);

  //
  // Set mCoffAlignment to the maximum alignment of the input sections
  // we care about
  //
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (shdr->sh_addralign <= mCoffAlignment) {
      continue;
    }
    if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) {
      mCoffAlignment = (UINT32)shdr->sh_addralign;
    }
  }

  //
  // Check if mCoffAlignment is larger than MAX_COFF_ALIGNMENT
  //
  if (mCoffAlignment > MAX_COFF_ALIGNMENT) {
    Error (NULL, 0, 3000, "Invalid", "Section alignment is larger than MAX_COFF_ALIGNMENT.");
    assert (FALSE);
  }

  //
  // Move the PE/COFF header right before the first section. This will help us
  // save space when converting to TE.
  //
  if (mCoffAlignment > mCoffOffset) {
    mNtHdrOffset += mCoffAlignment - mCoffOffset;
    mTableOffset += mCoffAlignment - mCoffOffset;
    mCoffOffset = mCoffAlignment;
  }

  //
  // First text sections.
  //
  mCoffOffset = CoffAlign(mCoffOffset);
  mTextOffset = mCoffOffset;
  FoundSection = FALSE;
  SectionCount = 0;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsTextShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
        } else {
          Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
        }
      }

      /* Relocate entry.  */
      if ((mEhdr->e_entry >= shdr->sh_addr) &&
          (mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
        CoffEntry = mCoffOffset + mEhdr->e_entry - shdr->sh_addr;
      }

      //
      // Set mTextOffset with the offset of the first '.text' section
      //
      if (!FoundSection) {
        mTextOffset = mCoffOffset;
        FoundSection = TRUE;
      }

      mCoffSectionsOffset[i] = mCoffOffset;
      mCoffOffset += shdr->sh_size;
      SectionCount ++;
    }
  }

  if (!FoundSection) {
    Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section.");
    assert (FALSE);
  }

  mDebugOffset = DebugRvaAlign(mCoffOffset);
  mCoffOffset = CoffAlign(mCoffOffset);

  if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
    Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName);
  }

  //
  //  Then data sections.
  //
  mDataOffset = mCoffOffset;
  FoundSection = FALSE;
  SectionCount = 0;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsDataShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
        } else {
          Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
        }
      }

      //
      // Set mDataOffset with the offset of the first '.data' section
      //
      if (!FoundSection) {
        mDataOffset = mCoffOffset;
        FoundSection = TRUE;
      }

      mCoffSectionsOffset[i] = mCoffOffset;
      mCoffOffset += shdr->sh_size;
      SectionCount ++;
    }
  }

  if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
    Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName);
  }

  //
  // Make room for .debug data in .data (or .text if .data is empty) instead of
  // putting it in a section of its own. This is explicitly allowed by the
  // PE/COFF spec, and prevents bloat in the binary when using large values for
  // section alignment.
  //
  if (SectionCount > 0) {
    mDebugOffset = DebugRvaAlign(mCoffOffset);
  }
  mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) +
                sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) +
                strlen(mInImageName) + 1;

  mCoffOffset = CoffAlign(mCoffOffset);
  if (SectionCount == 0) {
    mDataOffset = mCoffOffset;
  }

  //
  //  The HII resource sections.
  //
  mHiiRsrcOffset = mCoffOffset;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsHiiRsrcShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
        } else {
          Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
        }
      }
      if (shdr->sh_size != 0) {
        mHiiRsrcOffset = mCoffOffset;
        mCoffSectionsOffset[i] = mCoffOffset;
        mCoffOffset += shdr->sh_size;
        mCoffOffset = CoffAlign(mCoffOffset);
        SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset);
      }
      break;
    }
  }

  mRelocOffset = mCoffOffset;

  //
  // Allocate base Coff file.  Will be expanded later for relocations.
  //
  mCoffFile = (UINT8 *)malloc(mCoffOffset);
  if (mCoffFile == NULL) {
    Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
  }
  assert (mCoffFile != NULL);
  memset(mCoffFile, 0, mCoffOffset);

