summaryrefslogtreecommitdiffstats
path: root/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c
blob: 9477b94044ba92984f9016e165544e9920b721df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
/** @file
  UEFI Heap Guard functions.

Copyright (c) 2017-2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "DxeMain.h"
#include "Imem.h"
#include "HeapGuard.h"

//
// Global to avoid infinite reentrance of memory allocation when updating
// page table attributes, which may need allocate pages for new PDE/PTE.
//
GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mOnGuarding = FALSE;

//
// Pointer to table tracking the Guarded memory with bitmap, in which  '1'
// is used to indicate memory guarded. '0' might be free memory or Guard
// page itself, depending on status of memory adjacent to it.
//
GLOBAL_REMOVE_IF_UNREFERENCED UINT64 mGuardedMemoryMap = 0;

//
// Current depth level of map table pointed by mGuardedMemoryMap.
// mMapLevel must be initialized at least by 1. It will be automatically
// updated according to the address of memory just tracked.
//
GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMapLevel = 1;

//
// Shift and mask for each level of map table
//
GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH]
                                    = GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS;
GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH]
                                    = GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS;

//
// Used for promoting freed but not used pages.
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_PHYSICAL_ADDRESS mLastPromotedPage = BASE_4GB;

/**
  Set corresponding bits in bitmap table to 1 according to the address.

  @param[in]  Address     Start address to set for.
  @param[in]  BitNumber   Number of bits to set.
  @param[in]  BitMap      Pointer to bitmap which covers the Address.

  @return VOID.
**/
STATIC
VOID
SetBits (
  IN EFI_PHYSICAL_ADDRESS    Address,
  IN UINTN                   BitNumber,
  IN UINT64                  *BitMap
  )
{
  UINTN           Lsbs;
  UINTN           Qwords;
  UINTN           Msbs;
  UINTN           StartBit;
  UINTN           EndBit;

  StartBit  = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
  EndBit    = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;

  if ((StartBit + BitNumber) >= GUARDED_HEAP_MAP_ENTRY_BITS) {
    Msbs    = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %
              GUARDED_HEAP_MAP_ENTRY_BITS;
    Lsbs    = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
    Qwords  = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;
  } else {
    Msbs    = BitNumber;
    Lsbs    = 0;
    Qwords  = 0;
  }

  if (Msbs > 0) {
    *BitMap |= LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);
    BitMap  += 1;
  }

  if (Qwords > 0) {
    SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES,
              (UINT64)-1);
    BitMap += Qwords;
  }

  if (Lsbs > 0) {
    *BitMap |= (LShiftU64 (1, Lsbs) - 1);
  }
}

/**
  Set corresponding bits in bitmap table to 0 according to the address.

  @param[in]  Address     Start address to set for.
  @param[in]  BitNumber   Number of bits to set.
  @param[in]  BitMap      Pointer to bitmap which covers the Address.

  @return VOID.
**/
STATIC
VOID
ClearBits (
  IN EFI_PHYSICAL_ADDRESS    Address,
  IN UINTN                   BitNumber,
  IN UINT64                  *BitMap
  )
{
  UINTN           Lsbs;
  UINTN           Qwords;
  UINTN           Msbs;
  UINTN           StartBit;
  UINTN           EndBit;

  StartBit  = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
  EndBit    = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;

  if ((StartBit + BitNumber) >= GUARDED_HEAP_MAP_ENTRY_BITS) {
    Msbs    = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %
              GUARDED_HEAP_MAP_ENTRY_BITS;
    Lsbs    = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
    Qwords  = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;
  } else {
    Msbs    = BitNumber;
    Lsbs    = 0;
    Qwords  = 0;
  }

  if (Msbs > 0) {
    *BitMap &= ~LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);
    BitMap  += 1;
  }

  if (Qwords > 0) {
    SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, 0);
    BitMap += Qwords;
  }

  if (Lsbs > 0) {
    *BitMap &= ~(LShiftU64 (1, Lsbs) - 1);
  }
}

/**
  Get corresponding bits in bitmap table according to the address.

  The value of bit 0 corresponds to the status of memory at given Address.
  No more than 64 bits can be retrieved in one call.

  @param[in]  Address     Start address to retrieve bits for.
  @param[in]  BitNumber   Number of bits to get.
  @param[in]  BitMap      Pointer to bitmap which covers the Address.

  @return An integer containing the bits information.
**/
STATIC
UINT64
GetBits (
  IN EFI_PHYSICAL_ADDRESS    Address,
  IN UINTN                   BitNumber,
  IN UINT64                  *BitMap
  )
{
  UINTN           StartBit;
  UINTN           EndBit;
  UINTN           Lsbs;
  UINTN           Msbs;
  UINT64          Result;

  ASSERT (BitNumber <= GUARDED_HEAP_MAP_ENTRY_BITS);

  StartBit  = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
  EndBit    = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;

  if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {
    Msbs = GUARDED_HEAP_MAP_ENTRY_BITS - StartBit;
    Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
  } else {
    Msbs = BitNumber;
    Lsbs = 0;
  }

  if (StartBit == 0 && BitNumber == GUARDED_HEAP_MAP_ENTRY_BITS) {
    Result = *BitMap;
  } else {
    Result    = RShiftU64((*BitMap), StartBit) & (LShiftU64(1, Msbs) - 1);
    if (Lsbs > 0) {
      BitMap  += 1;
      Result  |= LShiftU64 ((*BitMap) & (LShiftU64 (1, Lsbs) - 1), Msbs);
    }
  }

  return Result;
}

/**
  Locate the pointer of bitmap from the guarded memory bitmap tables, which
  covers the given Address.

  @param[in]  Address       Start address to search the bitmap for.
  @param[in]  AllocMapUnit  Flag to indicate memory allocation for the table.
  @param[out] BitMap        Pointer to bitmap which covers the Address.

