1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/** @file
C Run-Time Libraries (CRT) Time Management Routines Wrapper Implementation
for OpenSSL-based Cryptographic Library (used in DXE & RUNTIME).
Copyright (c) 2010 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Uefi.h>
#include <CrtLibSupport.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
//
// -- Time Management Routines --
//
#define SECSPERMIN (60)
#define SECSPERHOUR (60 * 60)
#define SECSPERDAY (24 * SECSPERHOUR)
long timezone;
//
// The arrays give the cumulative number of days up to the first of the
// month number used as the index (1 -> 12) for regular and leap years.
// The value at index 13 is for the whole year.
//
UINTN CumulativeDays[2][14] = {
{
0,
0,
31,
31 + 28,
31 + 28 + 31,
31 + 28 + 31 + 30,
31 + 28 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31
},
{
0,
0,
31,
31 + 29,
31 + 29 + 31,
31 + 29 + 31 + 30,
31 + 29 + 31 + 30 + 31,
31 + 29 + 31 + 30 + 31 + 30,
31 + 29 + 31 + 30 + 31 + 30 + 31,
31 + 29 + 31 + 30 + 31 + 30 + 31 + 31,
31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31
}
};
/* Check the year is leap or not. */
// BOOLEAN IsLeap(
// INTN timer
// )
BOOLEAN
IsLeap (
time_t timer
)
{
INT64 Remainder1;
INT64 Remainder2;
INT64 Remainder3;
DivS64x64Remainder (timer, 4, &Remainder1);
DivS64x64Remainder (timer, 100, &Remainder2);
DivS64x64Remainder (timer, 400, &Remainder3);
return (Remainder1 == 0 && (Remainder2 != 0 || Remainder3 == 0));
}
STATIC
time_t
CalculateTimeT (
EFI_TIME *Time
)
{
time_t CalTime;
UINTN Year;
//
// Years Handling
// UTime should now be set to 00:00:00 on Jan 1 of the current year.
//
for (Year = 1970, CalTime = 0; Year != Time->Year; Year++) {
CalTime = CalTime + (time_t)(CumulativeDays[IsLeap (Year)][13] * SECSPERDAY);
}
//
// Add in number of seconds for current Month, Day, Hour, Minute, Seconds, and TimeZone adjustment
//
CalTime = CalTime +
(time_t)((Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) ? (Time->TimeZone * 60) : 0) +
(time_t)(CumulativeDays[IsLeap (Time->Year)][Time->Month] * SECSPERDAY) +
(time_t)(((Time->Day > 0) ? Time->Day - 1 : 0) * SECSPERDAY) +
(time_t)(Time->Hour * SECSPERHOUR) +
(time_t)(Time->Minute * 60) +
(time_t)Time->Second;
return CalTime;
}
/* Get the system time as seconds elapsed since midnight, January 1, 1970. */
// INTN time(
// INTN *timer
// )
time_t
time (
time_t *timer
)
{
EFI_STATUS Status;
EFI_TIME Time;
time_t CalTime;
//
// Get the current time and date information
//
Status = gRT->GetTime (&Time, NULL);
if (EFI_ERROR (Status) || (Time.Year < 1970)) {
return 0;
}
CalTime = CalculateTimeT (&Time);
if (timer != NULL) {
*timer = CalTime;
}
return CalTime;
}
time_t
mktime (
struct tm *t
)
{
EFI_TIME Time = {
.Year = (UINT16)t->tm_year,
.Month = (UINT8)t->tm_mon,
.Day = (UINT8)t->tm_mday,
.Hour = (UINT8)t->tm_hour,
.Minute = (UINT8)t->tm_min,
.Second = (UINT8)t->tm_sec,
.TimeZone = EFI_UNSPECIFIED_TIMEZONE,
};
return CalculateTimeT (&Time);
}
//
// Convert a time value from type time_t to struct tm.
//
struct tm *
gmtime (
const time_t *timer
)
{
struct tm *GmTime;
UINT64 DayNo;
UINT64 DayRemainder;
time_t Year;
time_t YearNo;
UINT32 TotalDays;
UINT32 MonthNo;
INT64 Remainder;
if (timer == NULL) {
return NULL;
}
GmTime = malloc (sizeof (struct tm));
if (GmTime == NULL) {
return NULL;
}
ZeroMem ((VOID *)GmTime, (UINTN)sizeof (struct tm));
DayNo = (UINT64)DivS64x64Remainder (*timer, SECSPERDAY, &Remainder);
DayRemainder = (UINT64)Remainder;
DivS64x64Remainder (DayRemainder, SECSPERMIN, &Remainder);
GmTime->tm_sec = (int)Remainder;
DivS64x64Remainder (DayRemainder, SECSPERHOUR, &Remainder);
GmTime->tm_min = (int)DivS64x64Remainder (Remainder, SECSPERMIN, NULL);
GmTime->tm_hour = (int)DivS64x64Remainder (DayRemainder, SECSPERHOUR, NULL);
DivS64x64Remainder ((DayNo + 4), 7, &Remainder);
GmTime->tm_wday = (int)Remainder;
for (Year = 1970, YearNo = 0; DayNo > 0; Year++) {
TotalDays = (UINT32)(IsLeap (Year) ? 366 : 365);
if (DayNo >= TotalDays) {
DayNo = (UINT64)(DayNo - TotalDays);
YearNo++;
} else {
break;
}
}
GmTime->tm_year = (int)(YearNo + (1970 - 1900));
GmTime->tm_yday = (int)DayNo;
for (MonthNo = 12; MonthNo > 1; MonthNo--) {
if (DayNo >= CumulativeDays[IsLeap (Year)][MonthNo]) {
DayNo = (UINT64)(DayNo - (UINT32)(CumulativeDays[IsLeap (Year)][MonthNo]));
break;
}
}
GmTime->tm_mon = (int)MonthNo - 1;
GmTime->tm_mday = (int)DayNo + 1;
GmTime->tm_isdst = 0;
GmTime->tm_gmtoff = 0;
GmTime->tm_zone = NULL;
return GmTime;
}
unsigned int
sleep (
unsigned int seconds
)
{
gBS->Stall (seconds * 1000 * 1000);
return 0;
}
int
gettimeofday (
struct timeval *tv,
struct timezone *tz
)
{
tv->tv_sec = (long)time (NULL);
tv->tv_usec = 0;
return 0;
}
|