  //
  // Fill headers.
  //
  DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile;
  DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
  DosHdr->e_lfanew = mNtHdrOffset;

  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset);

  NtHdr->Pe32.Signature = EFI_IMAGE_NT_SIGNATURE;

  switch (mEhdr->e_machine) {
  case EM_386:
    NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
    NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
    break;
  case EM_ARM:
    NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_ARMT;
    NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
    break;
  default:
    VerboseMsg ("%s unknown e_machine type %hu. Assume IA-32", mInImageName, mEhdr->e_machine);
    NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
    NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
  }

  NtHdr->Pe32.FileHeader.NumberOfSections = mCoffNbrSections;
  NtHdr->Pe32.FileHeader.TimeDateStamp = (UINT32) time(NULL);
  mImageTimeStamp = NtHdr->Pe32.FileHeader.TimeDateStamp;
  NtHdr->Pe32.FileHeader.PointerToSymbolTable = 0;
  NtHdr->Pe32.FileHeader.NumberOfSymbols = 0;
  NtHdr->Pe32.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32.OptionalHeader);
  NtHdr->Pe32.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
    | EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
    | EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
    | EFI_IMAGE_FILE_32BIT_MACHINE;

  NtHdr->Pe32.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset;
  NtHdr->Pe32.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset;
  NtHdr->Pe32.OptionalHeader.SizeOfUninitializedData = 0;
  NtHdr->Pe32.OptionalHeader.AddressOfEntryPoint = CoffEntry;

  NtHdr->Pe32.OptionalHeader.BaseOfCode = mTextOffset;

  NtHdr->Pe32.OptionalHeader.BaseOfData = mDataOffset;
  NtHdr->Pe32.OptionalHeader.ImageBase = 0;
  NtHdr->Pe32.OptionalHeader.SectionAlignment = mCoffAlignment;
  NtHdr->Pe32.OptionalHeader.FileAlignment = mCoffAlignment;
  NtHdr->Pe32.OptionalHeader.SizeOfImage = 0;

  NtHdr->Pe32.OptionalHeader.SizeOfHeaders = mTextOffset;
  NtHdr->Pe32.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;

  //
  // Section headers.
  //
  if ((mDataOffset - mTextOffset) > 0) {
    CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset,
            EFI_IMAGE_SCN_CNT_CODE
            | EFI_IMAGE_SCN_MEM_EXECUTE
            | EFI_IMAGE_SCN_MEM_READ);
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32.FileHeader.NumberOfSections--;
  }

  if ((mHiiRsrcOffset - mDataOffset) > 0) {
    CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_WRITE
            | EFI_IMAGE_SCN_MEM_READ);
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32.FileHeader.NumberOfSections--;
  }

  if ((mRelocOffset - mHiiRsrcOffset) > 0) {
    CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_READ);

    NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset;
    NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset;
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32.FileHeader.NumberOfSections--;
  }

}

STATIC
BOOLEAN
WriteSections32 (
  SECTION_FILTER_TYPES  FilterType
  )
{
  UINT32      Idx;
  Elf_Shdr    *SecShdr;
  UINT32      SecOffset;
  BOOLEAN     (*Filter)(Elf_Shdr *);

  //
  // Initialize filter pointer
  //
  switch (FilterType) {
    case SECTION_TEXT:
      Filter = IsTextShdr;
      break;
    case SECTION_HII:
      Filter = IsHiiRsrcShdr;
      break;
    case SECTION_DATA:
      Filter = IsDataShdr;
      break;
    default:
      return FALSE;
  }

