summaryrefslogtreecommitdiffstats
path: root/BaseTools/Source/C/GenFw/Elf64Convert.c
blob: 8fe672e98448d25b13fac7ebb055afc0d988a62a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
/** @file
Elf64 convert solution

Copyright (c) 2010 - 2021, Intel Corporation. All rights reserved.<BR>
Portions copyright (c) 2013-2014, ARM Ltd. All rights reserved.<BR>
Portions Copyright (c) 2020, Hewlett Packard Enterprise Development LP. All rights reserved.<BR>

SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "WinNtInclude.h"

#ifndef __GNUC__
#include <windows.h>
#include <io.h>
#endif
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>

#include <Common/UefiBaseTypes.h>
#include <IndustryStandard/PeImage.h>

#include "PeCoffLib.h"
#include "EfiUtilityMsgs.h"

#include "GenFw.h"
#include "ElfConvert.h"
#include "Elf64Convert.h"

STATIC
VOID
ScanSections64 (
  VOID
  );

STATIC
BOOLEAN
WriteSections64 (
  SECTION_FILTER_TYPES  FilterType
  );

STATIC
VOID
WriteRelocations64 (
  VOID
  );

STATIC
VOID
WriteDebug64 (
  VOID
  );

STATIC
VOID
SetImageSize64 (
  VOID
  );

STATIC
VOID
CleanUp64 (
  VOID
  );

//
// Rename ELF32 structures to common names to help when porting to ELF64.
//
typedef Elf64_Shdr Elf_Shdr;
typedef Elf64_Ehdr Elf_Ehdr;
typedef Elf64_Rel Elf_Rel;
typedef Elf64_Rela Elf_Rela;
typedef Elf64_Sym Elf_Sym;
typedef Elf64_Phdr Elf_Phdr;
typedef Elf64_Dyn Elf_Dyn;
#define ELFCLASS ELFCLASS64
#define ELF_R_TYPE(r) ELF64_R_TYPE(r)
#define ELF_R_SYM(r) ELF64_R_SYM(r)

//
// Well known ELF structures.
//
STATIC Elf_Ehdr *mEhdr;
STATIC Elf_Shdr *mShdrBase;
STATIC Elf_Phdr *mPhdrBase;

//
// GOT information
//
STATIC Elf_Shdr *mGOTShdr = NULL;
STATIC UINT32   mGOTShindex = 0;
STATIC UINT32   *mGOTCoffEntries = NULL;
STATIC UINT32   mGOTMaxCoffEntries = 0;
STATIC UINT32   mGOTNumCoffEntries = 0;

//
// Coff information
//
STATIC UINT32 mCoffAlignment = 0x20;

//
// PE section alignment.
//
STATIC const UINT16 mCoffNbrSections = 4;

//
// ELF sections to offset in Coff file.
//
STATIC UINT32 *mCoffSectionsOffset = NULL;

//
// Offsets in COFF file
//
STATIC UINT32 mNtHdrOffset;
STATIC UINT32 mTextOffset;
STATIC UINT32 mDataOffset;
STATIC UINT32 mHiiRsrcOffset;
STATIC UINT32 mRelocOffset;
STATIC UINT32 mDebugOffset;

//
// Used for RISC-V relocations.
//
STATIC UINT8       *mRiscVPass1Targ = NULL;
STATIC Elf_Shdr    *mRiscVPass1Sym = NULL;
STATIC Elf64_Half  mRiscVPass1SymSecIndex = 0;

//
// Initialization Function
//
BOOLEAN
InitializeElf64 (
  UINT8               *FileBuffer,
  ELF_FUNCTION_TABLE  *ElfFunctions
  )
{
  //
  // Initialize data pointer and structures.
  //
  VerboseMsg ("Set EHDR");
  mEhdr = (Elf_Ehdr*) FileBuffer;

  //
  // Check the ELF64 specific header information.
  //
  VerboseMsg ("Check ELF64 Header Information");
  if (mEhdr->e_ident[EI_CLASS] != ELFCLASS64) {
    Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS64");
    return FALSE;
  }
  if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) {
    Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB");
    return FALSE;
  }
  if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) {
    Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN");
    return FALSE;
  }
  if (!((mEhdr->e_machine == EM_X86_64) || (mEhdr->e_machine == EM_AARCH64) || (mEhdr->e_machine == EM_RISCV64))) {
    Warning (NULL, 0, 3000, "Unsupported", "ELF e_machine is not Elf64 machine.");
  }
  if (mEhdr->e_version != EV_CURRENT) {
    Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT);
    return FALSE;
  }

  //
  // Update section header pointers
  //
  VerboseMsg ("Update Header Pointers");
  mShdrBase  = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff);
  mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff);

  //
  // Create COFF Section offset buffer and zero.
  //
  VerboseMsg ("Create COFF Section Offset Buffer");
  mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32));
  if (mCoffSectionsOffset == NULL) {
    Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
    return FALSE;
  }
  memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32));

  //
  // Fill in function pointers.
  //
  VerboseMsg ("Fill in Function Pointers");
  ElfFunctions->ScanSections = ScanSections64;
  ElfFunctions->WriteSections = WriteSections64;
  ElfFunctions->WriteRelocations = WriteRelocations64;
  ElfFunctions->WriteDebug = WriteDebug64;
  ElfFunctions->SetImageSize = SetImageSize64;
  ElfFunctions->CleanUp = CleanUp64;

  return TRUE;
}


//
// Header by Index functions
//
STATIC
Elf_Shdr*
GetShdrByIndex (
  UINT32 Num
  )
{
  if (Num >= mEhdr->e_shnum) {
    Error (NULL, 0, 3000, "Invalid", "GetShdrByIndex: Index %u is too high.", Num);
    exit(EXIT_FAILURE);
  }

  return (Elf_Shdr*)((UINT8*)mShdrBase + Num * mEhdr->e_shentsize);
}

STATIC
UINT32
CoffAlign (
  UINT32 Offset
  )
{
  return (Offset + mCoffAlignment - 1) & ~(mCoffAlignment - 1);
}

STATIC
UINT32
DebugRvaAlign (
  UINT32 Offset
  )
{
  return (Offset + 3) & ~3;
}

