summaryrefslogtreecommitdiffstats
path: root/MdeModulePkg/Core/Dxe/Mem/Page.c
blob: 47d4c5d92e1586b3449d5fd57df9d4ab83024e1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
/** @file
  UEFI Memory page management functions.

Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "DxeMain.h"
#include "Imem.h"
#include "HeapGuard.h"

//
// Entry for tracking the memory regions for each memory type to coalesce similar memory types
//
typedef struct {
  EFI_PHYSICAL_ADDRESS    BaseAddress;
  EFI_PHYSICAL_ADDRESS    MaximumAddress;
  UINT64                  CurrentNumberOfPages;
  UINT64                  NumberOfPages;
  UINTN                   InformationIndex;
  BOOLEAN                 Special;
  BOOLEAN                 Runtime;
} EFI_MEMORY_TYPE_STATISTICS;

//
// MemoryMap - The current memory map
//
UINTN  mMemoryMapKey = 0;

#define MAX_MAP_DEPTH  6

///
/// mMapDepth - depth of new descriptor stack
///
UINTN  mMapDepth = 0;
///
/// mMapStack - space to use as temp storage to build new map descriptors
///
MEMORY_MAP  mMapStack[MAX_MAP_DEPTH];
UINTN       mFreeMapStack = 0;
///
/// This list maintain the free memory map list
///
LIST_ENTRY  mFreeMemoryMapEntryList           = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);
BOOLEAN     mMemoryTypeInformationInitialized = FALSE;

EFI_MEMORY_TYPE_STATISTICS  mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  FALSE },  // EfiReservedMemoryType
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiLoaderCode
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiLoaderData
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiBootServicesCode
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiBootServicesData
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  TRUE  },  // EfiRuntimeServicesCode
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  TRUE  },  // EfiRuntimeServicesData
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiConventionalMemory
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiUnusableMemory
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  FALSE },  // EfiACPIReclaimMemory
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  FALSE },  // EfiACPIMemoryNVS
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiMemoryMappedIO
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiMemoryMappedIOPortSpace
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  TRUE  },  // EfiPalCode
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiPersistentMemory
  { 0, MAX_ALLOC_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }   // EfiMaxMemoryType
};

EFI_PHYSICAL_ADDRESS  mDefaultMaximumAddress = MAX_ALLOC_ADDRESS;
EFI_PHYSICAL_ADDRESS  mDefaultBaseAddress    = MAX_ALLOC_ADDRESS;

EFI_MEMORY_TYPE_INFORMATION  gMemoryTypeInformation[EfiMaxMemoryType + 1] = {
  { EfiReservedMemoryType,      0 },
  { EfiLoaderCode,              0 },
  { EfiLoaderData,              0 },
  { EfiBootServicesCode,        0 },
  { EfiBootServicesData,        0 },
  { EfiRuntimeServicesCode,     0 },
  { EfiRuntimeServicesData,     0 },
  { EfiConventionalMemory,      0 },
  { EfiUnusableMemory,          0 },
  { EfiACPIReclaimMemory,       0 },
  { EfiACPIMemoryNVS,           0 },
  { EfiMemoryMappedIO,          0 },
  { EfiMemoryMappedIOPortSpace, 0 },
  { EfiPalCode,                 0 },
  { EfiPersistentMemory,        0 },
  { EfiMaxMemoryType,           0 }
};
//
// Only used when load module at fixed address feature is enabled. True means the memory is alreay successfully allocated
// and ready to load the module in to specified address.or else, the memory is not ready and module will be loaded at a
//  address assigned by DXE core.
//
GLOBAL_REMOVE_IF_UNREFERENCED   BOOLEAN  gLoadFixedAddressCodeMemoryReady = FALSE;

/**
  Enter critical section by gaining lock on gMemoryLock.

**/
VOID
CoreAcquireMemoryLock (
  VOID
  )
{
  CoreAcquireLock (&gMemoryLock);
}

/**
  Exit critical section by releasing lock on gMemoryLock.

**/
VOID
CoreReleaseMemoryLock (
  VOID
  )
{
  CoreReleaseLock (&gMemoryLock);
}

/**
  Internal function.  Removes a descriptor entry.

  @param  Entry                  The entry to remove

**/
VOID
RemoveMemoryMapEntry (
  IN OUT MEMORY_MAP  *Entry
  )
{
  RemoveEntryList (&Entry->Link);
  Entry->Link.ForwardLink = NULL;

  if (Entry->FromPages) {
    //
    // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList
    //
    InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);
  }
}

/**
  Internal function.  Adds a ranges to the memory map.
  The range must not already exist in the map.

  @param  Type                   The type of memory range to add
  @param  Start                  The starting address in the memory range Must be
                                 paged aligned
  @param  End                    The last address in the range Must be the last
                                 byte of a page
  @param  Attribute              The attributes of the memory range to add

**/
VOID
CoreAddRange (
  IN EFI_MEMORY_TYPE       Type,
  IN EFI_PHYSICAL_ADDRESS  Start,
  IN EFI_PHYSICAL_ADDRESS  End,
  IN UINT64                Attribute
  )
{
  LIST_ENTRY  *Link;
  MEMORY_MAP  *Entry;

  ASSERT ((Start & EFI_PAGE_MASK) == 0);
  ASSERT (End > Start);

  ASSERT_LOCKED (&gMemoryLock);

  DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));

  //
  // If memory of type EfiConventionalMemory is being added that includes the page
  // starting at address 0, then zero the page starting at address 0.  This has
  // two benifits.  It helps find NULL pointer bugs and it also maximizes
  // compatibility with operating systems that may evaluate memory in this page
  // for legacy data structures.  If memory of any other type is added starting
  // at address 0, then do not zero the page at address 0 because the page is being
  // used for other purposes.
  //
  if ((Type == EfiConventionalMemory) && (Start == 0) && (End >= EFI_PAGE_SIZE - 1)) {
    if ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT0) == 0) {
      SetMem ((VOID *)(UINTN)Start, EFI_PAGE_SIZE, 0);
    }
  }

  //
  // Memory map being altered so updated key
  //
  mMemoryMapKey += 1;

  //
  // UEFI 2.0 added an event group for notificaiton on memory map changes.
  // So we need to signal this Event Group every time the memory map changes.
  // If we are in EFI 1.10 compatability mode no event groups will be
  // found and nothing will happen we we call this function. These events
  // will get signaled but since a lock is held around the call to this
  // function the notificaiton events will only be called after this function
  // returns and the lock is released.
  //
  CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);

  //
  // Look for adjoining memory descriptor
  //

  // Two memory descriptors can only be merged if they have the same Type
  // and the same Attribute
  //

  Link = gMemoryMap.ForwardLink;
  while (Link != &gMemoryMap) {
    Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
    Link  = Link->ForwardLink;

    if (Entry->Type != Type) {
      continue;
    }

    if (Entry->Attribute != Attribute) {
      continue;
    }

    if (Entry->End + 1 == Start) {
      Start = Entry->Start;
      RemoveMemoryMapEntry (Entry);
    } else if (Entry->Start == End + 1) {
      End = Entry->End;
      RemoveMemoryMapEntry (Entry);
    }
  }

  //
  // Add descriptor
  //

  mMapStack[mMapDepth].Signature    = MEMORY_MAP_SIGNATURE;
  mMapStack[mMapDepth].FromPages    = FALSE;
  mMapStack[mMapDepth].Type         = Type;
  mMapStack[mMapDepth].Start        = Start;
  mMapStack[mMapDepth].End          = End;
  mMapStack[mMapDepth].VirtualStart = 0;
  mMapStack[mMapDepth].Attribute    = Attribute;
  InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);

  mMapDepth += 1;
  ASSERT (mMapDepth < MAX_MAP_DEPTH);

  return;
}

/**
  Internal function.  Deque a descriptor entry from the mFreeMemoryMapEntryList.
  If the list is emtry, then allocate a new page to refuel the list.
  Please Note this algorithm to allocate the memory map descriptor has a property
  that the memory allocated for memory entries always grows, and will never really be freed
  For example, if the current boot uses 2000 memory map entries at the maximum point, but
  ends up with only 50 at the time the OS is booted, then the memory associated with the 1950
  memory map entries is still allocated from EfiBootServicesMemory.