  @return The bit number from given Address to the end of current map table.
**/
UINTN
FindGuardedMemoryMap (
  IN  EFI_PHYSICAL_ADDRESS    Address,
  IN  BOOLEAN                 AllocMapUnit,
  OUT UINT64                  **BitMap
  )
{
  UINTN                   Level;
  UINT64                  *GuardMap;
  UINT64                  MapMemory;
  UINTN                   Index;
  UINTN                   Size;
  UINTN                   BitsToUnitEnd;
  EFI_STATUS              Status;

  //
  // Adjust current map table depth according to the address to access
  //
  while (AllocMapUnit &&
         mMapLevel < GUARDED_HEAP_MAP_TABLE_DEPTH &&
         RShiftU64 (
           Address,
           mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1]
           ) != 0) {

    if (mGuardedMemoryMap != 0) {
      Size = (mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] + 1)
             * GUARDED_HEAP_MAP_ENTRY_BYTES;
      Status = CoreInternalAllocatePages (
                  AllocateAnyPages,
                  EfiBootServicesData,
                  EFI_SIZE_TO_PAGES (Size),
                  &MapMemory,
                  FALSE
                  );
      ASSERT_EFI_ERROR (Status);
      ASSERT (MapMemory != 0);

      SetMem ((VOID *)(UINTN)MapMemory, Size, 0);

      *(UINT64 *)(UINTN)MapMemory = mGuardedMemoryMap;
      mGuardedMemoryMap = MapMemory;
    }

    mMapLevel++;

  }

  GuardMap = &mGuardedMemoryMap;
  for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
       Level < GUARDED_HEAP_MAP_TABLE_DEPTH;
       ++Level) {

    if (*GuardMap == 0) {
      if (!AllocMapUnit) {
        GuardMap = NULL;
        break;
      }

      Size = (mLevelMask[Level] + 1) * GUARDED_HEAP_MAP_ENTRY_BYTES;
      Status = CoreInternalAllocatePages (
                  AllocateAnyPages,
                  EfiBootServicesData,
                  EFI_SIZE_TO_PAGES (Size),
                  &MapMemory,
                  FALSE
                  );
      ASSERT_EFI_ERROR (Status);
      ASSERT (MapMemory != 0);

      SetMem ((VOID *)(UINTN)MapMemory, Size, 0);
      *GuardMap = MapMemory;
    }

    Index     = (UINTN)RShiftU64 (Address, mLevelShift[Level]);
    Index     &= mLevelMask[Level];
    GuardMap  = (UINT64 *)(UINTN)((*GuardMap) + Index * sizeof (UINT64));

  }

  BitsToUnitEnd = GUARDED_HEAP_MAP_BITS - GUARDED_HEAP_MAP_BIT_INDEX (Address);
  *BitMap       = GuardMap;

  return BitsToUnitEnd;
}

/**
  Set corresponding bits in bitmap table to 1 according to given memory range.

  @param[in]  Address       Memory address to guard from.
  @param[in]  NumberOfPages Number of pages to guard.

  @return VOID.
**/
VOID
EFIAPI
SetGuardedMemoryBits (
  IN EFI_PHYSICAL_ADDRESS    Address,
  IN UINTN                   NumberOfPages
  )
{
  UINT64            *BitMap;
  UINTN             Bits;
  UINTN             BitsToUnitEnd;

  while (NumberOfPages > 0) {
    BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);
    ASSERT (BitMap != NULL);

    if (NumberOfPages > BitsToUnitEnd) {
      // Cross map unit
      Bits = BitsToUnitEnd;
    } else {
      Bits  = NumberOfPages;
    }

    SetBits (Address, Bits, BitMap);

    NumberOfPages -= Bits;
    Address       += EFI_PAGES_TO_SIZE (Bits);
  }
}

/**
  Clear corresponding bits in bitmap table according to given memory range.

  @param[in]  Address       Memory address to unset from.
  @param[in]  NumberOfPages Number of pages to unset guard.

  @return VOID.
**/
VOID
EFIAPI
ClearGuardedMemoryBits (
  IN EFI_PHYSICAL_ADDRESS    Address,
  IN UINTN                   NumberOfPages
  )
{
  UINT64            *BitMap;
  UINTN             Bits;
  UINTN             BitsToUnitEnd;

  while (NumberOfPages > 0) {
    BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);
    ASSERT (BitMap != NULL);

    if (NumberOfPages > BitsToUnitEnd) {
      // Cross map unit
      Bits = BitsToUnitEnd;
    } else {
      Bits  = NumberOfPages;
    }

    ClearBits (Address, Bits, BitMap);

    NumberOfPages -= Bits;
    Address       += EFI_PAGES_TO_SIZE (Bits);
  }
}

/**
  Retrieve corresponding bits in bitmap table according to given memory range.

  @param[in]  Address       Memory address to retrieve from.
  @param[in]  NumberOfPages Number of pages to retrieve.

  @return An integer containing the guarded memory bitmap.
**/
UINT64
GetGuardedMemoryBits (
  IN EFI_PHYSICAL_ADDRESS    Address,
  IN UINTN                   NumberOfPages
  )
{
  UINT64            *BitMap;
  UINTN             Bits;
  UINT64            Result;
  UINTN             Shift;
  UINTN             BitsToUnitEnd;

  ASSERT (NumberOfPages <= GUARDED_HEAP_MAP_ENTRY_BITS);

  Result = 0;
  Shift  = 0;
  while (NumberOfPages > 0) {
    BitsToUnitEnd = FindGuardedMemoryMap (Address, FALSE, &BitMap);

    if (NumberOfPages > BitsToUnitEnd) {
      // Cross map unit
      Bits  = BitsToUnitEnd;
    } else {
      Bits  = NumberOfPages;
    }

    if (BitMap != NULL) {
      Result |= LShiftU64 (GetBits (Address, Bits, BitMap), Shift);
    }

    Shift         += Bits;
    NumberOfPages -= Bits;
    Address       += EFI_PAGES_TO_SIZE (Bits);
  }

  return Result;
}

/**
  Get bit value in bitmap table for the given address.

  @param[in]  Address     The address to retrieve for.

  @return 1 or 0.
**/
UINTN
EFIAPI
GetGuardMapBit (
  IN EFI_PHYSICAL_ADDRESS    Address
  )
{
  UINT64        *GuardMap;

  FindGuardedMemoryMap (Address, FALSE, &GuardMap);
  if (GuardMap != NULL) {
    if (RShiftU64 (*GuardMap,
                   GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)) & 1) {
      return 1;
    }
  }

  return 0;
}


/**
  Check to see if the page at the given address is a Guard page or not.