//
// filter functions
//
STATIC
BOOLEAN
IsTextShdr (
  Elf_Shdr *Shdr
  )
{
  return (BOOLEAN) ((Shdr->sh_flags & (SHF_EXECINSTR | SHF_ALLOC)) == (SHF_EXECINSTR | SHF_ALLOC));
}

STATIC
BOOLEAN
IsHiiRsrcShdr (
  Elf_Shdr *Shdr
  )
{
  Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);

  return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_HII_SECTION_NAME) == 0);
}

STATIC
BOOLEAN
IsDataShdr (
  Elf_Shdr *Shdr
  )
{
  if (IsHiiRsrcShdr(Shdr)) {
    return FALSE;
  }
  return (BOOLEAN) (Shdr->sh_flags & (SHF_EXECINSTR | SHF_WRITE | SHF_ALLOC)) == (SHF_ALLOC | SHF_WRITE);
}

STATIC
BOOLEAN
IsStrtabShdr (
  Elf_Shdr *Shdr
  )
{
  Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);

  return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_STRTAB_SECTION_NAME) == 0);
}

STATIC
Elf_Shdr *
FindStrtabShdr (
  VOID
  )
{
  UINT32 i;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsStrtabShdr(shdr)) {
      return shdr;
    }
  }
  return NULL;
}

STATIC
const UINT8 *
GetSymName (
  Elf_Sym *Sym
  )
{
  Elf_Shdr *StrtabShdr;
  UINT8    *StrtabContents;
  BOOLEAN  foundEnd;
  UINT32   i;

  if (Sym->st_name == 0) {
    return NULL;
  }

  StrtabShdr = FindStrtabShdr();
  if (StrtabShdr == NULL) {
    return NULL;
  }

  assert(Sym->st_name < StrtabShdr->sh_size);

  StrtabContents = (UINT8*)mEhdr + StrtabShdr->sh_offset;

  foundEnd = FALSE;
  for (i= Sym->st_name; (i < StrtabShdr->sh_size) && !foundEnd; i++) {
    foundEnd = (BOOLEAN)(StrtabContents[i] == 0);
  }
  assert(foundEnd);

  return StrtabContents + Sym->st_name;
}

//
// Find the ELF section hosting the GOT from an ELF Rva
//   of a single GOT entry.  Normally, GOT is placed in
//   ELF .text section, so assume once we find in which
//   section the GOT is, all GOT entries are there, and
//   just verify this.
//
STATIC
VOID
FindElfGOTSectionFromGOTEntryElfRva (
  Elf64_Addr GOTEntryElfRva
  )
{
  UINT32 i;
  if (mGOTShdr != NULL) {
    if (GOTEntryElfRva >= mGOTShdr->sh_addr &&
        GOTEntryElfRva <  mGOTShdr->sh_addr + mGOTShdr->sh_size) {
      return;
    }
    Error (NULL, 0, 3000, "Unsupported", "FindElfGOTSectionFromGOTEntryElfRva: GOT entries found in multiple sections.");
    exit(EXIT_FAILURE);
  }
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (GOTEntryElfRva >= shdr->sh_addr &&
        GOTEntryElfRva <  shdr->sh_addr + shdr->sh_size) {
      mGOTShdr = shdr;
      mGOTShindex = i;
      return;
    }
  }
  Error (NULL, 0, 3000, "Invalid", "FindElfGOTSectionFromGOTEntryElfRva: ElfRva 0x%016LX for GOT entry not found in any section.", GOTEntryElfRva);
  exit(EXIT_FAILURE);
}

//
// Stores locations of GOT entries in COFF image.
//   Returns TRUE if GOT entry is new.
//   Simple implementation as number of GOT
//   entries is expected to be low.
//

STATIC
BOOLEAN
AccumulateCoffGOTEntries (
  UINT32 GOTCoffEntry
  )
{
  UINT32 i;
  if (mGOTCoffEntries != NULL) {
    for (i = 0; i < mGOTNumCoffEntries; i++) {
      if (mGOTCoffEntries[i] == GOTCoffEntry) {
        return FALSE;
      }
    }
  }
  if (mGOTCoffEntries == NULL) {
    mGOTCoffEntries = (UINT32*)malloc(5 * sizeof *mGOTCoffEntries);
    if (mGOTCoffEntries == NULL) {
      Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
    }
    assert (mGOTCoffEntries != NULL);
    mGOTMaxCoffEntries = 5;
    mGOTNumCoffEntries = 0;
  } else if (mGOTNumCoffEntries == mGOTMaxCoffEntries) {
    mGOTCoffEntries = (UINT32*)realloc(mGOTCoffEntries, 2 * mGOTMaxCoffEntries * sizeof *mGOTCoffEntries);
    if (mGOTCoffEntries == NULL) {
      Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
    }
    assert (mGOTCoffEntries != NULL);
    mGOTMaxCoffEntries += mGOTMaxCoffEntries;
  }
  mGOTCoffEntries[mGOTNumCoffEntries++] = GOTCoffEntry;
  return TRUE;
}

//
// 32-bit Unsigned integer comparator for qsort.
//
STATIC
int
UINT32Comparator (
  const void* lhs,
  const void* rhs
  )
{
  if (*(const UINT32*)lhs < *(const UINT32*)rhs) {
    return -1;
  }
  return *(const UINT32*)lhs > *(const UINT32*)rhs;
}