  @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList

**/
MEMORY_MAP *
AllocateMemoryMapEntry (
  VOID
  )
{
  MEMORY_MAP  *FreeDescriptorEntries;
  MEMORY_MAP  *Entry;
  UINTN       Index;

  if (IsListEmpty (&mFreeMemoryMapEntryList)) {
    //
    // The list is empty, to allocate one page to refuel the list
    //
    FreeDescriptorEntries = CoreAllocatePoolPages (
                              EfiBootServicesData,
                              EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION_GRANULARITY),
                              DEFAULT_PAGE_ALLOCATION_GRANULARITY,
                              FALSE
                              );
    if (FreeDescriptorEntries != NULL) {
      //
      // Enque the free memmory map entries into the list
      //
      for (Index = 0; Index < DEFAULT_PAGE_ALLOCATION_GRANULARITY / sizeof (MEMORY_MAP); Index++) {
        FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;
        InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);
      }
    } else {
      return NULL;
    }
  }

  //
  // dequeue the first descriptor from the list
  //
  Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
  RemoveEntryList (&Entry->Link);

  return Entry;
}

/**
  Internal function.  Moves any memory descriptors that are on the
  temporary descriptor stack to heap.

**/
VOID
CoreFreeMemoryMapStack (
  VOID
  )
{
  MEMORY_MAP  *Entry;
  MEMORY_MAP  *Entry2;
  LIST_ENTRY  *Link2;

  ASSERT_LOCKED (&gMemoryLock);

  //
  // If already freeing the map stack, then return
  //
  if (mFreeMapStack != 0) {
    return;
  }

  //
  // Move the temporary memory descriptor stack into pool
  //
  mFreeMapStack += 1;

  while (mMapDepth != 0) {
    //
    // Deque an memory map entry from mFreeMemoryMapEntryList
    //
    Entry = AllocateMemoryMapEntry ();

    ASSERT (Entry);

    //
    // Update to proper entry
    //
    mMapDepth -= 1;

    if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {
      //
      // Move this entry to general memory
      //
      RemoveEntryList (&mMapStack[mMapDepth].Link);
      mMapStack[mMapDepth].Link.ForwardLink = NULL;

      CopyMem (Entry, &mMapStack[mMapDepth], sizeof (MEMORY_MAP));
      Entry->FromPages = TRUE;

      //
      // Find insertion location
      //
      for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {
        Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
        if (Entry2->FromPages && (Entry2->Start > Entry->Start)) {
          break;
        }
      }

      InsertTailList (Link2, &Entry->Link);
    } else {
      //
      // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,
      // so here no need to move it to memory.
      //
      InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);
    }
  }

  mFreeMapStack -= 1;
}

/**
  Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.

**/
BOOLEAN
PromoteMemoryResource (
  VOID
  )
{
  LIST_ENTRY                       *Link;
  EFI_GCD_MAP_ENTRY                *Entry;
  BOOLEAN                          Promoted;
  EFI_PHYSICAL_ADDRESS             StartAddress;
  EFI_PHYSICAL_ADDRESS             EndAddress;
  EFI_GCD_MEMORY_SPACE_DESCRIPTOR  Descriptor;

  DEBUG ((DEBUG_PAGE, "Promote the memory resource\n"));

  CoreAcquireGcdMemoryLock ();

  Promoted = FALSE;
  Link     = mGcdMemorySpaceMap.ForwardLink;
  while (Link != &mGcdMemorySpaceMap) {
    Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);

    if ((Entry->GcdMemoryType == EfiGcdMemoryTypeReserved) &&
        (Entry->EndAddress < MAX_ALLOC_ADDRESS) &&
        ((Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==
         (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)))
    {
      //
      // Update the GCD map
      //
      if ((Entry->Capabilities & EFI_MEMORY_MORE_RELIABLE) == EFI_MEMORY_MORE_RELIABLE) {
        Entry->GcdMemoryType = EfiGcdMemoryTypeMoreReliable;
      } else {
        Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;
      }

      Entry->Capabilities |= EFI_MEMORY_TESTED;
      Entry->ImageHandle   = gDxeCoreImageHandle;
      Entry->DeviceHandle  = NULL;

      //
      // Add to allocable system memory resource
      //

      CoreAddRange (
        EfiConventionalMemory,
        Entry->BaseAddress,
        Entry->EndAddress,
        Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)
        );
      CoreFreeMemoryMapStack ();

      Promoted = TRUE;
    }

    Link = Link->ForwardLink;
  }

  CoreReleaseGcdMemoryLock ();

  if (!Promoted) {
    //
    // If freed-memory guard is enabled, we could promote pages from
    // guarded free pages.
    //
    Promoted = PromoteGuardedFreePages (&StartAddress, &EndAddress);
    if (Promoted) {
      CoreGetMemorySpaceDescriptor (StartAddress, &Descriptor);
      CoreAddRange (
        EfiConventionalMemory,
        StartAddress,
        EndAddress,
        Descriptor.Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED |
                                    EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)
        );
    }
  }

  return Promoted;
}

/**
  This function try to allocate Runtime code & Boot time code memory range. If LMFA enabled, 2 patchable PCD
  PcdLoadFixAddressRuntimeCodePageNumber & PcdLoadFixAddressBootTimeCodePageNumber which are set by tools will record the
  size of boot time and runtime code.

**/
VOID
CoreLoadingFixedAddressHook (
  VOID
  )
{
  UINT32                RuntimeCodePageNumber;
  UINT32                BootTimeCodePageNumber;
  EFI_PHYSICAL_ADDRESS  RuntimeCodeBase;
  EFI_PHYSICAL_ADDRESS  BootTimeCodeBase;
  EFI_STATUS            Status;

  //
  // Make sure these 2 areas are not initialzied.
  //
  if (!gLoadFixedAddressCodeMemoryReady) {
    RuntimeCodePageNumber  = PcdGet32 (PcdLoadFixAddressRuntimeCodePageNumber);
    BootTimeCodePageNumber = PcdGet32 (PcdLoadFixAddressBootTimeCodePageNumber);
    RuntimeCodeBase        = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressConfigurationTable.DxeCodeTopAddress - EFI_PAGES_TO_SIZE (RuntimeCodePageNumber));
    BootTimeCodeBase       = (EFI_PHYSICAL_ADDRESS)(RuntimeCodeBase - EFI_PAGES_TO_SIZE (BootTimeCodePageNumber));
    //
    // Try to allocate runtime memory.
    //
    Status = CoreAllocatePages (
               AllocateAddress,
               EfiRuntimeServicesCode,
               RuntimeCodePageNumber,
               &RuntimeCodeBase
               );
    if (EFI_ERROR (Status)) {
      //
      // Runtime memory allocation failed
      //
      return;
    }

    //
    // Try to allocate boot memory.
    //
    Status = CoreAllocatePages (
               AllocateAddress,
               EfiBootServicesCode,
               BootTimeCodePageNumber,
               &BootTimeCodeBase
               );
    if (EFI_ERROR (Status)) {
      //
      // boot memory allocation failed. Free Runtime code range and will try the allocation again when
      // new memory range is installed.
      //
      CoreFreePages (
        RuntimeCodeBase,
        RuntimeCodePageNumber
        );
      return;
    }

    gLoadFixedAddressCodeMemoryReady = TRUE;
  }

  return;
}

/**
  Called to initialize the memory map and add descriptors to
  the current descriptor list.
  The first descriptor that is added must be general usable
  memory as the addition allocates heap.