  @param[in]  Address     The address to check for.

  @return TRUE  The page at Address is a Guard page.
  @return FALSE The page at Address is not a Guard page.
**/
BOOLEAN
EFIAPI
IsGuardPage (
  IN EFI_PHYSICAL_ADDRESS    Address
  )
{
  UINT64        BitMap;

  //
  // There must be at least one guarded page before and/or after given
  // address if it's a Guard page. The bitmap pattern should be one of
  // 001, 100 and 101
  //
  BitMap = GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 3);
  return ((BitMap == BIT0) || (BitMap == BIT2) || (BitMap == (BIT2 | BIT0)));
}


/**
  Check to see if the page at the given address is guarded or not.

  @param[in]  Address     The address to check for.

  @return TRUE  The page at Address is guarded.
  @return FALSE The page at Address is not guarded.
**/
BOOLEAN
EFIAPI
IsMemoryGuarded (
  IN EFI_PHYSICAL_ADDRESS    Address
  )
{
  return (GetGuardMapBit (Address) == 1);
}

/**
  Set the page at the given address to be a Guard page.

  This is done by changing the page table attribute to be NOT PRSENT.

  @param[in]  BaseAddress     Page address to Guard at

  @return VOID
**/
VOID
EFIAPI
SetGuardPage (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress
  )
{
  EFI_STATUS      Status;

  if (gCpu == NULL) {
    return;
  }

  //
  // Set flag to make sure allocating memory without GUARD for page table
  // operation; otherwise infinite loops could be caused.
  //
  mOnGuarding = TRUE;
  //
  // Note: This might overwrite other attributes needed by other features,
  // such as NX memory protection.
  //
  Status = gCpu->SetMemoryAttributes (gCpu, BaseAddress, EFI_PAGE_SIZE, EFI_MEMORY_RP);
  ASSERT_EFI_ERROR (Status);
  mOnGuarding = FALSE;
}

/**
  Unset the Guard page at the given address to the normal memory.

  This is done by changing the page table attribute to be PRSENT.

  @param[in]  BaseAddress     Page address to Guard at.

  @return VOID.
**/
VOID
EFIAPI
UnsetGuardPage (
  IN  EFI_PHYSICAL_ADDRESS      BaseAddress
  )
{
  UINT64          Attributes;
  EFI_STATUS      Status;

  if (gCpu == NULL) {
    return;
  }

  //
  // Once the Guard page is unset, it will be freed back to memory pool. NX
  // memory protection must be restored for this page if NX is enabled for free
  // memory.
  //
  Attributes = 0;
  if ((PcdGet64 (PcdDxeNxMemoryProtectionPolicy) & (1 << EfiConventionalMemory)) != 0) {
    Attributes |= EFI_MEMORY_XP;
  }

  //
  // Set flag to make sure allocating memory without GUARD for page table
  // operation; otherwise infinite loops could be caused.
  //
  mOnGuarding = TRUE;
  //
  // Note: This might overwrite other attributes needed by other features,
  // such as memory protection (NX). Please make sure they are not enabled
  // at the same time.
  //
  Status = gCpu->SetMemoryAttributes (gCpu, BaseAddress, EFI_PAGE_SIZE, Attributes);
  ASSERT_EFI_ERROR (Status);
  mOnGuarding = FALSE;
}

/**
  Check to see if the memory at the given address should be guarded or not.

  @param[in]  MemoryType      Memory type to check.
  @param[in]  AllocateType    Allocation type to check.
  @param[in]  PageOrPool      Indicate a page allocation or pool allocation.


  @return TRUE  The given type of memory should be guarded.
  @return FALSE The given type of memory should not be guarded.
**/
BOOLEAN
IsMemoryTypeToGuard (
  IN EFI_MEMORY_TYPE        MemoryType,
  IN EFI_ALLOCATE_TYPE      AllocateType,
  IN UINT8                  PageOrPool
  )
{
  UINT64 TestBit;
  UINT64 ConfigBit;

  if (AllocateType == AllocateAddress) {
    return FALSE;
  }

  if ((PcdGet8 (PcdHeapGuardPropertyMask) & PageOrPool) == 0) {
    return FALSE;
  }

  if (PageOrPool == GUARD_HEAP_TYPE_POOL) {
    ConfigBit = PcdGet64 (PcdHeapGuardPoolType);
  } else if (PageOrPool == GUARD_HEAP_TYPE_PAGE) {
    ConfigBit = PcdGet64 (PcdHeapGuardPageType);
  } else {
    ConfigBit = (UINT64)-1;
  }

  if ((UINT32)MemoryType >= MEMORY_TYPE_OS_RESERVED_MIN) {
    TestBit = BIT63;
  } else if ((UINT32) MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) {
    TestBit = BIT62;
  } else if (MemoryType < EfiMaxMemoryType) {
    TestBit = LShiftU64 (1, MemoryType);
  } else if (MemoryType == EfiMaxMemoryType) {
    TestBit = (UINT64)-1;
  } else {
    TestBit = 0;
  }

  return ((ConfigBit & TestBit) != 0);
}

/**
  Check to see if the pool at the given address should be guarded or not.

  @param[in]  MemoryType      Pool type to check.


  @return TRUE  The given type of pool should be guarded.
  @return FALSE The given type of pool should not be guarded.
**/
BOOLEAN
IsPoolTypeToGuard (
  IN EFI_MEMORY_TYPE        MemoryType
  )
{
  return IsMemoryTypeToGuard (MemoryType, AllocateAnyPages,
                              GUARD_HEAP_TYPE_POOL);
}

/**
  Check to see if the page at the given address should be guarded or not.

  @param[in]  MemoryType      Page type to check.
  @param[in]  AllocateType    Allocation type to check.