  //
  // First: copy sections.
  //
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    Elf_Shdr *Shdr = GetShdrByIndex(Idx);
    if ((*Filter)(Shdr)) {
      switch (Shdr->sh_type) {
      case SHT_PROGBITS:
        /* Copy.  */
        if (Shdr->sh_offset + Shdr->sh_size > mFileBufferSize) {
          return FALSE;
        }
        memcpy(mCoffFile + mCoffSectionsOffset[Idx],
              (UINT8*)mEhdr + Shdr->sh_offset,
              Shdr->sh_size);
        break;

      case SHT_NOBITS:
        memset(mCoffFile + mCoffSectionsOffset[Idx], 0, Shdr->sh_size);
        break;

      default:
        //
        //  Ignore for unknown section type.
        //
        VerboseMsg ("%s unknown section type %x. We ignore this unknown section type.", mInImageName, (unsigned)Shdr->sh_type);
        break;
      }
    }
  }

  //
  // Second: apply relocations.
  //
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    //
    // Determine if this is a relocation section.
    //
    Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
    if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
      continue;
    }

    //
    // Relocation section found.  Now extract section information that the relocations
    // apply to in the ELF data and the new COFF data.
    //
    SecShdr = GetShdrByIndex(RelShdr->sh_info);
    SecOffset = mCoffSectionsOffset[RelShdr->sh_info];

    //
    // Only process relocations for the current filter type.
    //
    if (RelShdr->sh_type == SHT_REL && (*Filter)(SecShdr)) {
      UINT32 RelOffset;

      //
      // Determine the symbol table referenced by the relocation data.
      //
      Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
      UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;

      //
      // Process all relocation entries for this section.
      //
      for (RelOffset = 0; RelOffset < RelShdr->sh_size; RelOffset += RelShdr->sh_entsize) {
        //
        // Set pointer to relocation entry
        //
        Elf_Rel *Rel = (Elf_Rel *)((UINT8*)mEhdr + RelShdr->sh_offset + RelOffset);

        //
        // Set pointer to symbol table entry associated with the relocation entry.
        //
        Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);

        Elf_Shdr *SymShdr;
        UINT8 *Targ;
        UINT16 Address;

        //
        // Check section header index found in symbol table and get the section
        // header location.
        //
        if (Sym->st_shndx == SHN_UNDEF
            || Sym->st_shndx >= mEhdr->e_shnum) {
          const UINT8 *SymName = GetSymName(Sym);
          if (SymName == NULL) {
            SymName = (const UINT8 *)"<unknown>";
          }
          continue;
        }
        SymShdr = GetShdrByIndex(Sym->st_shndx);

        //
        // Convert the relocation data to a pointer into the coff file.
        //
        // Note:
        //   r_offset is the virtual address of the storage unit to be relocated.
        //   sh_addr is the virtual address for the base of the section.
        //
        Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);

        //
        // Determine how to handle each relocation type based on the machine type.
        //
        if (mEhdr->e_machine == EM_386) {
          switch (ELF_R_TYPE(Rel->r_info)) {
          case R_386_NONE:
            break;
          case R_386_32:
            //
            // Absolute relocation.
            //  Converts Targ from a absolute virtual address to the absolute
            //  COFF address.
            //
            *(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr
              + mCoffSectionsOffset[Sym->st_shndx];
            break;
          case R_386_PC32:
            //
            // Relative relocation: Symbol - Ip + Addend
            //
            *(UINT32 *)Targ = *(UINT32 *)Targ
              + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
              - (SecOffset - SecShdr->sh_addr);
            break;
          default:
            Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_386 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
          }
        } else if (mEhdr->e_machine == EM_ARM) {
          switch (ELF32_R_TYPE(Rel->r_info)) {
          case R_ARM_RBASE:
            // No relocation - no action required
            // break skipped