  @param  Type                   The type of memory to add
  @param  Start                  The starting address in the memory range Must be
                                 page aligned
  @param  NumberOfPages          The number of pages in the range
  @param  Attribute              Attributes of the memory to add

  @return None.  The range is added to the memory map

**/
VOID
CoreAddMemoryDescriptor (
  IN EFI_MEMORY_TYPE       Type,
  IN EFI_PHYSICAL_ADDRESS  Start,
  IN UINT64                NumberOfPages,
  IN UINT64                Attribute
  )
{
  EFI_PHYSICAL_ADDRESS  End;
  EFI_STATUS            Status;
  UINTN                 Index;
  UINTN                 FreeIndex;

  if ((Start & EFI_PAGE_MASK) != 0) {
    return;
  }

  if ((Type >= EfiMaxMemoryType) && (Type < MEMORY_TYPE_OEM_RESERVED_MIN)) {
    return;
  }

  CoreAcquireMemoryLock ();
  End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;
  CoreAddRange (Type, Start, End, Attribute);
  CoreFreeMemoryMapStack ();
  CoreReleaseMemoryLock ();

  ApplyMemoryProtectionPolicy (
    EfiMaxMemoryType,
    Type,
    Start,
    LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT)
    );

  //
  // If Loading Module At Fixed Address feature is enabled. try to allocate memory with Runtime code & Boot time code type
  //
  if (PcdGet64 (PcdLoadModuleAtFixAddressEnable) != 0) {
    CoreLoadingFixedAddressHook ();
  }

  //
  // Check to see if the statistics for the different memory types have already been established
  //
  if (mMemoryTypeInformationInitialized) {
    return;
  }

  //
  // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array
  //
  for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {
    //
    // Make sure the memory type in the gMemoryTypeInformation[] array is valid
    //
    Type = (EFI_MEMORY_TYPE)(gMemoryTypeInformation[Index].Type);
    if ((UINT32)Type > EfiMaxMemoryType) {
      continue;
    }

    if (gMemoryTypeInformation[Index].NumberOfPages != 0) {
      //
      // Allocate pages for the current memory type from the top of available memory
      //
      Status = CoreAllocatePages (
                 AllocateAnyPages,
                 Type,
                 gMemoryTypeInformation[Index].NumberOfPages,
                 &mMemoryTypeStatistics[Type].BaseAddress
                 );
      if (EFI_ERROR (Status)) {
        //
        // If an error occurs allocating the pages for the current memory type, then
        // free all the pages allocates for the previous memory types and return.  This
        // operation with be retied when/if more memory is added to the system
        //
        for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {
          //
          // Make sure the memory type in the gMemoryTypeInformation[] array is valid
          //
          Type = (EFI_MEMORY_TYPE)(gMemoryTypeInformation[FreeIndex].Type);
          if ((UINT32)Type > EfiMaxMemoryType) {
            continue;
          }

          if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {
            CoreFreePages (
              mMemoryTypeStatistics[Type].BaseAddress,
              gMemoryTypeInformation[FreeIndex].NumberOfPages
              );
            mMemoryTypeStatistics[Type].BaseAddress    = 0;
            mMemoryTypeStatistics[Type].MaximumAddress = MAX_ALLOC_ADDRESS;
          }
        }

        return;
      }

      //
      // Compute the address at the top of the current statistics
      //
      mMemoryTypeStatistics[Type].MaximumAddress =
        mMemoryTypeStatistics[Type].BaseAddress +
        LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;

      //
      // If the current base address is the lowest address so far, then update the default
      // maximum address
      //
      if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {
        mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;
      }
    }
  }

  //
  // There was enough system memory for all the the memory types were allocated.  So,
  // those memory areas can be freed for future allocations, and all future memory
  // allocations can occur within their respective bins
  //
  for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {
    //
    // Make sure the memory type in the gMemoryTypeInformation[] array is valid
    //
    Type = (EFI_MEMORY_TYPE)(gMemoryTypeInformation[Index].Type);
    if ((UINT32)Type > EfiMaxMemoryType) {
      continue;
    }

    if (gMemoryTypeInformation[Index].NumberOfPages != 0) {
      CoreFreePages (
        mMemoryTypeStatistics[Type].BaseAddress,
        gMemoryTypeInformation[Index].NumberOfPages
        );
      mMemoryTypeStatistics[Type].NumberOfPages   = gMemoryTypeInformation[Index].NumberOfPages;
      gMemoryTypeInformation[Index].NumberOfPages = 0;
    }
  }

  //
  // If the number of pages reserved for a memory type is 0, then all allocations for that type
  // should be in the default range.
  //
  for (Type = (EFI_MEMORY_TYPE)0; Type < EfiMaxMemoryType; Type++) {
    for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {
      if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {
        mMemoryTypeStatistics[Type].InformationIndex = Index;
      }
    }

    mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;
    if (mMemoryTypeStatistics[Type].MaximumAddress == MAX_ALLOC_ADDRESS) {
      mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;
    }
  }

  mMemoryTypeInformationInitialized = TRUE;
}

/**
  Internal function.  Converts a memory range to the specified type or attributes.
  The range must exist in the memory map.  Either ChangingType or
  ChangingAttributes must be set, but not both.

  @param  Start                  The first address of the range Must be page
                                 aligned
  @param  NumberOfPages          The number of pages to convert
  @param  ChangingType           Boolean indicating that type value should be changed
  @param  NewType                The new type for the memory range
  @param  ChangingAttributes     Boolean indicating that attributes value should be changed
  @param  NewAttributes          The new attributes for the memory range

  @retval EFI_INVALID_PARAMETER  Invalid parameter
  @retval EFI_NOT_FOUND          Could not find a descriptor cover the specified
                                 range  or convertion not allowed.
  @retval EFI_SUCCESS            Successfully converts the memory range to the
                                 specified type.

**/
EFI_STATUS
CoreConvertPagesEx (
  IN UINT64           Start,
  IN UINT64           NumberOfPages,
  IN BOOLEAN          ChangingType,
  IN EFI_MEMORY_TYPE  NewType,
  IN BOOLEAN          ChangingAttributes,
  IN UINT64           NewAttributes
  )
{
  UINT64           NumberOfBytes;
  UINT64           End;
  UINT64           RangeEnd;
  UINT64           Attribute;
  EFI_MEMORY_TYPE  MemType;
  LIST_ENTRY       *Link;
  MEMORY_MAP       *Entry;

  Entry         = NULL;
  NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);
  End           = Start + NumberOfBytes - 1;

  ASSERT (NumberOfPages);
  ASSERT ((Start & EFI_PAGE_MASK) == 0);
  ASSERT (End > Start);
  ASSERT_LOCKED (&gMemoryLock);
  ASSERT ((ChangingType == FALSE) || (ChangingAttributes == FALSE));

  if ((NumberOfPages == 0) || ((Start & EFI_PAGE_MASK) != 0) || (Start >= End)) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Convert the entire range
  //

  while (Start < End) {
    //
    // Find the entry that the covers the range
    //
    for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
      Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);

      if ((Entry->Start <= Start) && (Entry->End > Start)) {
        break;
      }
    }

    if (Link == &gMemoryMap) {
      DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));
      return EFI_NOT_FOUND;
    }

    //
    // If we are converting the type of the range from EfiConventionalMemory to
    // another type, we have to ensure that the entire range is covered by a
    // single entry.
    //
    if (ChangingType && (NewType != EfiConventionalMemory)) {
      if (Entry->End < End) {
        DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: range %lx - %lx covers multiple entries\n", Start, End));
        return EFI_NOT_FOUND;
      }
    }

    //
    // Convert range to the end, or to the end of the descriptor
    // if that's all we've got
    //
    RangeEnd = End;