  @return TRUE  The given type of page should be guarded.
  @return FALSE The given type of page should not be guarded.
**/
BOOLEAN
IsPageTypeToGuard (
  IN EFI_MEMORY_TYPE        MemoryType,
  IN EFI_ALLOCATE_TYPE      AllocateType
  )
{
  return IsMemoryTypeToGuard (MemoryType, AllocateType, GUARD_HEAP_TYPE_PAGE);
}

/**
  Check to see if the heap guard is enabled for page and/or pool allocation.

  @param[in]  GuardType   Specify the sub-type(s) of Heap Guard.

  @return TRUE/FALSE.
**/
BOOLEAN
IsHeapGuardEnabled (
  UINT8           GuardType
  )
{
  return IsMemoryTypeToGuard (EfiMaxMemoryType, AllocateAnyPages, GuardType);
}

/**
  Set head Guard and tail Guard for the given memory range.

  @param[in]  Memory          Base address of memory to set guard for.
  @param[in]  NumberOfPages   Memory size in pages.

  @return VOID
**/
VOID
SetGuardForMemory (
  IN EFI_PHYSICAL_ADDRESS   Memory,
  IN UINTN                  NumberOfPages
  )
{
  EFI_PHYSICAL_ADDRESS    GuardPage;

  //
  // Set tail Guard
  //
  GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);
  if (!IsGuardPage (GuardPage)) {
    SetGuardPage (GuardPage);
  }

  // Set head Guard
  GuardPage = Memory - EFI_PAGES_TO_SIZE (1);
  if (!IsGuardPage (GuardPage)) {
    SetGuardPage (GuardPage);
  }

  //
  // Mark the memory range as Guarded
  //
  SetGuardedMemoryBits (Memory, NumberOfPages);
}

/**
  Unset head Guard and tail Guard for the given memory range.

  @param[in]  Memory          Base address of memory to unset guard for.
  @param[in]  NumberOfPages   Memory size in pages.

  @return VOID
**/
VOID
UnsetGuardForMemory (
  IN EFI_PHYSICAL_ADDRESS   Memory,
  IN UINTN                  NumberOfPages
  )
{
  EFI_PHYSICAL_ADDRESS  GuardPage;
  UINT64                GuardBitmap;

  if (NumberOfPages == 0) {
    return;
  }

  //
  // Head Guard must be one page before, if any.
  //
  //          MSB-> 1     0 <-LSB
  //          -------------------
  //  Head Guard -> 0     1 -> Don't free Head Guard  (shared Guard)
  //  Head Guard -> 0     0 -> Free Head Guard either (not shared Guard)
  //                1     X -> Don't free first page  (need a new Guard)
  //                           (it'll be turned into a Guard page later)
  //          -------------------
  //      Start -> -1    -2
  //
  GuardPage = Memory - EFI_PAGES_TO_SIZE (1);
  GuardBitmap = GetGuardedMemoryBits (Memory - EFI_PAGES_TO_SIZE (2), 2);
  if ((GuardBitmap & BIT1) == 0) {
    //
    // Head Guard exists.
    //
    if ((GuardBitmap & BIT0) == 0) {
      //
      // If the head Guard is not a tail Guard of adjacent memory block,
      // unset it.
      //
      UnsetGuardPage (GuardPage);
    }
  } else {
    //
    // Pages before memory to free are still in Guard. It's a partial free
    // case. Turn first page of memory block to free into a new Guard.
    //
    SetGuardPage (Memory);
  }

  //
  // Tail Guard must be the page after this memory block to free, if any.
  //
  //   MSB-> 1     0 <-LSB
  //  --------------------
  //         1     0 <- Tail Guard -> Don't free Tail Guard  (shared Guard)
  //         0     0 <- Tail Guard -> Free Tail Guard either (not shared Guard)
  //         X     1               -> Don't free last page   (need a new Guard)
  //                                 (it'll be turned into a Guard page later)
  //  --------------------
  //        +1    +0 <- End
  //
  GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);
  GuardBitmap = GetGuardedMemoryBits (GuardPage, 2);
  if ((GuardBitmap & BIT0) == 0) {
    //
    // Tail Guard exists.
    //
    if ((GuardBitmap & BIT1) == 0) {
      //
      // If the tail Guard is not a head Guard of adjacent memory block,
      // free it; otherwise, keep it.
      //
      UnsetGuardPage (GuardPage);
    }
  } else {
    //
    // Pages after memory to free are still in Guard. It's a partial free
    // case. We need to keep one page to be a head Guard.
    //
    SetGuardPage (GuardPage - EFI_PAGES_TO_SIZE (1));
  }

  //
  // No matter what, we just clear the mark of the Guarded memory.
  //
  ClearGuardedMemoryBits(Memory, NumberOfPages);
}

/**
  Adjust address of free memory according to existing and/or required Guard.

  This function will check if there're existing Guard pages of adjacent
  memory blocks, and try to use it as the Guard page of the memory to be
  allocated.

  @param[in]  Start           Start address of free memory block.
  @param[in]  Size            Size of free memory block.
  @param[in]  SizeRequested   Size of memory to allocate.

  @return The end address of memory block found.
  @return 0 if no enough space for the required size of memory and its Guard.
**/
UINT64
AdjustMemoryS (
  IN UINT64                  Start,
  IN UINT64                  Size,
  IN UINT64                  SizeRequested
  )
{
  UINT64  Target;

  //
  // UEFI spec requires that allocated pool must be 8-byte aligned. If it's
  // indicated to put the pool near the Tail Guard, we need extra bytes to
  // make sure alignment of the returned pool address.
  //
  if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0) {
    SizeRequested = ALIGN_VALUE(SizeRequested, 8);
  }

  Target = Start + Size - SizeRequested;
  ASSERT (Target >= Start);
  if (Target == 0) {
    return 0;
  }

  if (!IsGuardPage (Start + Size)) {
    // No Guard at tail to share. One more page is needed.
    Target -= EFI_PAGES_TO_SIZE (1);
  }

  // Out of range?
  if (Target < Start) {
    return 0;
  }

  // At the edge?
  if (Target == Start) {
    if (!IsGuardPage (Target - EFI_PAGES_TO_SIZE (1))) {
      // No enough space for a new head Guard if no Guard at head to share.
      return 0;
    }
  }

  // OK, we have enough pages for memory and its Guards. Return the End of the
  // free space.
  return Target + SizeRequested - 1;
}

/**
  Adjust the start address and number of pages to free according to Guard.