          case R_ARM_PC24:
          case R_ARM_REL32:
          case R_ARM_XPC25:
          case R_ARM_THM_PC22:
          case R_ARM_THM_JUMP19:
          case R_ARM_CALL:
          case R_ARM_JMP24:
          case R_ARM_THM_JUMP24:
          case R_ARM_PREL31:
          case R_ARM_MOVW_PREL_NC:
          case R_ARM_MOVT_PREL:
          case R_ARM_THM_MOVW_PREL_NC:
          case R_ARM_THM_MOVT_PREL:
          case R_ARM_THM_JMP6:
          case R_ARM_THM_ALU_PREL_11_0:
          case R_ARM_THM_PC12:
          case R_ARM_REL32_NOI:
          case R_ARM_ALU_PC_G0_NC:
          case R_ARM_ALU_PC_G0:
          case R_ARM_ALU_PC_G1_NC:
          case R_ARM_ALU_PC_G1:
          case R_ARM_ALU_PC_G2:
          case R_ARM_LDR_PC_G1:
          case R_ARM_LDR_PC_G2:
          case R_ARM_LDRS_PC_G0:
          case R_ARM_LDRS_PC_G1:
          case R_ARM_LDRS_PC_G2:
          case R_ARM_LDC_PC_G0:
          case R_ARM_LDC_PC_G1:
          case R_ARM_LDC_PC_G2:
          case R_ARM_THM_JUMP11:
          case R_ARM_THM_JUMP8:
          case R_ARM_TLS_GD32:
          case R_ARM_TLS_LDM32:
          case R_ARM_TLS_IE32:
            // Thease are all PC-relative relocations and don't require modification
            // GCC does not seem to have the concept of a application that just needs to get relocated.
            break;

          case R_ARM_THM_MOVW_ABS_NC:
            // MOVW is only lower 16-bits of the addres
            Address = (UINT16)(Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
            ThumbMovtImmediatePatch ((UINT16 *)Targ, Address);
            break;

          case R_ARM_THM_MOVT_ABS:
            // MOVT is only upper 16-bits of the addres
            Address = (UINT16)((Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]) >> 16);
            ThumbMovtImmediatePatch ((UINT16 *)Targ, Address);
            break;

          case R_ARM_ABS32:
          case R_ARM_RABS32:
            //
            // Absolute relocation.
            //
            *(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
            break;

          default:
            Error (NULL, 0, 3000, "Invalid", "WriteSections (): %s unsupported ELF EM_ARM relocation 0x%x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info));
          }
        }
      }
    }
  }

  return TRUE;
}

UINTN gMovwOffset = 0;

STATIC
VOID
WriteRelocations32 (
  VOID
  )
{
  UINT32                           Index;
  EFI_IMAGE_OPTIONAL_HEADER_UNION  *NtHdr;
  EFI_IMAGE_DATA_DIRECTORY         *Dir;
  BOOLEAN                          FoundRelocations;
  Elf_Dyn                          *Dyn;
  Elf_Rel                          *Rel;
  UINTN                            RelElementSize;
  UINTN                            RelSize;
  UINTN                            RelOffset;
  UINTN                            K;
  Elf32_Phdr                       *DynamicSegment;

  for (Index = 0, FoundRelocations = FALSE; Index < mEhdr->e_shnum; Index++) {
    Elf_Shdr *RelShdr = GetShdrByIndex(Index);
    if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) {
      Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info);
      if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) {
        UINT32 RelIdx;

        FoundRelocations = TRUE;
        for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
          Rel = (Elf_Rel *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);

          if (mEhdr->e_machine == EM_386) {
            switch (ELF_R_TYPE(Rel->r_info)) {
            case R_386_NONE:
            case R_386_PC32:
              //
              // No fixup entry required.
              //
              break;
            case R_386_32:
              //
              // Creates a relative relocation entry from the absolute entry.
              //
              CoffAddFixup(mCoffSectionsOffset[RelShdr->sh_info]
              + (Rel->r_offset - SecShdr->sh_addr),
              EFI_IMAGE_REL_BASED_HIGHLOW);
              break;
            default:
              Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_386 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
            }
          } else if (mEhdr->e_machine == EM_ARM) {
            switch (ELF32_R_TYPE(Rel->r_info)) {
            case R_ARM_RBASE:
              // No relocation - no action required
              // break skipped