//
// Emit accumulated Coff GOT entry relocations into
//   Coff image.  This function performs its job
//   once and then releases the entry list, so
//   it can safely be called multiple times.
//
STATIC
VOID
EmitGOTRelocations (
  VOID
  )
{
  UINT32 i;
  if (mGOTCoffEntries == NULL) {
    return;
  }
  //
  // Emit Coff relocations with Rvas ordered.
  //
  qsort(
    mGOTCoffEntries,
    mGOTNumCoffEntries,
    sizeof *mGOTCoffEntries,
    UINT32Comparator);
  for (i = 0; i < mGOTNumCoffEntries; i++) {
    VerboseMsg ("EFI_IMAGE_REL_BASED_DIR64 Offset: 0x%08X", mGOTCoffEntries[i]);
    CoffAddFixup(
      mGOTCoffEntries[i],
      EFI_IMAGE_REL_BASED_DIR64);
  }
  free(mGOTCoffEntries);
  mGOTCoffEntries = NULL;
  mGOTMaxCoffEntries = 0;
  mGOTNumCoffEntries = 0;
}
//
// RISC-V 64 specific Elf WriteSection function.
//
STATIC
VOID
WriteSectionRiscV64 (
  Elf_Rela  *Rel,
  UINT8     *Targ,
  Elf_Shdr  *SymShdr,
  Elf_Sym   *Sym
  )
{
  UINT32      Value;
  UINT32      Value2;

  switch (ELF_R_TYPE(Rel->r_info)) {
  case R_RISCV_NONE:
    break;

  case R_RISCV_32:
    *(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
    break;

  case R_RISCV_64:
    *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
    break;

  case R_RISCV_HI20:
    mRiscVPass1Targ = Targ;
    mRiscVPass1Sym = SymShdr;
    mRiscVPass1SymSecIndex = Sym->st_shndx;
    break;

  case R_RISCV_LO12_I:
    if (mRiscVPass1Sym == SymShdr && mRiscVPass1Targ != NULL && mRiscVPass1SymSecIndex == Sym->st_shndx && mRiscVPass1SymSecIndex != 0) {
      Value = (UINT32)(RV_X(*(UINT32 *)mRiscVPass1Targ, 12, 20) << 12);
      Value2 = (UINT32)(RV_X(*(UINT32 *)Targ, 20, 12));
      if (Value2 & (RISCV_IMM_REACH/2)) {
        Value2 |= ~(RISCV_IMM_REACH-1);
      }
      Value += Value2;
      Value = Value - (UINT32)SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
      Value2 = RISCV_CONST_HIGH_PART (Value);
      *(UINT32 *)mRiscVPass1Targ = (RV_X (Value2, 12, 20) << 12) | \
                             (RV_X (*(UINT32 *)mRiscVPass1Targ, 0, 12));
      *(UINT32 *)Targ = (RV_X (Value, 0, 12) << 20) | \
                        (RV_X (*(UINT32 *)Targ, 0, 20));
    }
    mRiscVPass1Sym = NULL;
    mRiscVPass1Targ = NULL;
    mRiscVPass1SymSecIndex = 0;
    break;

  case R_RISCV_LO12_S:
    if (mRiscVPass1Sym == SymShdr && mRiscVPass1Targ != NULL && mRiscVPass1SymSecIndex == Sym->st_shndx && mRiscVPass1SymSecIndex != 0) {
      Value = (UINT32)(RV_X(*(UINT32 *)mRiscVPass1Targ, 12, 20) << 12);
      Value2 = (UINT32)(RV_X(*(UINT32 *)Targ, 7, 5) | (RV_X(*(UINT32 *)Targ, 25, 7) << 5));
      if (Value2 & (RISCV_IMM_REACH/2)) {
        Value2 |= ~(RISCV_IMM_REACH-1);
      }
      Value += Value2;
      Value = Value - (UINT32)SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
      Value2 = RISCV_CONST_HIGH_PART (Value);
      *(UINT32 *)mRiscVPass1Targ = (RV_X (Value2, 12, 20) << 12) | \
                                 (RV_X (*(UINT32 *)mRiscVPass1Targ, 0, 12));
      Value2 = *(UINT32 *)Targ & 0x01fff07f;
      Value &= RISCV_IMM_REACH - 1;
      *(UINT32 *)Targ = Value2 | (UINT32)(((RV_X(Value, 0, 5) << 7) | (RV_X(Value, 5, 7) << 25)));
    }
    mRiscVPass1Sym = NULL;
    mRiscVPass1Targ = NULL;
    mRiscVPass1SymSecIndex = 0;
    break;

  case R_RISCV_PCREL_HI20:
    mRiscVPass1Targ = Targ;
    mRiscVPass1Sym = SymShdr;
    mRiscVPass1SymSecIndex = Sym->st_shndx;

    Value = (UINT32)(RV_X(*(UINT32 *)mRiscVPass1Targ, 12, 20));
    break;

  case R_RISCV_PCREL_LO12_I:
    if (mRiscVPass1Targ != NULL && mRiscVPass1Sym != NULL && mRiscVPass1SymSecIndex != 0) {
      int i;
      Value2 = (UINT32)(RV_X(*(UINT32 *)mRiscVPass1Targ, 12, 20));
      Value = (UINT32)(RV_X(*(UINT32 *)Targ, 20, 12));
      if(Value & (RISCV_IMM_REACH/2)) {
        Value |= ~(RISCV_IMM_REACH-1);
      }
      Value = Value - (UINT32)mRiscVPass1Sym->sh_addr + mCoffSectionsOffset[mRiscVPass1SymSecIndex];
      if(-2048 > (INT32)Value) {
        i = (((INT32)Value * -1) / 4096);
        Value2 -= i;
        Value += 4096 * i;
        if(-2048 > (INT32)Value) {
          Value2 -= 1;
          Value += 4096;
        }
      }
      else if( 2047 < (INT32)Value) {
        i = (Value / 4096);
        Value2 += i;
        Value -= 4096 * i;
        if(2047 < (INT32)Value) {
          Value2 += 1;
          Value -= 4096;
        }
      }

      *(UINT32 *)Targ = (RV_X(Value, 0, 12) << 20) | (RV_X(*(UINT32*)Targ, 0, 20));
      *(UINT32 *)mRiscVPass1Targ = (RV_X(Value2, 0, 20)<<12) | (RV_X(*(UINT32 *)mRiscVPass1Targ, 0, 12));
    }
    mRiscVPass1Sym = NULL;
    mRiscVPass1Targ = NULL;
    mRiscVPass1SymSecIndex = 0;
    break;

  case R_RISCV_ADD64:
  case R_RISCV_SUB64:
  case R_RISCV_ADD32:
  case R_RISCV_SUB32:
  case R_RISCV_BRANCH:
  case R_RISCV_JAL:
  case R_RISCV_GPREL_I:
  case R_RISCV_GPREL_S:
  case R_RISCV_CALL:
  case R_RISCV_RVC_BRANCH:
  case R_RISCV_RVC_JUMP:
  case R_RISCV_RELAX:
  case R_RISCV_SUB6:
  case R_RISCV_SET6:
  case R_RISCV_SET8:
  case R_RISCV_SET16:
  case R_RISCV_SET32:
    break;

  default:
    Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_RISCV64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
  }
}