  The purpose of this function is to keep the shared Guard page with adjacent
  memory block if it's still in guard, or free it if no more sharing. Another
  is to reserve pages as Guard pages in partial page free situation.

  @param[in,out]  Memory          Base address of memory to free.
  @param[in,out]  NumberOfPages   Size of memory to free.

  @return VOID.
**/
VOID
AdjustMemoryF (
  IN OUT EFI_PHYSICAL_ADDRESS    *Memory,
  IN OUT UINTN                   *NumberOfPages
  )
{
  EFI_PHYSICAL_ADDRESS  Start;
  EFI_PHYSICAL_ADDRESS  MemoryToTest;
  UINTN                 PagesToFree;
  UINT64                GuardBitmap;

  if (Memory == NULL || NumberOfPages == NULL || *NumberOfPages == 0) {
    return;
  }

  Start = *Memory;
  PagesToFree = *NumberOfPages;

  //
  // Head Guard must be one page before, if any.
  //
  //          MSB-> 1     0 <-LSB
  //          -------------------
  //  Head Guard -> 0     1 -> Don't free Head Guard  (shared Guard)
  //  Head Guard -> 0     0 -> Free Head Guard either (not shared Guard)
  //                1     X -> Don't free first page  (need a new Guard)
  //                           (it'll be turned into a Guard page later)
  //          -------------------
  //      Start -> -1    -2
  //
  MemoryToTest = Start - EFI_PAGES_TO_SIZE (2);
  GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);
  if ((GuardBitmap & BIT1) == 0) {
    //
    // Head Guard exists.
    //
    if ((GuardBitmap & BIT0) == 0) {
      //
      // If the head Guard is not a tail Guard of adjacent memory block,
      // free it; otherwise, keep it.
      //
      Start       -= EFI_PAGES_TO_SIZE (1);
      PagesToFree += 1;
    }
  } else {
    //
    // No Head Guard, and pages before memory to free are still in Guard. It's a
    // partial free case. We need to keep one page to be a tail Guard.
    //
    Start       += EFI_PAGES_TO_SIZE (1);
    PagesToFree -= 1;
  }

  //
  // Tail Guard must be the page after this memory block to free, if any.
  //
  //   MSB-> 1     0 <-LSB
  //  --------------------
  //         1     0 <- Tail Guard -> Don't free Tail Guard  (shared Guard)
  //         0     0 <- Tail Guard -> Free Tail Guard either (not shared Guard)
  //         X     1               -> Don't free last page   (need a new Guard)
  //                                 (it'll be turned into a Guard page later)
  //  --------------------
  //        +1    +0 <- End
  //
  MemoryToTest = Start + EFI_PAGES_TO_SIZE (PagesToFree);
  GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);
  if ((GuardBitmap & BIT0) == 0) {
    //
    // Tail Guard exists.
    //
    if ((GuardBitmap & BIT1) == 0) {
      //
      // If the tail Guard is not a head Guard of adjacent memory block,
      // free it; otherwise, keep it.
      //
      PagesToFree += 1;
    }
  } else if (PagesToFree > 0) {
    //
    // No Tail Guard, and pages after memory to free are still in Guard. It's a
    // partial free case. We need to keep one page to be a head Guard.
    //
    PagesToFree -= 1;
  }

  *Memory         = Start;
  *NumberOfPages  = PagesToFree;
}

/**
  Adjust the base and number of pages to really allocate according to Guard.

  @param[in,out]  Memory          Base address of free memory.
  @param[in,out]  NumberOfPages   Size of memory to allocate.

  @return VOID.
**/
VOID
AdjustMemoryA (
  IN OUT EFI_PHYSICAL_ADDRESS    *Memory,
  IN OUT UINTN                   *NumberOfPages
  )
{
  //
  // FindFreePages() has already taken the Guard into account. It's safe to
  // adjust the start address and/or number of pages here, to make sure that
  // the Guards are also "allocated".
  //
  if (!IsGuardPage (*Memory + EFI_PAGES_TO_SIZE (*NumberOfPages))) {
    // No tail Guard, add one.
    *NumberOfPages += 1;
  }

  if (!IsGuardPage (*Memory - EFI_PAGE_SIZE)) {
    // No head Guard, add one.
    *Memory        -= EFI_PAGE_SIZE;
    *NumberOfPages += 1;
  }
}

/**
  Adjust the pool head position to make sure the Guard page is adjavent to
  pool tail or pool head.

  @param[in]  Memory    Base address of memory allocated.
  @param[in]  NoPages   Number of pages actually allocated.
  @param[in]  Size      Size of memory requested.
                        (plus pool head/tail overhead)

  @return Address of pool head.
**/
VOID *
AdjustPoolHeadA (
  IN EFI_PHYSICAL_ADDRESS    Memory,
  IN UINTN                   NoPages,
  IN UINTN                   Size
  )
{
  if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {
    //
    // Pool head is put near the head Guard
    //
    return (VOID *)(UINTN)Memory;
  }

  //
  // Pool head is put near the tail Guard
  //
  Size = ALIGN_VALUE (Size, 8);
  return (VOID *)(UINTN)(Memory + EFI_PAGES_TO_SIZE (NoPages) - Size);
}

/**
  Get the page base address according to pool head address.

  @param[in]  Memory    Head address of pool to free.

  @return Address of pool head.
**/
VOID *
AdjustPoolHeadF (
  IN EFI_PHYSICAL_ADDRESS    Memory
  )
{
  if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {
    //
    // Pool head is put near the head Guard
    //
    return (VOID *)(UINTN)Memory;
  }

  //
  // Pool head is put near the tail Guard
  //
  return (VOID *)(UINTN)(Memory & ~EFI_PAGE_MASK);
}

/**
  Allocate or free guarded memory.

  @param[in]  Start           Start address of memory to allocate or free.
  @param[in]  NumberOfPages   Memory size in pages.
  @param[in]  NewType         Memory type to convert to.