    ASSERT (Entry != NULL);
    if (Entry->End < End) {
      RangeEnd = Entry->End;
    }

    if (ChangingType) {
      DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to type %d\n", Start, RangeEnd, NewType));
    }

    if (ChangingAttributes) {
      DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to attr %lx\n", Start, RangeEnd, NewAttributes));
    }

    if (ChangingType) {
      //
      // Debug code - verify conversion is allowed
      //
      if (!((NewType == EfiConventionalMemory) ? 1 : 0) ^ ((Entry->Type == EfiConventionalMemory) ? 1 : 0)) {
        DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: Incompatible memory types, "));
        if (Entry->Type == EfiConventionalMemory) {
          DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "the pages to free have been freed\n"));
        } else {
          DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "the pages to allocate have been allocated\n"));
        }

        return EFI_NOT_FOUND;
      }

      //
      // Update counters for the number of pages allocated to each memory type
      //
      if ((UINT32)Entry->Type < EfiMaxMemoryType) {
        if (((Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress) && (Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress)) ||
            ((Start >= mDefaultBaseAddress) && (Start <= mDefaultMaximumAddress)))
        {
          if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {
            mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;
          } else {
            mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;
          }
        }
      }

      if ((UINT32)NewType < EfiMaxMemoryType) {
        if (((Start >= mMemoryTypeStatistics[NewType].BaseAddress) && (Start <= mMemoryTypeStatistics[NewType].MaximumAddress)) ||
            ((Start >= mDefaultBaseAddress) && (Start <= mDefaultMaximumAddress)))
        {
          mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;
          if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages > gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {
            gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;
          }
        }
      }
    }

    //
    // Pull range out of descriptor
    //
    if (Entry->Start == Start) {
      //
      // Clip start
      //
      Entry->Start = RangeEnd + 1;
    } else if (Entry->End == RangeEnd) {
      //
      // Clip end
      //
      Entry->End = Start - 1;
    } else {
      //
      // Pull it out of the center, clip current
      //

      //
      // Add a new one
      //
      mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;
      mMapStack[mMapDepth].FromPages = FALSE;
      mMapStack[mMapDepth].Type      = Entry->Type;
      mMapStack[mMapDepth].Start     = RangeEnd+1;
      mMapStack[mMapDepth].End       = Entry->End;

      //
      // Inherit Attribute from the Memory Descriptor that is being clipped
      //
      mMapStack[mMapDepth].Attribute = Entry->Attribute;

      Entry->End = Start - 1;
      ASSERT (Entry->Start < Entry->End);

      Entry = &mMapStack[mMapDepth];
      InsertTailList (&gMemoryMap, &Entry->Link);

      mMapDepth += 1;
      ASSERT (mMapDepth < MAX_MAP_DEPTH);
    }

    //
    // The new range inherits the same Attribute as the Entry
    // it is being cut out of unless attributes are being changed
    //
    if (ChangingType) {
      Attribute = Entry->Attribute;
      MemType   = NewType;
    } else {
      Attribute = NewAttributes;
      MemType   = Entry->Type;
    }

    //
    // If the descriptor is empty, then remove it from the map
    //
    if (Entry->Start == Entry->End + 1) {
      RemoveMemoryMapEntry (Entry);
      Entry = NULL;
    }

    //
    // Add our new range in. Don't do this for freed pages if freed-memory
    // guard is enabled.
    //
    if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED) ||
        !ChangingType ||
        (MemType != EfiConventionalMemory))
    {
      CoreAddRange (MemType, Start, RangeEnd, Attribute);
    }

    if (ChangingType && (MemType == EfiConventionalMemory)) {
      //
      // Avoid calling DEBUG_CLEAR_MEMORY() for an address of 0 because this
      // macro will ASSERT() if address is 0.  Instead, CoreAddRange() guarantees
      // that the page starting at address 0 is always filled with zeros.
      //
      if (Start == 0) {
        if (RangeEnd > EFI_PAGE_SIZE) {
          DEBUG_CLEAR_MEMORY ((VOID *)(UINTN)EFI_PAGE_SIZE, (UINTN)(RangeEnd - EFI_PAGE_SIZE + 1));
        }
      } else {
        DEBUG_CLEAR_MEMORY ((VOID *)(UINTN)Start, (UINTN)(RangeEnd - Start + 1));
      }
    }

    //
    // Move any map descriptor stack to general pool
    //
    CoreFreeMemoryMapStack ();

    //
    // Bump the starting address, and convert the next range
    //
    Start = RangeEnd + 1;
  }

  //
  // Converted the whole range, done
  //

  return EFI_SUCCESS;
}

/**
  Internal function.  Converts a memory range to the specified type.
  The range must exist in the memory map.

  @param  Start                  The first address of the range Must be page
                                 aligned
  @param  NumberOfPages          The number of pages to convert
  @param  NewType                The new type for the memory range

  @retval EFI_INVALID_PARAMETER  Invalid parameter
  @retval EFI_NOT_FOUND          Could not find a descriptor cover the specified
                                 range  or convertion not allowed.
  @retval EFI_SUCCESS            Successfully converts the memory range to the
                                 specified type.

**/
EFI_STATUS
CoreConvertPages (
  IN UINT64           Start,
  IN UINT64           NumberOfPages,
  IN EFI_MEMORY_TYPE  NewType
  )
{
  return CoreConvertPagesEx (Start, NumberOfPages, TRUE, NewType, FALSE, 0);
}

/**
  Internal function.  Converts a memory range to use new attributes.

  @param  Start                  The first address of the range Must be page
                                 aligned
  @param  NumberOfPages          The number of pages to convert
  @param  NewAttributes          The new attributes value for the range.

**/
VOID
CoreUpdateMemoryAttributes (
  IN EFI_PHYSICAL_ADDRESS  Start,
  IN UINT64                NumberOfPages,
  IN UINT64                NewAttributes
  )
{
  CoreAcquireMemoryLock ();

  //
  // Update the attributes to the new value
  //
  CoreConvertPagesEx (Start, NumberOfPages, FALSE, (EFI_MEMORY_TYPE)0, TRUE, NewAttributes);

  CoreReleaseMemoryLock ();
}

/**
  Internal function. Finds a consecutive free page range below
  the requested address.

  @param  MaxAddress             The address that the range must be below
  @param  MinAddress             The address that the range must be above
  @param  NumberOfPages          Number of pages needed
  @param  NewType                The type of memory the range is going to be
                                 turned into
  @param  Alignment              Bits to align with
  @param  NeedGuard              Flag to indicate Guard page is needed or not

  @return The base address of the range, or 0 if the range was not found

**/
UINT64
CoreFindFreePagesI (
  IN UINT64           MaxAddress,
  IN UINT64           MinAddress,
  IN UINT64           NumberOfPages,
  IN EFI_MEMORY_TYPE  NewType,
  IN UINTN            Alignment,
  IN BOOLEAN          NeedGuard
  )
{
  UINT64      NumberOfBytes;
  UINT64      Target;
  UINT64      DescStart;
  UINT64      DescEnd;
  UINT64      DescNumberOfBytes;
  LIST_ENTRY  *Link;
  MEMORY_MAP  *Entry;

  if ((MaxAddress < EFI_PAGE_MASK) || (NumberOfPages == 0)) {
    return 0;
  }

  if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {
    //
    // If MaxAddress is not aligned to the end of a page
    //

    //
    // Change MaxAddress to be 1 page lower
    //
    MaxAddress -= (EFI_PAGE_MASK + 1);

    //
    // Set MaxAddress to a page boundary
    //
    MaxAddress &= ~(UINT64)EFI_PAGE_MASK;

    //
    // Set MaxAddress to end of the page
    //
    MaxAddress |= EFI_PAGE_MASK;
  }

  NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);
  Target        = 0;

  for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
    Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);

    //
    // If it's not a free entry, don't bother with it
    //
    if (Entry->Type != EfiConventionalMemory) {
      continue;
    }

    DescStart = Entry->Start;
    DescEnd   = Entry->End;

    //
    // If desc is past max allowed address or below min allowed address, skip it
    //
    if ((DescStart >= MaxAddress) || (DescEnd < MinAddress)) {
      continue;
    }

    //
    // If desc ends past max allowed address, clip the end
    //
    if (DescEnd >= MaxAddress) {
      DescEnd = MaxAddress;
    }

    DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;

    // Skip if DescEnd is less than DescStart after alignment clipping
    if (DescEnd < DescStart) {
      continue;
    }