//
// Elf functions interface implementation
//

STATIC
VOID
ScanSections64 (
  VOID
  )
{
  UINT32                          i;
  EFI_IMAGE_DOS_HEADER            *DosHdr;
  EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
  UINT32                          CoffEntry;
  UINT32                          SectionCount;
  BOOLEAN                         FoundSection;

  CoffEntry = 0;
  mCoffOffset = 0;

  //
  // Coff file start with a DOS header.
  //
  mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
  mNtHdrOffset = mCoffOffset;
  switch (mEhdr->e_machine) {
  case EM_X86_64:
  case EM_AARCH64:
  case EM_RISCV64:
    mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
  break;
  default:
    VerboseMsg ("%s unknown e_machine type %hu. Assume X64", mInImageName, mEhdr->e_machine);
    mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
  break;
  }

  mTableOffset = mCoffOffset;
  mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);

  //
  // Set mCoffAlignment to the maximum alignment of the input sections
  // we care about
  //
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (shdr->sh_addralign <= mCoffAlignment) {
      continue;
    }
    if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) {
      mCoffAlignment = (UINT32)shdr->sh_addralign;
    }
  }

  //
  // Check if mCoffAlignment is larger than MAX_COFF_ALIGNMENT
  //
  if (mCoffAlignment > MAX_COFF_ALIGNMENT) {
    Error (NULL, 0, 3000, "Invalid", "Section alignment is larger than MAX_COFF_ALIGNMENT.");
    assert (FALSE);
  }


  //
  // Move the PE/COFF header right before the first section. This will help us
  // save space when converting to TE.
  //
  if (mCoffAlignment > mCoffOffset) {
    mNtHdrOffset += mCoffAlignment - mCoffOffset;
    mTableOffset += mCoffAlignment - mCoffOffset;
    mCoffOffset = mCoffAlignment;
  }

  //
  // First text sections.
  //
  mCoffOffset = CoffAlign(mCoffOffset);
  mTextOffset = mCoffOffset;
  FoundSection = FALSE;
  SectionCount = 0;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsTextShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
        } else {
          Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
        }
      }

      /* Relocate entry.  */
      if ((mEhdr->e_entry >= shdr->sh_addr) &&
          (mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
        CoffEntry = (UINT32) (mCoffOffset + mEhdr->e_entry - shdr->sh_addr);
      }

      //
      // Set mTextOffset with the offset of the first '.text' section
      //
      if (!FoundSection) {
        mTextOffset = mCoffOffset;
        FoundSection = TRUE;
      }

      mCoffSectionsOffset[i] = mCoffOffset;
      mCoffOffset += (UINT32) shdr->sh_size;
      SectionCount ++;
    }
  }

  if (!FoundSection) {
    Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section.");
    assert (FALSE);
  }

  mDebugOffset = DebugRvaAlign(mCoffOffset);
  mCoffOffset = CoffAlign(mCoffOffset);

  if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
    Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName);
  }

  //
  //  Then data sections.
  //
  mDataOffset = mCoffOffset;
  FoundSection = FALSE;
  SectionCount = 0;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsDataShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
        } else {
          Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
        }
      }

      //
      // Set mDataOffset with the offset of the first '.data' section
      //
      if (!FoundSection) {
        mDataOffset = mCoffOffset;
        FoundSection = TRUE;
      }
      mCoffSectionsOffset[i] = mCoffOffset;
      mCoffOffset += (UINT32) shdr->sh_size;
      SectionCount ++;
    }
  }

  //
  // Make room for .debug data in .data (or .text if .data is empty) instead of
  // putting it in a section of its own. This is explicitly allowed by the
  // PE/COFF spec, and prevents bloat in the binary when using large values for
  // section alignment.
  //
  if (SectionCount > 0) {
    mDebugOffset = DebugRvaAlign(mCoffOffset);
  }
  mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) +
                sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) +
                strlen(mInImageName) + 1;

  mCoffOffset = CoffAlign(mCoffOffset);
  if (SectionCount == 0) {
    mDataOffset = mCoffOffset;
  }

  if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
    Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName);
  }

  //
  //  The HII resource sections.
  //
  mHiiRsrcOffset = mCoffOffset;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsHiiRsrcShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
        } else {
          Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
        }
      }
      if (shdr->sh_size != 0) {
        mHiiRsrcOffset = mCoffOffset;
        mCoffSectionsOffset[i] = mCoffOffset;
        mCoffOffset += (UINT32) shdr->sh_size;
        mCoffOffset = CoffAlign(mCoffOffset);
        SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset);
      }
      break;
    }
  }

  mRelocOffset = mCoffOffset;

  //
  // Allocate base Coff file.  Will be expanded later for relocations.
  //
  mCoffFile = (UINT8 *)malloc(mCoffOffset);
  if (mCoffFile == NULL) {
    Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
  }
  assert (mCoffFile != NULL);
  memset(mCoffFile, 0, mCoffOffset);

  //
  // Fill headers.
  //
  DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile;
  DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
  DosHdr->e_lfanew = mNtHdrOffset;

  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset);

  NtHdr->Pe32Plus.Signature = EFI_IMAGE_NT_SIGNATURE;

  switch (mEhdr->e_machine) {
  case EM_X86_64:
    NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
    NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
    break;
  case EM_AARCH64:
    NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_AARCH64;
    NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
    break;
  case EM_RISCV64:
    NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_RISCV64;
    NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
    break;

  default:
    VerboseMsg ("%s unknown e_machine type. Assume X64", (UINTN)mEhdr->e_machine);
    NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
    NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
  }

  NtHdr->Pe32Plus.FileHeader.NumberOfSections = mCoffNbrSections;
  NtHdr->Pe32Plus.FileHeader.TimeDateStamp = (UINT32) time(NULL);
  mImageTimeStamp = NtHdr->Pe32Plus.FileHeader.TimeDateStamp;
  NtHdr->Pe32Plus.FileHeader.PointerToSymbolTable = 0;
  NtHdr->Pe32Plus.FileHeader.NumberOfSymbols = 0;
  NtHdr->Pe32Plus.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32Plus.OptionalHeader);
  NtHdr->Pe32Plus.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
    | EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
    | EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
    | EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE;