  @return VOID.
**/
EFI_STATUS
CoreConvertPagesWithGuard (
  IN UINT64           Start,
  IN UINTN            NumberOfPages,
  IN EFI_MEMORY_TYPE  NewType
  )
{
  UINT64  OldStart;
  UINTN   OldPages;

  if (NewType == EfiConventionalMemory) {
    OldStart = Start;
    OldPages = NumberOfPages;

    AdjustMemoryF (&Start, &NumberOfPages);
    //
    // It's safe to unset Guard page inside memory lock because there should
    // be no memory allocation occurred in updating memory page attribute at
    // this point. And unsetting Guard page before free will prevent Guard
    // page just freed back to pool from being allocated right away before
    // marking it usable (from non-present to present).
    //
    UnsetGuardForMemory (OldStart, OldPages);
    if (NumberOfPages == 0) {
      return EFI_SUCCESS;
    }
  } else {
    AdjustMemoryA (&Start, &NumberOfPages);
  }

  return CoreConvertPages (Start, NumberOfPages, NewType);
}

/**
  Set all Guard pages which cannot be set before CPU Arch Protocol installed.
**/
VOID
SetAllGuardPages (
  VOID
  )
{
  UINTN     Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINTN     Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINTN     Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINT64    Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINT64    Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINT64    TableEntry;
  UINT64    Address;
  UINT64    GuardPage;
  INTN      Level;
  UINTN     Index;
  BOOLEAN   OnGuarding;

  if (mGuardedMemoryMap == 0 ||
      mMapLevel == 0 ||
      mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
    return;
  }

  CopyMem (Entries, mLevelMask, sizeof (Entries));
  CopyMem (Shifts, mLevelShift, sizeof (Shifts));

  SetMem (Tables, sizeof(Tables), 0);
  SetMem (Addresses, sizeof(Addresses), 0);
  SetMem (Indices, sizeof(Indices), 0);

  Level         = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
  Tables[Level] = mGuardedMemoryMap;
  Address       = 0;
  OnGuarding    = FALSE;

  DEBUG_CODE (
    DumpGuardedMemoryBitmap ();
  );

  while (TRUE) {
    if (Indices[Level] > Entries[Level]) {
      Tables[Level] = 0;
      Level        -= 1;
    } else {

      TableEntry  = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];
      Address     = Addresses[Level];

      if (TableEntry == 0) {

        OnGuarding = FALSE;

      } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {

        Level            += 1;
        Tables[Level]     = TableEntry;
        Addresses[Level]  = Address;
        Indices[Level]    = 0;

        continue;

      } else {

        Index = 0;
        while (Index < GUARDED_HEAP_MAP_ENTRY_BITS) {
          if ((TableEntry & 1) == 1) {
            if (OnGuarding) {
              GuardPage = 0;
            } else {
              GuardPage = Address - EFI_PAGE_SIZE;
            }
            OnGuarding = TRUE;
          } else {
            if (OnGuarding) {
              GuardPage = Address;
            } else {
              GuardPage = 0;
            }
            OnGuarding = FALSE;
          }

          if (GuardPage != 0) {
            SetGuardPage (GuardPage);
          }

          if (TableEntry == 0) {
            break;
          }

          TableEntry = RShiftU64 (TableEntry, 1);
          Address   += EFI_PAGE_SIZE;
          Index     += 1;
        }
      }
    }

    if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
      break;
    }

    Indices[Level] += 1;
    Address = (Level == 0) ? 0 : Addresses[Level - 1];
    Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);

  }
}

/**
  Find the address of top-most guarded free page.

  @param[out]  Address    Start address of top-most guarded free page.

  @return VOID.
**/
VOID
GetLastGuardedFreePageAddress (
  OUT EFI_PHYSICAL_ADDRESS      *Address
  )
{
  EFI_PHYSICAL_ADDRESS    AddressGranularity;
  EFI_PHYSICAL_ADDRESS    BaseAddress;
  UINTN                   Level;
  UINT64                  Map;
  INTN                    Index;

  ASSERT (mMapLevel >= 1);

  BaseAddress = 0;
  Map = mGuardedMemoryMap;
  for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
       Level < GUARDED_HEAP_MAP_TABLE_DEPTH;
       ++Level) {
    AddressGranularity = LShiftU64 (1, mLevelShift[Level]);

    //
    // Find the non-NULL entry at largest index.
    //
    for (Index = (INTN)mLevelMask[Level]; Index >= 0 ; --Index) {
      if (((UINT64 *)(UINTN)Map)[Index] != 0) {
        BaseAddress += MultU64x32 (AddressGranularity, (UINT32)Index);
        Map = ((UINT64 *)(UINTN)Map)[Index];
        break;
      }
    }
  }

  //
  // Find the non-zero MSB then get the page address.
  //
  while (Map != 0) {
    Map = RShiftU64 (Map, 1);
    BaseAddress += EFI_PAGES_TO_SIZE (1);
  }

  *Address = BaseAddress;
}

/**
  Record freed pages.

  @param[in]  BaseAddress   Base address of just freed pages.
  @param[in]  Pages         Number of freed pages.

  @return VOID.
**/
VOID
MarkFreedPages (
  IN EFI_PHYSICAL_ADDRESS     BaseAddress,
  IN UINTN                    Pages
  )
{
  SetGuardedMemoryBits (BaseAddress, Pages);
}

/**
  Record freed pages as well as mark them as not-present.

  @param[in]  BaseAddress   Base address of just freed pages.
  @param[in]  Pages         Number of freed pages.