    //
    // Compute the number of bytes we can used from this
    // descriptor, and see it's enough to satisfy the request
    //
    DescNumberOfBytes = DescEnd - DescStart + 1;

    if (DescNumberOfBytes >= NumberOfBytes) {
      //
      // If the start of the allocated range is below the min address allowed, skip it
      //
      if ((DescEnd - NumberOfBytes + 1) < MinAddress) {
        continue;
      }

      //
      // If this is the best match so far remember it
      //
      if (DescEnd > Target) {
        if (NeedGuard) {
          DescEnd = AdjustMemoryS (
                      DescEnd + 1 - DescNumberOfBytes,
                      DescNumberOfBytes,
                      NumberOfBytes
                      );
          if (DescEnd == 0) {
            continue;
          }
        }

        Target = DescEnd;
      }
    }
  }

  //
  // If this is a grow down, adjust target to be the allocation base
  //
  Target -= NumberOfBytes - 1;

  //
  // If we didn't find a match, return 0
  //
  if ((Target & EFI_PAGE_MASK) != 0) {
    return 0;
  }

  return Target;
}

/**
  Internal function.  Finds a consecutive free page range below
  the requested address

  @param  MaxAddress             The address that the range must be below
  @param  NoPages                Number of pages needed
  @param  NewType                The type of memory the range is going to be
                                 turned into
  @param  Alignment              Bits to align with
  @param  NeedGuard              Flag to indicate Guard page is needed or not

  @return The base address of the range, or 0 if the range was not found.

**/
UINT64
FindFreePages (
  IN UINT64           MaxAddress,
  IN UINT64           NoPages,
  IN EFI_MEMORY_TYPE  NewType,
  IN UINTN            Alignment,
  IN BOOLEAN          NeedGuard
  )
{
  UINT64  Start;

  //
  // Attempt to find free pages in the preferred bin based on the requested memory type
  //
  if (((UINT32)NewType < EfiMaxMemoryType) && (MaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress)) {
    Start = CoreFindFreePagesI (
              mMemoryTypeStatistics[NewType].MaximumAddress,
              mMemoryTypeStatistics[NewType].BaseAddress,
              NoPages,
              NewType,
              Alignment,
              NeedGuard
              );
    if (Start != 0) {
      return Start;
    }
  }

  //
  // Attempt to find free pages in the default allocation bin
  //
  if (MaxAddress >= mDefaultMaximumAddress) {
    Start = CoreFindFreePagesI (
              mDefaultMaximumAddress,
              0,
              NoPages,
              NewType,
              Alignment,
              NeedGuard
              );
    if (Start != 0) {
      if (Start < mDefaultBaseAddress) {
        mDefaultBaseAddress = Start;
      }

      return Start;
    }
  }

  //
  // The allocation did not succeed in any of the prefered bins even after
  // promoting resources. Attempt to find free pages anywhere is the requested
  // address range.  If this allocation fails, then there are not enough
  // resources anywhere to satisfy the request.
  //
  Start = CoreFindFreePagesI (
            MaxAddress,
            0,
            NoPages,
            NewType,
            Alignment,
            NeedGuard
            );
  if (Start != 0) {
    return Start;
  }

  //
  // If allocations from the preferred bins fail, then attempt to promote memory resources.
  //
  if (!PromoteMemoryResource ()) {
    return 0;
  }

  //
  // If any memory resources were promoted, then re-attempt the allocation
  //
  return FindFreePages (MaxAddress, NoPages, NewType, Alignment, NeedGuard);
}

/**
  Allocates pages from the memory map.

  @param  Type                   The type of allocation to perform
  @param  MemoryType             The type of memory to turn the allocated pages
                                 into
  @param  NumberOfPages          The number of pages to allocate
  @param  Memory                 A pointer to receive the base allocated memory
                                 address
  @param  NeedGuard              Flag to indicate Guard page is needed or not

  @return Status. On success, Memory is filled in with the base address allocated
  @retval EFI_INVALID_PARAMETER  Parameters violate checking rules defined in
                                 spec.
  @retval EFI_NOT_FOUND          Could not allocate pages match the requirement.
  @retval EFI_OUT_OF_RESOURCES   No enough pages to allocate.
  @retval EFI_SUCCESS            Pages successfully allocated.

**/
EFI_STATUS
EFIAPI
CoreInternalAllocatePages (
  IN EFI_ALLOCATE_TYPE         Type,
  IN EFI_MEMORY_TYPE           MemoryType,
  IN UINTN                     NumberOfPages,
  IN OUT EFI_PHYSICAL_ADDRESS  *Memory,
  IN BOOLEAN                   NeedGuard
  )
{
  EFI_STATUS       Status;
  UINT64           Start;
  UINT64           NumberOfBytes;
  UINT64           End;
  UINT64           MaxAddress;
  UINTN            Alignment;
  EFI_MEMORY_TYPE  CheckType;

  if ((UINT32)Type >= MaxAllocateType) {
    return EFI_INVALID_PARAMETER;
  }

  if (((MemoryType >= EfiMaxMemoryType) && (MemoryType < MEMORY_TYPE_OEM_RESERVED_MIN)) ||
      (MemoryType == EfiConventionalMemory) || (MemoryType == EfiPersistentMemory))
  {
    return EFI_INVALID_PARAMETER;
  }

  if (Memory == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  Alignment = DEFAULT_PAGE_ALLOCATION_GRANULARITY;

  if ((MemoryType == EfiACPIReclaimMemory) ||
      (MemoryType == EfiACPIMemoryNVS) ||
      (MemoryType == EfiRuntimeServicesCode) ||
      (MemoryType == EfiRuntimeServicesData))
  {
    Alignment = RUNTIME_PAGE_ALLOCATION_GRANULARITY;
  }

  if (Type == AllocateAddress) {
    if ((*Memory & (Alignment - 1)) != 0) {
      return EFI_NOT_FOUND;
    }
  }

  NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;
  NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);

  //
  // If this is for below a particular address, then
  //
  Start = *Memory;

  //
  // The max address is the max natively addressable address for the processor
  //
  MaxAddress = MAX_ALLOC_ADDRESS;

  //
  // Check for Type AllocateAddress,
  // if NumberOfPages is 0 or
  // if (NumberOfPages << EFI_PAGE_SHIFT) is above MAX_ALLOC_ADDRESS or
  // if (Start + NumberOfBytes) rolls over 0 or
  // if Start is above MAX_ALLOC_ADDRESS or
  // if End is above MAX_ALLOC_ADDRESS,
  // if Start..End overlaps any tracked MemoryTypeStatistics range
  // return EFI_NOT_FOUND.
  //
  if (Type == AllocateAddress) {
    if ((NumberOfPages == 0) ||
        (NumberOfPages > RShiftU64 (MaxAddress, EFI_PAGE_SHIFT)))
    {
      return EFI_NOT_FOUND;
    }

    NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);
    End           = Start + NumberOfBytes - 1;

    if ((Start >= End) ||
        (Start > MaxAddress) ||
        (End > MaxAddress))
    {
      return EFI_NOT_FOUND;
    }

    //
    // A driver is allowed to call AllocatePages using an AllocateAddress type.  This type of
    // AllocatePage request the exact physical address if it is not used.  The existing code
    // will allow this request even in 'special' pages.  The problem with this is that the
    // reason to have 'special' pages for OS hibernate/resume is defeated as memory is
    // fragmented.
    //

    for (CheckType = (EFI_MEMORY_TYPE)0; CheckType < EfiMaxMemoryType; CheckType++) {
      if ((MemoryType != CheckType) &&
          mMemoryTypeStatistics[CheckType].Special &&
          (mMemoryTypeStatistics[CheckType].NumberOfPages > 0))
      {
        if ((Start >= mMemoryTypeStatistics[CheckType].BaseAddress) &&
            (Start <= mMemoryTypeStatistics[CheckType].MaximumAddress))
        {
          return EFI_NOT_FOUND;
        }

        if ((End >= mMemoryTypeStatistics[CheckType].BaseAddress) &&
            (End <= mMemoryTypeStatistics[CheckType].MaximumAddress))
        {
          return EFI_NOT_FOUND;
        }

        if ((Start < mMemoryTypeStatistics[CheckType].BaseAddress) &&
            (End   > mMemoryTypeStatistics[CheckType].MaximumAddress))
        {
          return EFI_NOT_FOUND;
        }
      }
    }
  }

  if (Type == AllocateMaxAddress) {
    MaxAddress = Start;
  }

  CoreAcquireMemoryLock ();