  NtHdr->Pe32Plus.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset;
  NtHdr->Pe32Plus.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset;
  NtHdr->Pe32Plus.OptionalHeader.SizeOfUninitializedData = 0;
  NtHdr->Pe32Plus.OptionalHeader.AddressOfEntryPoint = CoffEntry;

  NtHdr->Pe32Plus.OptionalHeader.BaseOfCode = mTextOffset;

  NtHdr->Pe32Plus.OptionalHeader.ImageBase = 0;
  NtHdr->Pe32Plus.OptionalHeader.SectionAlignment = mCoffAlignment;
  NtHdr->Pe32Plus.OptionalHeader.FileAlignment = mCoffAlignment;
  NtHdr->Pe32Plus.OptionalHeader.SizeOfImage = 0;

  NtHdr->Pe32Plus.OptionalHeader.SizeOfHeaders = mTextOffset;
  NtHdr->Pe32Plus.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;

  //
  // Section headers.
  //
  if ((mDataOffset - mTextOffset) > 0) {
    CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset,
            EFI_IMAGE_SCN_CNT_CODE
            | EFI_IMAGE_SCN_MEM_EXECUTE
            | EFI_IMAGE_SCN_MEM_READ);
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
  }

  if ((mHiiRsrcOffset - mDataOffset) > 0) {
    CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_WRITE
            | EFI_IMAGE_SCN_MEM_READ);
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
  }

  if ((mRelocOffset - mHiiRsrcOffset) > 0) {
    CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_READ);

    NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset;
    NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset;
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
  }

}

STATIC
BOOLEAN
WriteSections64 (
  SECTION_FILTER_TYPES  FilterType
  )
{
  UINT32      Idx;
  Elf_Shdr    *SecShdr;
  UINT32      SecOffset;
  BOOLEAN     (*Filter)(Elf_Shdr *);
  Elf64_Addr  GOTEntryRva;

  //
  // Initialize filter pointer
  //
  switch (FilterType) {
    case SECTION_TEXT:
      Filter = IsTextShdr;
      break;
    case SECTION_HII:
      Filter = IsHiiRsrcShdr;
      break;
    case SECTION_DATA:
      Filter = IsDataShdr;
      break;
    default:
      return FALSE;
  }

  //
  // First: copy sections.
  //
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    Elf_Shdr *Shdr = GetShdrByIndex(Idx);
    if ((*Filter)(Shdr)) {
      switch (Shdr->sh_type) {
      case SHT_PROGBITS:
        /* Copy.  */
        if (Shdr->sh_offset + Shdr->sh_size > mFileBufferSize) {
          return FALSE;
        }
        memcpy(mCoffFile + mCoffSectionsOffset[Idx],
              (UINT8*)mEhdr + Shdr->sh_offset,
              (size_t) Shdr->sh_size);
        break;

      case SHT_NOBITS:
        memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size);
        break;

      default:
        //
        //  Ignore for unknown section type.
        //
        VerboseMsg ("%s unknown section type %x. We ignore this unknown section type.", mInImageName, (unsigned)Shdr->sh_type);
        break;
      }
    }
  }

  //
  // Second: apply relocations.
  //
  VerboseMsg ("Applying Relocations...");
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    //
    // Determine if this is a relocation section.
    //
    Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
    if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
      continue;
    }

    //
    // If this is a ET_DYN (PIE) executable, we will encounter a dynamic SHT_RELA
    // section that applies to the entire binary, and which will have its section
    // index set to #0 (which is a NULL section with the SHF_ALLOC bit cleared).
    //
    // In the absence of GOT based relocations,
    // this RELA section will contain redundant R_xxx_RELATIVE relocations, one
    // for every R_xxx_xx64 relocation appearing in the per-section RELA sections.
    // (i.e., .rela.text and .rela.data)
    //
    if (RelShdr->sh_info == 0) {
      continue;
    }

    //
    // Relocation section found.  Now extract section information that the relocations
    // apply to in the ELF data and the new COFF data.
    //
    SecShdr = GetShdrByIndex(RelShdr->sh_info);
    SecOffset = mCoffSectionsOffset[RelShdr->sh_info];

    //
    // Only process relocations for the current filter type.
    //
    if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) {
      UINT64 RelIdx;

      //
      // Determine the symbol table referenced by the relocation data.
      //
      Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
      UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;

      //
      // Process all relocation entries for this section.
      //
      for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) {

        //
        // Set pointer to relocation entry
        //
        Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);

        //
        // Set pointer to symbol table entry associated with the relocation entry.
        //
        Elf_Sym  *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);

        Elf_Shdr *SymShdr;
        UINT8    *Targ;

        //
        // Check section header index found in symbol table and get the section
        // header location.
        //
        if (Sym->st_shndx == SHN_UNDEF
            || Sym->st_shndx >= mEhdr->e_shnum) {
          const UINT8 *SymName = GetSymName(Sym);
          if (SymName == NULL) {
            SymName = (const UINT8 *)"<unknown>";
          }

          //
          // Skip error on EM_RISCV64 becasue no symble name is built
          // from RISC-V toolchain.
          //
          if (mEhdr->e_machine != EM_RISCV64) {
            Error (NULL, 0, 3000, "Invalid",
                   "%s: Bad definition for symbol '%s'@%#llx or unsupported symbol type.  "
                   "For example, absolute and undefined symbols are not supported.",
                   mInImageName, SymName, Sym->st_value);

            exit(EXIT_FAILURE);
          }
          continue;
        }
        SymShdr = GetShdrByIndex(Sym->st_shndx);

        //
        // Convert the relocation data to a pointer into the coff file.
        //
        // Note:
        //   r_offset is the virtual address of the storage unit to be relocated.
        //   sh_addr is the virtual address for the base of the section.
        //
        //   r_offset in a memory address.
        //   Convert it to a pointer in the coff file.
        //
        Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);