  @return VOID.
**/
VOID
EFIAPI
GuardFreedPages (
  IN  EFI_PHYSICAL_ADDRESS    BaseAddress,
  IN  UINTN                   Pages
  )
{
  EFI_STATUS      Status;

  //
  // Legacy memory lower than 1MB might be accessed with no allocation. Leave
  // them alone.
  //
  if (BaseAddress < BASE_1MB) {
    return;
  }

  MarkFreedPages (BaseAddress, Pages);
  if (gCpu != NULL) {
    //
    // Set flag to make sure allocating memory without GUARD for page table
    // operation; otherwise infinite loops could be caused.
    //
    mOnGuarding = TRUE;
    //
    // Note: This might overwrite other attributes needed by other features,
    // such as NX memory protection.
    //
    Status = gCpu->SetMemoryAttributes (
                     gCpu,
                     BaseAddress,
                     EFI_PAGES_TO_SIZE (Pages),
                     EFI_MEMORY_RP
                     );
    //
    // Normally we should ASSERT the returned Status. But there might be memory
    // alloc/free involved in SetMemoryAttributes(), which might fail this
    // calling. It's rare case so it's OK to let a few tiny holes be not-guarded.
    //
    if (EFI_ERROR (Status)) {
      DEBUG ((DEBUG_WARN, "Failed to guard freed pages: %p (%lu)\n", BaseAddress, (UINT64)Pages));
    }
    mOnGuarding = FALSE;
  }
}

/**
  Record freed pages as well as mark them as not-present, if enabled.

  @param[in]  BaseAddress   Base address of just freed pages.
  @param[in]  Pages         Number of freed pages.

  @return VOID.
**/
VOID
EFIAPI
GuardFreedPagesChecked (
  IN  EFI_PHYSICAL_ADDRESS    BaseAddress,
  IN  UINTN                   Pages
  )
{
  if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
    GuardFreedPages (BaseAddress, Pages);
  }
}

/**
  Mark all pages freed before CPU Arch Protocol as not-present.

**/
VOID
GuardAllFreedPages (
  VOID
  )
{
  UINTN     Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINTN     Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINTN     Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINT64    Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINT64    Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINT64    TableEntry;
  UINT64    Address;
  UINT64    GuardPage;
  INTN      Level;
  UINT64    BitIndex;
  UINTN     GuardPageNumber;

  if (mGuardedMemoryMap == 0 ||
      mMapLevel == 0 ||
      mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
    return;
  }

  CopyMem (Entries, mLevelMask, sizeof (Entries));
  CopyMem (Shifts, mLevelShift, sizeof (Shifts));

  SetMem (Tables, sizeof(Tables), 0);
  SetMem (Addresses, sizeof(Addresses), 0);
  SetMem (Indices, sizeof(Indices), 0);

  Level           = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
  Tables[Level]   = mGuardedMemoryMap;
  Address         = 0;
  GuardPage       = (UINT64)-1;
  GuardPageNumber = 0;

  while (TRUE) {
    if (Indices[Level] > Entries[Level]) {
      Tables[Level] = 0;
      Level        -= 1;
    } else {
      TableEntry  = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];
      Address     = Addresses[Level];

      if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
        Level            += 1;
        Tables[Level]     = TableEntry;
        Addresses[Level]  = Address;
        Indices[Level]    = 0;

        continue;
      } else {
        BitIndex = 1;
        while (BitIndex != 0) {
          if ((TableEntry & BitIndex) != 0) {
            if (GuardPage == (UINT64)-1) {
              GuardPage = Address;
            }
            ++GuardPageNumber;
          } else if (GuardPageNumber > 0) {
            GuardFreedPages (GuardPage, GuardPageNumber);
            GuardPageNumber = 0;
            GuardPage       = (UINT64)-1;
          }

          if (TableEntry == 0) {
            break;
          }

          Address += EFI_PAGES_TO_SIZE (1);
          BitIndex = LShiftU64 (BitIndex, 1);
        }
      }
    }

    if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
      break;
    }

    Indices[Level] += 1;
    Address = (Level == 0) ? 0 : Addresses[Level - 1];
    Addresses[Level] = Address | LShiftU64 (Indices[Level], Shifts[Level]);

  }

  //
  // Update the maximum address of freed page which can be used for memory
  // promotion upon out-of-memory-space.
  //
  GetLastGuardedFreePageAddress (&Address);
  if (Address != 0) {
    mLastPromotedPage = Address;
  }
}

/**
  This function checks to see if the given memory map descriptor in a memory map
  can be merged with any guarded free pages.

  @param  MemoryMapEntry    A pointer to a descriptor in MemoryMap.
  @param  MaxAddress        Maximum address to stop the merge.

  @return VOID

**/
VOID
MergeGuardPages (
  IN EFI_MEMORY_DESCRIPTOR      *MemoryMapEntry,
  IN EFI_PHYSICAL_ADDRESS       MaxAddress
  )
{
  EFI_PHYSICAL_ADDRESS        EndAddress;
  UINT64                      Bitmap;
  INTN                        Pages;

  if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED) ||
      MemoryMapEntry->Type >= EfiMemoryMappedIO) {
    return;
  }

  Bitmap = 0;
  Pages  = EFI_SIZE_TO_PAGES ((UINTN)(MaxAddress - MemoryMapEntry->PhysicalStart));
  Pages -= (INTN)MemoryMapEntry->NumberOfPages;
  while (Pages > 0) {
    if (Bitmap == 0) {
      EndAddress = MemoryMapEntry->PhysicalStart +
                   EFI_PAGES_TO_SIZE ((UINTN)MemoryMapEntry->NumberOfPages);
      Bitmap = GetGuardedMemoryBits (EndAddress, GUARDED_HEAP_MAP_ENTRY_BITS);
    }

    if ((Bitmap & 1) == 0) {
      break;
    }

    Pages--;
    MemoryMapEntry->NumberOfPages++;
    Bitmap = RShiftU64 (Bitmap, 1);
  }
}

/**
  Put part (at most 64 pages a time) guarded free pages back to free page pool.

  Freed memory guard is used to detect Use-After-Free (UAF) memory issue, which
  makes use of 'Used then throw away' way to detect any illegal access to freed
  memory. The thrown-away memory will be marked as not-present so that any access
  to those memory (after free) will be caught by page-fault exception.

  The problem is that this will consume lots of memory space. Once no memory
  left in pool to allocate, we have to restore part of the freed pages to their
  normal function. Otherwise the whole system will stop functioning.

  @param  StartAddress    Start address of promoted memory.
  @param  EndAddress      End address of promoted memory.

  @return TRUE    Succeeded to promote memory.
  @return FALSE   No free memory found.