  //
  // If not a specific address, then find an address to allocate
  //
  if (Type != AllocateAddress) {
    Start = FindFreePages (
              MaxAddress,
              NumberOfPages,
              MemoryType,
              Alignment,
              NeedGuard
              );
    if (Start == 0) {
      Status = EFI_OUT_OF_RESOURCES;
      goto Done;
    }
  }

  //
  // Convert pages from FreeMemory to the requested type
  //
  if (NeedGuard) {
    Status = CoreConvertPagesWithGuard (Start, NumberOfPages, MemoryType);
  } else {
    Status = CoreConvertPages (Start, NumberOfPages, MemoryType);
  }

Done:
  CoreReleaseMemoryLock ();

  if (!EFI_ERROR (Status)) {
    if (NeedGuard) {
      SetGuardForMemory (Start, NumberOfPages);
    }

    *Memory = Start;
  }

  return Status;
}

/**
  Allocates pages from the memory map.

  @param  Type                   The type of allocation to perform
  @param  MemoryType             The type of memory to turn the allocated pages
                                 into
  @param  NumberOfPages          The number of pages to allocate
  @param  Memory                 A pointer to receive the base allocated memory
                                 address

  @return Status. On success, Memory is filled in with the base address allocated
  @retval EFI_INVALID_PARAMETER  Parameters violate checking rules defined in
                                 spec.
  @retval EFI_NOT_FOUND          Could not allocate pages match the requirement.
  @retval EFI_OUT_OF_RESOURCES   No enough pages to allocate.
  @retval EFI_SUCCESS            Pages successfully allocated.

**/
EFI_STATUS
EFIAPI
CoreAllocatePages (
  IN  EFI_ALLOCATE_TYPE     Type,
  IN  EFI_MEMORY_TYPE       MemoryType,
  IN  UINTN                 NumberOfPages,
  OUT EFI_PHYSICAL_ADDRESS  *Memory
  )
{
  EFI_STATUS  Status;
  BOOLEAN     NeedGuard;

  NeedGuard = IsPageTypeToGuard (MemoryType, Type) && !mOnGuarding;
  Status    = CoreInternalAllocatePages (
                Type,
                MemoryType,
                NumberOfPages,
                Memory,
                NeedGuard
                );
  if (!EFI_ERROR (Status)) {
    CoreUpdateProfile (
      (EFI_PHYSICAL_ADDRESS)(UINTN)RETURN_ADDRESS (0),
      MemoryProfileActionAllocatePages,
      MemoryType,
      EFI_PAGES_TO_SIZE (NumberOfPages),
      (VOID *)(UINTN)*Memory,
      NULL
      );
    InstallMemoryAttributesTableOnMemoryAllocation (MemoryType);
    ApplyMemoryProtectionPolicy (
      EfiConventionalMemory,
      MemoryType,
      *Memory,
      EFI_PAGES_TO_SIZE (NumberOfPages)
      );
  }

  return Status;
}

/**
  Frees previous allocated pages.

  @param  Memory                 Base address of memory being freed
  @param  NumberOfPages          The number of pages to free
  @param  MemoryType             Pointer to memory type

  @retval EFI_NOT_FOUND          Could not find the entry that covers the range
  @retval EFI_INVALID_PARAMETER  Address not aligned
  @return EFI_SUCCESS         -Pages successfully freed.

**/
EFI_STATUS
EFIAPI
CoreInternalFreePages (
  IN EFI_PHYSICAL_ADDRESS  Memory,
  IN UINTN                 NumberOfPages,
  OUT EFI_MEMORY_TYPE      *MemoryType OPTIONAL
  )
{
  EFI_STATUS  Status;
  LIST_ENTRY  *Link;
  MEMORY_MAP  *Entry;
  UINTN       Alignment;
  BOOLEAN     IsGuarded;

  //
  // Free the range
  //
  CoreAcquireMemoryLock ();

  //
  // Find the entry that the covers the range
  //
  IsGuarded = FALSE;
  Entry     = NULL;
  for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
    Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
    if ((Entry->Start <= Memory) && (Entry->End > Memory)) {
      break;
    }
  }

  if (Link == &gMemoryMap) {
    Status = EFI_NOT_FOUND;
    goto Done;
  }

  Alignment = DEFAULT_PAGE_ALLOCATION_GRANULARITY;

  ASSERT (Entry != NULL);
  if ((Entry->Type == EfiACPIReclaimMemory) ||
      (Entry->Type == EfiACPIMemoryNVS) ||
      (Entry->Type == EfiRuntimeServicesCode) ||
      (Entry->Type == EfiRuntimeServicesData))
  {
    Alignment = RUNTIME_PAGE_ALLOCATION_GRANULARITY;
  }

  if ((Memory & (Alignment - 1)) != 0) {
    Status = EFI_INVALID_PARAMETER;
    goto Done;
  }

  NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;
  NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);

  if (MemoryType != NULL) {
    *MemoryType = Entry->Type;
  }

  IsGuarded = IsPageTypeToGuard (Entry->Type, AllocateAnyPages) &&
              IsMemoryGuarded (Memory);
  if (IsGuarded) {
    Status = CoreConvertPagesWithGuard (
               Memory,
               NumberOfPages,
               EfiConventionalMemory
               );
  } else {
    Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);
  }

Done:
  CoreReleaseMemoryLock ();
  return Status;
}

/**
  Frees previous allocated pages.

  @param  Memory                 Base address of memory being freed
  @param  NumberOfPages          The number of pages to free

  @retval EFI_NOT_FOUND          Could not find the entry that covers the range
  @retval EFI_INVALID_PARAMETER  Address not aligned
  @return EFI_SUCCESS         -Pages successfully freed.

**/
EFI_STATUS
EFIAPI
CoreFreePages (
  IN EFI_PHYSICAL_ADDRESS  Memory,
  IN UINTN                 NumberOfPages
  )
{
  EFI_STATUS       Status;
  EFI_MEMORY_TYPE  MemoryType;

  Status = CoreInternalFreePages (Memory, NumberOfPages, &MemoryType);
  if (!EFI_ERROR (Status)) {
    GuardFreedPagesChecked (Memory, NumberOfPages);
    CoreUpdateProfile (
      (EFI_PHYSICAL_ADDRESS)(UINTN)RETURN_ADDRESS (0),
      MemoryProfileActionFreePages,
      MemoryType,
      EFI_PAGES_TO_SIZE (NumberOfPages),
      (VOID *)(UINTN)Memory,
      NULL
      );
    InstallMemoryAttributesTableOnMemoryAllocation (MemoryType);
    ApplyMemoryProtectionPolicy (
      MemoryType,
      EfiConventionalMemory,
      Memory,
      EFI_PAGES_TO_SIZE (NumberOfPages)
      );
  }

  return Status;
}

/**
  This function checks to see if the last memory map descriptor in a memory map
  can be merged with any of the other memory map descriptors in a memorymap.
  Memory descriptors may be merged if they are adjacent and have the same type
  and attributes.

  @param  MemoryMap              A pointer to the start of the memory map.
  @param  MemoryMapDescriptor    A pointer to the last descriptor in MemoryMap.
  @param  DescriptorSize         The size, in bytes, of an individual
                                 EFI_MEMORY_DESCRIPTOR.