        //
        // Determine how to handle each relocation type based on the machine type.
        //
        if (mEhdr->e_machine == EM_X86_64) {
          switch (ELF_R_TYPE(Rel->r_info)) {
          case R_X86_64_NONE:
            break;
          case R_X86_64_64:
            //
            // Absolute relocation.
            //
            VerboseMsg ("R_X86_64_64");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX",
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
              *(UINT64 *)Targ);
            *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
            VerboseMsg ("Relocation:  0x%016LX", *(UINT64*)Targ);
            break;
          case R_X86_64_32:
            VerboseMsg ("R_X86_64_32");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
              *(UINT32 *)Targ);
            *(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
            VerboseMsg ("Relocation:  0x%08X", *(UINT32*)Targ);
            break;
          case R_X86_64_32S:
            VerboseMsg ("R_X86_64_32S");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
              *(UINT32 *)Targ);
            *(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
            VerboseMsg ("Relocation:  0x%08X", *(UINT32*)Targ);
            break;

          case R_X86_64_PLT32:
            //
            // Treat R_X86_64_PLT32 relocations as R_X86_64_PC32: this is
            // possible since we know all code symbol references resolve to
            // definitions in the same module (UEFI has no shared libraries),
            // and so there is never a reason to jump via a PLT entry,
            // allowing us to resolve the reference using the symbol directly.
            //
            VerboseMsg ("Treating R_X86_64_PLT32 as R_X86_64_PC32 ...");
            /* fall through */
          case R_X86_64_PC32:
            //
            // Relative relocation: Symbol - Ip + Addend
            //
            VerboseMsg ("R_X86_64_PC32");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
              *(UINT32 *)Targ);
            *(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
              + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
              - (SecOffset - SecShdr->sh_addr));
            VerboseMsg ("Relocation:  0x%08X", *(UINT32 *)Targ);
            break;
          case R_X86_64_GOTPCREL:
          case R_X86_64_GOTPCRELX:
          case R_X86_64_REX_GOTPCRELX:
            VerboseMsg ("R_X86_64_GOTPCREL family");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
              *(UINT32 *)Targ);
            GOTEntryRva = Rel->r_offset - Rel->r_addend + *(INT32 *)Targ;
            FindElfGOTSectionFromGOTEntryElfRva(GOTEntryRva);
            *(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
              + (mCoffSectionsOffset[mGOTShindex] - mGOTShdr->sh_addr)
              - (SecOffset - SecShdr->sh_addr));
            VerboseMsg ("Relocation:  0x%08X", *(UINT32 *)Targ);
            GOTEntryRva += (mCoffSectionsOffset[mGOTShindex] - mGOTShdr->sh_addr);  // ELF Rva -> COFF Rva
            if (AccumulateCoffGOTEntries((UINT32)GOTEntryRva)) {
              //
              // Relocate GOT entry if it's the first time we run into it
              //
              Targ = mCoffFile + GOTEntryRva;
              //
              // Limitation: The following three statements assume memory
              //   at *Targ is valid because the section containing the GOT
              //   has already been copied from the ELF image to the Coff image.
              //   This pre-condition presently holds because the GOT is placed
              //   in section .text, and the ELF text sections are all copied
              //   prior to reaching this point.
              //   If the pre-condition is violated in the future, this fixup
              //   either needs to be deferred after the GOT section is copied
              //   to the Coff image, or the fixup should be performed on the
              //   source Elf image instead of the destination Coff image.
              //
              VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX",
                (UINT32)GOTEntryRva,
                *(UINT64 *)Targ);
              *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
              VerboseMsg ("Relocation:  0x%016LX", *(UINT64*)Targ);
            }
            break;
          default:
            Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
          }
        } else if (mEhdr->e_machine == EM_AARCH64) {

          switch (ELF_R_TYPE(Rel->r_info)) {
            INT64 Offset;

          case R_AARCH64_LD64_GOT_LO12_NC:
            //
            // Convert into an ADD instruction - see R_AARCH64_ADR_GOT_PAGE below.
            //
            *(UINT32 *)Targ &= 0x3ff;
            *(UINT32 *)Targ |= 0x91000000 | ((Sym->st_value & 0xfff) << 10);
            break;

          case R_AARCH64_ADR_GOT_PAGE:
            //
            // This relocation points to the GOT entry that contains the absolute
            // address of the symbol we are referring to. Since EDK2 only uses
            // fully linked binaries, we can avoid the indirection, and simply
            // refer to the symbol directly. This implies having to patch the
            // subsequent LDR instruction (covered by a R_AARCH64_LD64_GOT_LO12_NC
            // relocation) into an ADD instruction - this is handled above.
            //
            Offset = (Sym->st_value - (Rel->r_offset & ~0xfff)) >> 12;

            *(UINT32 *)Targ &= 0x9000001f;
            *(UINT32 *)Targ |= ((Offset & 0x1ffffc) << (5 - 2)) | ((Offset & 0x3) << 29);

            /* fall through */

          case R_AARCH64_ADR_PREL_PG_HI21:
            //
            // In order to handle Cortex-A53 erratum #843419, the LD linker may
            // convert ADRP instructions into ADR instructions, but without
            // updating the static relocation type, and so we may end up here
            // while the instruction in question is actually ADR. So let's
            // just disregard it: the section offset check we apply below to
            // ADR instructions will trigger for its R_AARCH64_xxx_ABS_LO12_NC
            // companion instruction as well, so it is safe to omit it here.
            //
            if ((*(UINT32 *)Targ & BIT31) == 0) {
              break;
            }

            //
            // AArch64 PG_H21 relocations are typically paired with ABS_LO12
            // relocations, where a PC-relative reference with +/- 4 GB range is
            // split into a relative high part and an absolute low part. Since
            // the absolute low part represents the offset into a 4 KB page, we
            // either have to convert the ADRP into an ADR instruction, or we
            // need to use a section alignment of at least 4 KB, so that the
            // binary appears at a correct offset at runtime. In any case, we
            // have to make sure that the 4 KB relative offsets of both the
            // section containing the reference as well as the section to which
            // it refers have not been changed during PE/COFF conversion (i.e.,
            // in ScanSections64() above).
            //
            if (mCoffAlignment < 0x1000) {
              //
              // Attempt to convert the ADRP into an ADR instruction.
              // This is only possible if the symbol is within +/- 1 MB.
              //