**/
BOOLEAN
PromoteGuardedFreePages (
  OUT EFI_PHYSICAL_ADDRESS      *StartAddress,
  OUT EFI_PHYSICAL_ADDRESS      *EndAddress
  )
{
  EFI_STATUS              Status;
  UINTN                   AvailablePages;
  UINT64                  Bitmap;
  EFI_PHYSICAL_ADDRESS    Start;

  if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
    return FALSE;
  }

  //
  // Similar to memory allocation service, always search the freed pages in
  // descending direction.
  //
  Start           = mLastPromotedPage;
  AvailablePages  = 0;
  while (AvailablePages == 0) {
    Start -= EFI_PAGES_TO_SIZE (GUARDED_HEAP_MAP_ENTRY_BITS);
    //
    // If the address wraps around, try the really freed pages at top.
    //
    if (Start > mLastPromotedPage) {
      GetLastGuardedFreePageAddress (&Start);
      ASSERT (Start != 0);
      Start -= EFI_PAGES_TO_SIZE (GUARDED_HEAP_MAP_ENTRY_BITS);
    }

    Bitmap = GetGuardedMemoryBits (Start, GUARDED_HEAP_MAP_ENTRY_BITS);
    while (Bitmap > 0) {
      if ((Bitmap & 1) != 0) {
        ++AvailablePages;
      } else if (AvailablePages == 0) {
        Start += EFI_PAGES_TO_SIZE (1);
      } else {
        break;
      }

      Bitmap = RShiftU64 (Bitmap, 1);
    }
  }

  if (AvailablePages != 0) {
    DEBUG ((DEBUG_INFO, "Promoted pages: %lX (%lx)\r\n", Start, (UINT64)AvailablePages));
    ClearGuardedMemoryBits (Start, AvailablePages);

    if (gCpu != NULL) {
      //
      // Set flag to make sure allocating memory without GUARD for page table
      // operation; otherwise infinite loops could be caused.
      //
      mOnGuarding = TRUE;
      Status = gCpu->SetMemoryAttributes (gCpu, Start, EFI_PAGES_TO_SIZE(AvailablePages), 0);
      ASSERT_EFI_ERROR (Status);
      mOnGuarding = FALSE;
    }

    mLastPromotedPage = Start;
    *StartAddress     = Start;
    *EndAddress       = Start + EFI_PAGES_TO_SIZE (AvailablePages) - 1;
    return TRUE;
  }

  return FALSE;
}

/**
  Notify function used to set all Guard pages before CPU Arch Protocol installed.
**/
VOID
HeapGuardCpuArchProtocolNotify (
  VOID
  )
{
  ASSERT (gCpu != NULL);

  if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_PAGE|GUARD_HEAP_TYPE_POOL) &&
      IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
    DEBUG ((DEBUG_ERROR, "Heap guard and freed memory guard cannot be enabled at the same time.\n"));
    CpuDeadLoop ();
  }

  if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_PAGE|GUARD_HEAP_TYPE_POOL)) {
    SetAllGuardPages ();
  }

  if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
    GuardAllFreedPages ();
  }
}

/**
  Helper function to convert a UINT64 value in binary to a string.

  @param[in]  Value       Value of a UINT64 integer.
  @param[out]  BinString   String buffer to contain the conversion result.

  @return VOID.
**/
VOID
Uint64ToBinString (
  IN  UINT64      Value,
  OUT CHAR8       *BinString
  )
{
  UINTN Index;

  if (BinString == NULL) {
    return;
  }

  for (Index = 64; Index > 0; --Index) {
    BinString[Index - 1] = '0' + (Value & 1);
    Value = RShiftU64 (Value, 1);
  }
  BinString[64] = '\0';
}

/**
  Dump the guarded memory bit map.
**/
VOID
EFIAPI
DumpGuardedMemoryBitmap (
  VOID
  )
{
  UINTN     Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINTN     Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINTN     Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINT64    Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINT64    Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
  UINT64    TableEntry;
  UINT64    Address;
  INTN      Level;
  UINTN     RepeatZero;
  CHAR8     String[GUARDED_HEAP_MAP_ENTRY_BITS + 1];
  CHAR8     *Ruler1;
  CHAR8     *Ruler2;

  if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_ALL)) {
    return;
  }

  if (mGuardedMemoryMap == 0 ||
      mMapLevel == 0 ||
      mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
    return;
  }

  Ruler1 = "               3               2               1               0";
  Ruler2 = "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210";

  DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "============================="
                                  " Guarded Memory Bitmap "
                                  "==============================\r\n"));
  DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "                  %a\r\n", Ruler1));
  DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "                  %a\r\n", Ruler2));

  CopyMem (Entries, mLevelMask, sizeof (Entries));
  CopyMem (Shifts, mLevelShift, sizeof (Shifts));

  SetMem (Indices, sizeof(Indices), 0);
  SetMem (Tables, sizeof(Tables), 0);
  SetMem (Addresses, sizeof(Addresses), 0);

  Level         = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
  Tables[Level] = mGuardedMemoryMap;
  Address       = 0;
  RepeatZero    = 0;

  while (TRUE) {
    if (Indices[Level] > Entries[Level]) {

      Tables[Level] = 0;
      Level        -= 1;
      RepeatZero    = 0;

      DEBUG ((
        HEAP_GUARD_DEBUG_LEVEL,
        "========================================="
        "=========================================\r\n"
        ));

    } else {

      TableEntry  = ((UINT64 *)(UINTN)Tables[Level])[Indices[Level]];
      Address     = Addresses[Level];

      if (TableEntry == 0) {

        if (Level == GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
          if (RepeatZero == 0) {
            Uint64ToBinString(TableEntry, String);
            DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));
          } else if (RepeatZero == 1) {
            DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "...             : ...\r\n"));
          }
          RepeatZero += 1;
        }

      } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {

        Level            += 1;
        Tables[Level]     = TableEntry;
        Addresses[Level]  = Address;
        Indices[Level]    = 0;
        RepeatZero        = 0;

        continue;

      } else {

        RepeatZero = 0;
        Uint64ToBinString(TableEntry, String);
        DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));

      }
    }

    if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
      break;
    }

    Indices[Level] += 1;
    Address = (Level == 0) ? 0 : Addresses[Level - 1];
    Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);

  }
}