  @return  A pointer to the next available descriptor in MemoryMap

**/
EFI_MEMORY_DESCRIPTOR *
MergeMemoryMapDescriptor (
  IN EFI_MEMORY_DESCRIPTOR  *MemoryMap,
  IN EFI_MEMORY_DESCRIPTOR  *MemoryMapDescriptor,
  IN UINTN                  DescriptorSize
  )
{
  //
  // Traverse the array of descriptors in MemoryMap
  //
  for ( ; MemoryMap != MemoryMapDescriptor; MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, DescriptorSize)) {
    //
    // Check to see if the Type fields are identical.
    //
    if (MemoryMap->Type != MemoryMapDescriptor->Type) {
      continue;
    }

    //
    // Check to see if the Attribute fields are identical.
    //
    if (MemoryMap->Attribute != MemoryMapDescriptor->Attribute) {
      continue;
    }

    //
    // Check to see if MemoryMapDescriptor is immediately above MemoryMap
    //
    if (MemoryMap->PhysicalStart + EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages) == MemoryMapDescriptor->PhysicalStart) {
      //
      // Merge MemoryMapDescriptor into MemoryMap
      //
      MemoryMap->NumberOfPages += MemoryMapDescriptor->NumberOfPages;

      //
      // Return MemoryMapDescriptor as the next available slot int he MemoryMap array
      //
      return MemoryMapDescriptor;
    }

    //
    // Check to see if MemoryMapDescriptor is immediately below MemoryMap
    //
    if (MemoryMap->PhysicalStart - EFI_PAGES_TO_SIZE ((UINTN)MemoryMapDescriptor->NumberOfPages) == MemoryMapDescriptor->PhysicalStart) {
      //
      // Merge MemoryMapDescriptor into MemoryMap
      //
      MemoryMap->PhysicalStart  = MemoryMapDescriptor->PhysicalStart;
      MemoryMap->VirtualStart   = MemoryMapDescriptor->VirtualStart;
      MemoryMap->NumberOfPages += MemoryMapDescriptor->NumberOfPages;

      //
      // Return MemoryMapDescriptor as the next available slot int he MemoryMap array
      //
      return MemoryMapDescriptor;
    }
  }

  //
  // MemoryMapDescrtiptor could not be merged with any descriptors in MemoryMap.
  //
  // Return the slot immediately after MemoryMapDescriptor as the next available
  // slot in the MemoryMap array
  //
  return NEXT_MEMORY_DESCRIPTOR (MemoryMapDescriptor, DescriptorSize);
}

/**
  This function returns a copy of the current memory map. The map is an array of
  memory descriptors, each of which describes a contiguous block of memory.

  @param  MemoryMapSize          A pointer to the size, in bytes, of the
                                 MemoryMap buffer. On input, this is the size of
                                 the buffer allocated by the caller.  On output,
                                 it is the size of the buffer returned by the
                                 firmware  if the buffer was large enough, or the
                                 size of the buffer needed  to contain the map if
                                 the buffer was too small.
  @param  MemoryMap              A pointer to the buffer in which firmware places
                                 the current memory map.
  @param  MapKey                 A pointer to the location in which firmware
                                 returns the key for the current memory map.
  @param  DescriptorSize         A pointer to the location in which firmware
                                 returns the size, in bytes, of an individual
                                 EFI_MEMORY_DESCRIPTOR.
  @param  DescriptorVersion      A pointer to the location in which firmware
                                 returns the version number associated with the
                                 EFI_MEMORY_DESCRIPTOR.

  @retval EFI_SUCCESS            The memory map was returned in the MemoryMap
                                 buffer.
  @retval EFI_BUFFER_TOO_SMALL   The MemoryMap buffer was too small. The current
                                 buffer size needed to hold the memory map is
                                 returned in MemoryMapSize.
  @retval EFI_INVALID_PARAMETER  One of the parameters has an invalid value.

**/
EFI_STATUS
EFIAPI
CoreGetMemoryMap (
  IN OUT UINTN                  *MemoryMapSize,
  IN OUT EFI_MEMORY_DESCRIPTOR  *MemoryMap,
  OUT UINTN                     *MapKey,
  OUT UINTN                     *DescriptorSize,
  OUT UINT32                    *DescriptorVersion
  )
{
  EFI_STATUS             Status;
  UINTN                  Size;
  UINTN                  BufferSize;
  UINTN                  NumberOfEntries;
  LIST_ENTRY             *Link;
  MEMORY_MAP             *Entry;
  EFI_GCD_MAP_ENTRY      *GcdMapEntry;
  EFI_GCD_MAP_ENTRY      MergeGcdMapEntry;
  EFI_MEMORY_TYPE        Type;
  EFI_MEMORY_DESCRIPTOR  *MemoryMapStart;
  EFI_MEMORY_DESCRIPTOR  *MemoryMapEnd;

  //
  // Make sure the parameters are valid
  //
  if (MemoryMapSize == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  CoreAcquireGcdMemoryLock ();

  //
  // Count the number of Reserved and runtime MMIO entries
  // And, count the number of Persistent entries.
  //
  NumberOfEntries = 0;
  for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {
    GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
    if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypePersistent) ||
        (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||
        ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) &&
         ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME)))
    {
      NumberOfEntries++;
    }
  }

  Size = sizeof (EFI_MEMORY_DESCRIPTOR);

  //
  // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will
  // prevent people from having pointer math bugs in their code.
  // now you have to use *DescriptorSize to make things work.
  //
  Size += sizeof (UINT64) - (Size % sizeof (UINT64));

  if (DescriptorSize != NULL) {
    *DescriptorSize = Size;
  }

  if (DescriptorVersion != NULL) {
    *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;
  }

  CoreAcquireMemoryLock ();

  //
  // Compute the buffer size needed to fit the entire map
  //
  BufferSize = Size * NumberOfEntries;
  for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
    BufferSize += Size;
  }

  if (*MemoryMapSize < BufferSize) {
    Status = EFI_BUFFER_TOO_SMALL;
    goto Done;
  }

  if (MemoryMap == NULL) {
    Status = EFI_INVALID_PARAMETER;
    goto Done;
  }

  //
  // Build the map
  //
  ZeroMem (MemoryMap, BufferSize);
  MemoryMapStart = MemoryMap;
  for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
    Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
    ASSERT (Entry->VirtualStart == 0);

    //
    // Convert internal map into an EFI_MEMORY_DESCRIPTOR
    //
    MemoryMap->Type          = Entry->Type;
    MemoryMap->PhysicalStart = Entry->Start;
    MemoryMap->VirtualStart  = Entry->VirtualStart;
    MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);
    //
    // If the memory type is EfiConventionalMemory, then determine if the range is part of a
    // memory type bin and needs to be converted to the same memory type as the rest of the
    // memory type bin in order to minimize EFI Memory Map changes across reboots.  This
    // improves the chances for a successful S4 resume in the presence of minor page allocation
    // differences across reboots.
    //
    if (MemoryMap->Type == EfiConventionalMemory) {
      for (Type = (EFI_MEMORY_TYPE)0; Type < EfiMaxMemoryType; Type++) {
        if (mMemoryTypeStatistics[Type].Special                        &&
            (mMemoryTypeStatistics[Type].NumberOfPages > 0) &&
            (Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress) &&
            (Entry->End   <= mMemoryTypeStatistics[Type].MaximumAddress))
        {
          MemoryMap->Type = Type;
        }
      }
    }

    MemoryMap->Attribute = Entry->Attribute;
    if (MemoryMap->Type < EfiMaxMemoryType) {
      if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {
        MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;
      }
    }

    //
    // Check to see if the new Memory Map Descriptor can be merged with an
    // existing descriptor if they are adjacent and have the same attributes
    //
    MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);
  }