              // Decode the ADRP instruction
              Offset = (INT32)((*(UINT32 *)Targ & 0xffffe0) << 8);
              Offset = (Offset << (6 - 5)) | ((*(UINT32 *)Targ & 0x60000000) >> (29 - 12));

              //
              // ADRP offset is relative to the previous page boundary,
              // whereas ADR offset is relative to the instruction itself.
              // So fix up the offset so it points to the page containing
              // the symbol.
              //
              Offset -= (UINTN)(Targ - mCoffFile) & 0xfff;

              if (Offset < -0x100000 || Offset > 0xfffff) {
                Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s  due to its size (> 1 MB), this module requires 4 KB section alignment.",
                  mInImageName);
                break;
              }

              // Re-encode the offset as an ADR instruction
              *(UINT32 *)Targ &= 0x1000001f;
              *(UINT32 *)Targ |= ((Offset & 0x1ffffc) << (5 - 2)) | ((Offset & 0x3) << 29);
            }
            /* fall through */

          case R_AARCH64_ADD_ABS_LO12_NC:
          case R_AARCH64_LDST8_ABS_LO12_NC:
          case R_AARCH64_LDST16_ABS_LO12_NC:
          case R_AARCH64_LDST32_ABS_LO12_NC:
          case R_AARCH64_LDST64_ABS_LO12_NC:
          case R_AARCH64_LDST128_ABS_LO12_NC:
            if (((SecShdr->sh_addr ^ SecOffset) & 0xfff) != 0 ||
                ((SymShdr->sh_addr ^ mCoffSectionsOffset[Sym->st_shndx]) & 0xfff) != 0) {
              Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 small code model requires identical ELF and PE/COFF section offsets modulo 4 KB.",
                mInImageName);
              break;
            }
            /* fall through */

          case R_AARCH64_ADR_PREL_LO21:
          case R_AARCH64_CONDBR19:
          case R_AARCH64_LD_PREL_LO19:
          case R_AARCH64_CALL26:
          case R_AARCH64_JUMP26:
          case R_AARCH64_PREL64:
          case R_AARCH64_PREL32:
          case R_AARCH64_PREL16:
            //
            // The GCC toolchains (i.e., binutils) may corrupt section relative
            // relocations when emitting relocation sections into fully linked
            // binaries. More specifically, they tend to fail to take into
            // account the fact that a '.rodata + XXX' relocation needs to have
            // its addend recalculated once .rodata is merged into the .text
            // section, and the relocation emitted into the .rela.text section.
            //
            // We cannot really recover from this loss of information, so the
            // only workaround is to prevent having to recalculate any relative
            // relocations at all, by using a linker script that ensures that
            // the offset between the Place and the Symbol is the same in both
            // the ELF and the PE/COFF versions of the binary.
            //
            if ((SymShdr->sh_addr - SecShdr->sh_addr) !=
                (mCoffSectionsOffset[Sym->st_shndx] - SecOffset)) {
              Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 relative relocations require identical ELF and PE/COFF section offsets",
                mInImageName);
            }
            break;

          // Absolute relocations.
          case R_AARCH64_ABS64:
            *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
            break;

          default:
            Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
          }
        } else if (mEhdr->e_machine == EM_RISCV64) {
          //
          // Write section for RISC-V 64 architecture.
          //
          WriteSectionRiscV64 (Rel, Targ, SymShdr, Sym);
        } else {
          Error (NULL, 0, 3000, "Invalid", "Not a supported machine type");
        }
      }
    }
  }

  return TRUE;
}

STATIC
VOID
WriteRelocations64 (
  VOID
  )
{
  UINT32                           Index;
  EFI_IMAGE_OPTIONAL_HEADER_UNION  *NtHdr;
  EFI_IMAGE_DATA_DIRECTORY         *Dir;
  UINT32 RiscVRelType;

  for (Index = 0; Index < mEhdr->e_shnum; Index++) {
    Elf_Shdr *RelShdr = GetShdrByIndex(Index);
    if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) {
      Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info);
      if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) {
        UINT64 RelIdx;

        for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
          Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);

          if (mEhdr->e_machine == EM_X86_64) {
            switch (ELF_R_TYPE(Rel->r_info)) {
            case R_X86_64_NONE:
            case R_X86_64_PC32:
            case R_X86_64_PLT32:
            case R_X86_64_GOTPCREL:
            case R_X86_64_GOTPCRELX:
            case R_X86_64_REX_GOTPCRELX:
              break;
            case R_X86_64_64:
              VerboseMsg ("EFI_IMAGE_REL_BASED_DIR64 Offset: 0x%08X",
                mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_DIR64);
              break;
            //
            // R_X86_64_32 and R_X86_64_32S are ELF64 relocations emitted when using
            //   the SYSV X64 ABI small non-position-independent code model.
            //   R_X86_64_32 is used for unsigned 32-bit immediates with a 32-bit operand
            //   size.  The value is either not extended, or zero-extended to 64 bits.
            //   R_X86_64_32S is used for either signed 32-bit non-rip-relative displacements
            //   or signed 32-bit immediates with a 64-bit operand size.  The value is
            //   sign-extended to 64 bits.
            //   EFI_IMAGE_REL_BASED_HIGHLOW is a PE relocation that uses 32-bit arithmetic
            //   for rebasing an image.
            //   EFI PE binaries declare themselves EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE and
            //   may load above 2GB.  If an EFI PE binary with a converted R_X86_64_32S
            //   relocation is loaded above 2GB, the value will get sign-extended to the
            //   negative part of the 64-bit address space.  The negative part of the 64-bit
            //   address space is unmapped, so accessing such an address page-faults.
            //   In order to support R_X86_64_32S, it is necessary to unset
            //   EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE, and the EFI PE loader must implement
            //   this flag and abstain from loading such a PE binary above 2GB.
            //   Since this feature is not supported, support for R_X86_64_32S (and hence
            //   the small non-position-independent code model) is disabled.
            //
            // case R_X86_64_32S:
            case R_X86_64_32:
              VerboseMsg ("EFI_IMAGE_REL_BASED_HIGHLOW Offset: 0x%08X",
                mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_HIGHLOW);
              break;
            default:
              Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
            }
          } else if (mEhdr->e_machine == EM_AARCH64) {