            case R_ARM_PC24:
            case R_ARM_REL32:
            case R_ARM_XPC25:
            case R_ARM_THM_PC22:
            case R_ARM_THM_JUMP19:
            case R_ARM_CALL:
            case R_ARM_JMP24:
            case R_ARM_THM_JUMP24:
            case R_ARM_PREL31:
            case R_ARM_MOVW_PREL_NC:
            case R_ARM_MOVT_PREL:
            case R_ARM_THM_MOVW_PREL_NC:
            case R_ARM_THM_MOVT_PREL:
            case R_ARM_THM_JMP6:
            case R_ARM_THM_ALU_PREL_11_0:
            case R_ARM_THM_PC12:
            case R_ARM_REL32_NOI:
            case R_ARM_ALU_PC_G0_NC:
            case R_ARM_ALU_PC_G0:
            case R_ARM_ALU_PC_G1_NC:
            case R_ARM_ALU_PC_G1:
            case R_ARM_ALU_PC_G2:
            case R_ARM_LDR_PC_G1:
            case R_ARM_LDR_PC_G2:
            case R_ARM_LDRS_PC_G0:
            case R_ARM_LDRS_PC_G1:
            case R_ARM_LDRS_PC_G2:
            case R_ARM_LDC_PC_G0:
            case R_ARM_LDC_PC_G1:
            case R_ARM_LDC_PC_G2:
            case R_ARM_THM_JUMP11:
            case R_ARM_THM_JUMP8:
            case R_ARM_TLS_GD32:
            case R_ARM_TLS_LDM32:
            case R_ARM_TLS_IE32:
              // Thease are all PC-relative relocations and don't require modification
              break;

            case R_ARM_THM_MOVW_ABS_NC:
              CoffAddFixup (
                mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr),
                EFI_IMAGE_REL_BASED_ARM_MOV32T
                );

              // PE/COFF treats MOVW/MOVT relocation as single 64-bit instruction
              // Track this address so we can log an error for unsupported sequence of MOVW/MOVT
              gMovwOffset = mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr);
              break;

            case R_ARM_THM_MOVT_ABS:
              if ((gMovwOffset + 4) !=  (mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr))) {
                Error (NULL, 0, 3000, "Not Supported", "PE/COFF requires MOVW+MOVT instruction sequence %x +4 != %x.", gMovwOffset, mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
              }
              break;

            case R_ARM_ABS32:
            case R_ARM_RABS32:
              CoffAddFixup (
                mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr),
                EFI_IMAGE_REL_BASED_HIGHLOW
                );
              break;

           default:
              Error (NULL, 0, 3000, "Invalid", "WriteRelocations(): %s unsupported ELF EM_ARM relocation 0x%x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info));
            }
          } else {
            Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine);
          }
        }
      }
    }
  }

  if (!FoundRelocations && (mEhdr->e_machine == EM_ARM)) {
    /* Try again, but look for PT_DYNAMIC instead of SHT_REL */

    for (Index = 0; Index < mEhdr->e_phnum; Index++) {
      RelElementSize = 0;
      RelSize = 0;
      RelOffset = 0;

      DynamicSegment = GetPhdrByIndex (Index);

      if (DynamicSegment->p_type == PT_DYNAMIC) {
        Dyn = (Elf32_Dyn *) ((UINT8 *)mEhdr + DynamicSegment->p_offset);

        while (Dyn->d_tag != DT_NULL) {
          switch (Dyn->d_tag) {
            case  DT_REL:
              RelOffset = Dyn->d_un.d_val;
              break;

            case  DT_RELSZ:
              RelSize = Dyn->d_un.d_val;
              break;

            case  DT_RELENT:
              RelElementSize = Dyn->d_un.d_val;
              break;

            default:
              break;
          }
          Dyn++;
        }
        if (( RelOffset == 0 ) || ( RelSize == 0 ) || ( RelElementSize == 0 )) {
          Error (NULL, 0, 3000, "Invalid", "%s bad ARM dynamic relocations.", mInImageName);
        }

        for (Index = 0; Index < mEhdr->e_shnum; Index++) {
          Elf_Shdr *shdr = GetShdrByIndex(Index);