            switch (ELF_R_TYPE(Rel->r_info)) {
            case R_AARCH64_ADR_PREL_LO21:
            case R_AARCH64_CONDBR19:
            case R_AARCH64_LD_PREL_LO19:
            case R_AARCH64_CALL26:
            case R_AARCH64_JUMP26:
            case R_AARCH64_PREL64:
            case R_AARCH64_PREL32:
            case R_AARCH64_PREL16:
            case R_AARCH64_ADR_PREL_PG_HI21:
            case R_AARCH64_ADD_ABS_LO12_NC:
            case R_AARCH64_LDST8_ABS_LO12_NC:
            case R_AARCH64_LDST16_ABS_LO12_NC:
            case R_AARCH64_LDST32_ABS_LO12_NC:
            case R_AARCH64_LDST64_ABS_LO12_NC:
            case R_AARCH64_LDST128_ABS_LO12_NC:
            case R_AARCH64_ADR_GOT_PAGE:
            case R_AARCH64_LD64_GOT_LO12_NC:
              //
              // No fixups are required for relative relocations, provided that
              // the relative offsets between sections have been preserved in
              // the ELF to PE/COFF conversion. We have already asserted that
              // this is the case in WriteSections64 ().
              //
              break;

            case R_AARCH64_ABS64:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_DIR64);
              break;

            case R_AARCH64_ABS32:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_HIGHLOW);
             break;

            default:
                Error (NULL, 0, 3000, "Invalid", "WriteRelocations64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
            }
          } else if (mEhdr->e_machine == EM_RISCV64) {
            RiscVRelType = ELF_R_TYPE(Rel->r_info);
            switch (RiscVRelType) {
            case R_RISCV_NONE:
              break;

            case R_RISCV_32:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_HIGHLOW);
              break;

            case R_RISCV_64:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_DIR64);
              break;

            case R_RISCV_HI20:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_RISCV_HI20);
              break;

            case R_RISCV_LO12_I:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_RISCV_LOW12I);
              break;

            case R_RISCV_LO12_S:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_RISCV_LOW12S);
              break;

            case R_RISCV_ADD64:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_ABSOLUTE);
              break;

            case R_RISCV_SUB64:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_ABSOLUTE);
              break;

            case R_RISCV_ADD32:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_ABSOLUTE);
              break;

            case R_RISCV_SUB32:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_ABSOLUTE);
              break;

            case R_RISCV_BRANCH:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_ABSOLUTE);
              break;

            case R_RISCV_JAL:
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_ABSOLUTE);
              break;

            case R_RISCV_GPREL_I:
            case R_RISCV_GPREL_S:
            case R_RISCV_CALL:
            case R_RISCV_RVC_BRANCH:
            case R_RISCV_RVC_JUMP:
            case R_RISCV_RELAX:
            case R_RISCV_SUB6:
            case R_RISCV_SET6:
            case R_RISCV_SET8:
            case R_RISCV_SET16:
            case R_RISCV_SET32:
            case R_RISCV_PCREL_HI20:
            case R_RISCV_PCREL_LO12_I:
              break;

            default:
              Error (NULL, 0, 3000, "Invalid", "WriteRelocations64(): %s unsupported ELF EM_RISCV64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
            }
          } else {
            Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine);
          }
        }
        if (mEhdr->e_machine == EM_X86_64 && RelShdr->sh_info == mGOTShindex) {
          //
          // Tack relocations for GOT entries after other relocations for
          //   the section the GOT is in, as it's usually found at the end
          //   of the section.  This is done in order to maintain Rva order
          //   of Coff relocations.
          //
          EmitGOTRelocations();
        }
      }
    }
  }

  if (mEhdr->e_machine == EM_X86_64) {
    //
    // This is a safety net just in case the GOT is in a section
    //   with no other relocations and the first invocation of
    //   EmitGOTRelocations() above was skipped.  This invocation
    //   does not maintain Rva order of Coff relocations.
    //   At present, with a single text section, all references to
    //   the GOT and the GOT itself reside in section .text, so
    //   if there's a GOT at all, the first invocation above
    //   is executed.
    //
    EmitGOTRelocations();
  }
  //
  // Pad by adding empty entries.
  //
  while (mCoffOffset & (mCoffAlignment - 1)) {
    CoffAddFixupEntry(0);
  }

  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
  Dir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
  Dir->Size = mCoffOffset - mRelocOffset;
  if (Dir->Size == 0) {
    // If no relocations, null out the directory entry and don't add the .reloc section
    Dir->VirtualAddress = 0;
    NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
  } else {
    Dir->VirtualAddress = mRelocOffset;
    CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_DISCARDABLE
            | EFI_IMAGE_SCN_MEM_READ);
  }
}

STATIC
VOID
WriteDebug64 (
  VOID
  )
{
  UINT32                              Len;
  EFI_IMAGE_OPTIONAL_HEADER_UNION     *NtHdr;
  EFI_IMAGE_DATA_DIRECTORY            *DataDir;
  EFI_IMAGE_DEBUG_DIRECTORY_ENTRY     *Dir;
  EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY *Nb10;

  Len = strlen(mInImageName) + 1;

  Dir = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(mCoffFile + mDebugOffset);
  Dir->Type = EFI_IMAGE_DEBUG_TYPE_CODEVIEW;
  Dir->SizeOfData = sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + Len;
  Dir->RVA = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
  Dir->FileOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);

  Nb10 = (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY*)(Dir + 1);
  Nb10->Signature = CODEVIEW_SIGNATURE_NB10;
  strcpy ((char *)(Nb10 + 1), mInImageName);


  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
  DataDir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG];
  DataDir->VirtualAddress = mDebugOffset;
  DataDir->Size = sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
}

STATIC
VOID
SetImageSize64 (
  VOID
  )
{
  EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;

  //
  // Set image size
  //
  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
  NtHdr->Pe32Plus.OptionalHeader.SizeOfImage = mCoffOffset;
}

STATIC
VOID
CleanUp64 (
  VOID
  )
{
  if (mCoffSectionsOffset != NULL) {
    free (mCoffSectionsOffset);
  }
}