          //
          // The PT_DYNAMIC section contains DT_REL relocations whose r_offset
          // field is relative to the base of a segment (or the entire image),
          // and not to the base of an ELF input section as is the case for
          // SHT_REL sections. This means that we cannot fix up such relocations
          // unless we cross-reference ELF sections and segments, considering
          // that the output placement recorded in mCoffSectionsOffset[] is
          // section based, not segment based.
          //
          // Fortunately, there is a simple way around this: we require that the
          // in-memory layout of the ELF and PE/COFF versions of the binary is
          // identical. That way, r_offset will retain its validity as a PE/COFF
          // image offset, and we can record it in the COFF fixup table
          // unmodified.
          //
          if (shdr->sh_addr != mCoffSectionsOffset[Index]) {
            Error (NULL, 0, 3000,
              "Invalid", "%s: PT_DYNAMIC relocations require identical ELF and PE/COFF section offsets.",
              mInImageName);
          }
        }

        for (K = 0; K < RelSize; K += RelElementSize) {

          if (DynamicSegment->p_paddr == 0) {
            // Older versions of the ARM ELF (SWS ESPC 0003 B-02) specification define DT_REL
            // as an offset in the dynamic segment. p_paddr is defined to be zero for ARM tools
            Rel = (Elf32_Rel *) ((UINT8 *) mEhdr + DynamicSegment->p_offset + RelOffset + K);
          } else {
            // This is how it reads in the generic ELF specification
            Rel = (Elf32_Rel *) ((UINT8 *) mEhdr + RelOffset + K);
          }

          switch (ELF32_R_TYPE (Rel->r_info)) {
          case  R_ARM_RBASE:
            break;

          case  R_ARM_RABS32:
            CoffAddFixup (Rel->r_offset, EFI_IMAGE_REL_BASED_HIGHLOW);
            break;

          default:
            Error (NULL, 0, 3000, "Invalid", "%s bad ARM dynamic relocations, unknown type %d.", mInImageName, ELF32_R_TYPE (Rel->r_info));
            break;
          }
        }
        break;
      }
    }
  }

  //
  // Pad by adding empty entries.
  //
  while (mCoffOffset & (mCoffAlignment - 1)) {
    CoffAddFixupEntry(0);
  }

  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
  Dir = &NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
  Dir->Size = mCoffOffset - mRelocOffset;
  if (Dir->Size == 0) {
    // If no relocations, null out the directory entry and don't add the .reloc section
    Dir->VirtualAddress = 0;
    NtHdr->Pe32.FileHeader.NumberOfSections--;
  } else {
    Dir->VirtualAddress = mRelocOffset;
    CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_DISCARDABLE
            | EFI_IMAGE_SCN_MEM_READ);
  }

}

STATIC
VOID
WriteDebug32 (
  VOID
  )
{
  UINT32                              Len;
  EFI_IMAGE_OPTIONAL_HEADER_UNION     *NtHdr;
  EFI_IMAGE_DATA_DIRECTORY            *DataDir;
  EFI_IMAGE_DEBUG_DIRECTORY_ENTRY     *Dir;
  EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY *Nb10;

  Len = strlen(mInImageName) + 1;

  Dir = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(mCoffFile + mDebugOffset);
  Dir->Type = EFI_IMAGE_DEBUG_TYPE_CODEVIEW;
  Dir->SizeOfData = sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + Len;
  Dir->RVA = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
  Dir->FileOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);

  Nb10 = (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY*)(Dir + 1);
  Nb10->Signature = CODEVIEW_SIGNATURE_NB10;
  strcpy ((char *)(Nb10 + 1), mInImageName);


  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
  DataDir = &NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG];
  DataDir->VirtualAddress = mDebugOffset;
  DataDir->Size = sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
}

STATIC
VOID
SetImageSize32 (
  VOID
  )
{
  EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;

  //
  // Set image size
  //
  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
  NtHdr->Pe32.OptionalHeader.SizeOfImage = mCoffOffset;
}

STATIC
VOID
CleanUp32 (
  VOID
  )
{
  if (mCoffSectionsOffset != NULL) {
    free (mCoffSectionsOffset);
  }
}