  ZeroMem (&MergeGcdMapEntry, sizeof (MergeGcdMapEntry));
  GcdMapEntry = NULL;
  for (Link = mGcdMemorySpaceMap.ForwardLink; ; Link = Link->ForwardLink) {
    if (Link != &mGcdMemorySpaceMap) {
      //
      // Merge adjacent same type and attribute GCD memory range
      //
      GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);

      if ((MergeGcdMapEntry.Capabilities == GcdMapEntry->Capabilities) &&
          (MergeGcdMapEntry.Attributes == GcdMapEntry->Attributes) &&
          (MergeGcdMapEntry.GcdMemoryType == GcdMapEntry->GcdMemoryType) &&
          (MergeGcdMapEntry.GcdIoType == GcdMapEntry->GcdIoType))
      {
        MergeGcdMapEntry.EndAddress = GcdMapEntry->EndAddress;
        continue;
      }
    }

    if ((MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeReserved) ||
        ((MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) &&
         ((MergeGcdMapEntry.Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME)))
    {
      //
      // Page Align GCD range is required. When it is converted to EFI_MEMORY_DESCRIPTOR,
      // it will be recorded as page PhysicalStart and NumberOfPages.
      //
      ASSERT ((MergeGcdMapEntry.BaseAddress & EFI_PAGE_MASK) == 0);
      ASSERT (((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1) & EFI_PAGE_MASK) == 0);

      //
      // Create EFI_MEMORY_DESCRIPTOR for every Reserved and runtime MMIO GCD entries
      //
      MemoryMap->PhysicalStart = MergeGcdMapEntry.BaseAddress;
      MemoryMap->VirtualStart  = 0;
      MemoryMap->NumberOfPages = RShiftU64 ((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1), EFI_PAGE_SHIFT);
      MemoryMap->Attribute     = (MergeGcdMapEntry.Attributes & ~EFI_MEMORY_PORT_IO) |
                                 (MergeGcdMapEntry.Capabilities & (EFI_CACHE_ATTRIBUTE_MASK | EFI_MEMORY_ATTRIBUTE_MASK));

      if (MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeReserved) {
        MemoryMap->Type = EfiReservedMemoryType;
      } else if (MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {
        if ((MergeGcdMapEntry.Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {
          MemoryMap->Type = EfiMemoryMappedIOPortSpace;
        } else {
          MemoryMap->Type = EfiMemoryMappedIO;
        }
      }

      //
      // Check to see if the new Memory Map Descriptor can be merged with an
      // existing descriptor if they are adjacent and have the same attributes
      //
      MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);
    }

    if (MergeGcdMapEntry.GcdMemoryType == EfiGcdMemoryTypePersistent) {
      //
      // Page Align GCD range is required. When it is converted to EFI_MEMORY_DESCRIPTOR,
      // it will be recorded as page PhysicalStart and NumberOfPages.
      //
      ASSERT ((MergeGcdMapEntry.BaseAddress & EFI_PAGE_MASK) == 0);
      ASSERT (((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1) & EFI_PAGE_MASK) == 0);

      //
      // Create EFI_MEMORY_DESCRIPTOR for every Persistent GCD entries
      //
      MemoryMap->PhysicalStart = MergeGcdMapEntry.BaseAddress;
      MemoryMap->VirtualStart  = 0;
      MemoryMap->NumberOfPages = RShiftU64 ((MergeGcdMapEntry.EndAddress - MergeGcdMapEntry.BaseAddress + 1), EFI_PAGE_SHIFT);
      MemoryMap->Attribute     = MergeGcdMapEntry.Attributes | EFI_MEMORY_NV |
                                 (MergeGcdMapEntry.Capabilities & (EFI_CACHE_ATTRIBUTE_MASK | EFI_MEMORY_ATTRIBUTE_MASK));
      MemoryMap->Type = EfiPersistentMemory;

      //
      // Check to see if the new Memory Map Descriptor can be merged with an
      // existing descriptor if they are adjacent and have the same attributes
      //
      MemoryMap = MergeMemoryMapDescriptor (MemoryMapStart, MemoryMap, Size);
    }

    if (Link == &mGcdMemorySpaceMap) {
      //
      // break loop when arrive at head.
      //
      break;
    }

    if (GcdMapEntry != NULL) {
      //
      // Copy new GCD map entry for the following GCD range merge
      //
      CopyMem (&MergeGcdMapEntry, GcdMapEntry, sizeof (MergeGcdMapEntry));
    }
  }

  //
  // Compute the size of the buffer actually used after all memory map descriptor merge operations
  //
  BufferSize = ((UINT8 *)MemoryMap - (UINT8 *)MemoryMapStart);

  //
  // Note: Some OSs will treat EFI_MEMORY_DESCRIPTOR.Attribute as really
  //       set attributes and change memory paging attribute accordingly.
  //       But current EFI_MEMORY_DESCRIPTOR.Attribute is assigned by
  //       value from Capabilities in GCD memory map. This might cause
  //       boot problems. Clearing all page-access permission related
  //       capabilities can workaround it. Following code is supposed to
  //       be removed once the usage of EFI_MEMORY_DESCRIPTOR.Attribute
  //       is clarified in UEFI spec and adopted by both EDK-II Core and
  //       all supported OSs.
  //
  MemoryMapEnd = MemoryMap;
  MemoryMap    = MemoryMapStart;
  while (MemoryMap < MemoryMapEnd) {
    MemoryMap->Attribute &= ~(UINT64)EFI_MEMORY_ACCESS_MASK;
    MemoryMap             = NEXT_MEMORY_DESCRIPTOR (MemoryMap, Size);
  }

  MergeMemoryMap (MemoryMapStart, &BufferSize, Size);
  MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMapStart + BufferSize);

  Status = EFI_SUCCESS;

Done:
  //
  // Update the map key finally
  //
  if (MapKey != NULL) {
    *MapKey = mMemoryMapKey;
  }

  CoreReleaseMemoryLock ();

  CoreReleaseGcdMemoryLock ();

  *MemoryMapSize = BufferSize;

  DEBUG_CODE (
    DumpGuardedMemoryBitmap ();
    );

  return Status;
}

/**
  Internal function.  Used by the pool functions to allocate pages
  to back pool allocation requests.

  @param  PoolType               The type of memory for the new pool pages
  @param  NumberOfPages          No of pages to allocate
  @param  Alignment              Bits to align.
  @param  NeedGuard              Flag to indicate Guard page is needed or not

  @return The allocated memory, or NULL

**/
VOID *
CoreAllocatePoolPages (
  IN EFI_MEMORY_TYPE  PoolType,
  IN UINTN            NumberOfPages,
  IN UINTN            Alignment,
  IN BOOLEAN          NeedGuard
  )
{
  UINT64  Start;

  //
  // Find the pages to convert
  //
  Start = FindFreePages (
            MAX_ALLOC_ADDRESS,
            NumberOfPages,
            PoolType,
            Alignment,
            NeedGuard
            );

  //
  // Convert it to boot services data
  //
  if (Start == 0) {
    DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", (UINT32)NumberOfPages));
  } else {
    if (NeedGuard) {
      CoreConvertPagesWithGuard (Start, NumberOfPages, PoolType);
    } else {
      CoreConvertPages (Start, NumberOfPages, PoolType);
    }
  }

  return (VOID *)(UINTN)Start;
}

/**
  Internal function.  Frees pool pages allocated via AllocatePoolPages ()

  @param  Memory                 The base address to free
  @param  NumberOfPages          The number of pages to free

**/
VOID
CoreFreePoolPages (
  IN EFI_PHYSICAL_ADDRESS  Memory,
  IN UINTN                 NumberOfPages
  )
{
  CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);
}

/**
  Make sure the memory map is following all the construction rules,
  it is the last time to check memory map error before exit boot services.

  @param  MapKey                 Memory map key

  @retval EFI_INVALID_PARAMETER  Memory map not consistent with construction
                                 rules.
  @retval EFI_SUCCESS            Valid memory map.

**/
EFI_STATUS
CoreTerminateMemoryMap (
  IN UINTN  MapKey
  )
{
  EFI_STATUS  Status;
  LIST_ENTRY  *Link;
  MEMORY_MAP  *Entry;

  Status = EFI_SUCCESS;

  CoreAcquireMemoryLock ();

  if (MapKey == mMemoryMapKey) {
    //
    // Make sure the memory map is following all the construction rules
    // This is the last chance we will be able to display any messages on
    // the  console devices.
    //

    for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
      Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
      if (Entry->Type < EfiMaxMemoryType) {
        if (mMemoryTypeStatistics[Entry->Type].Runtime) {
          ASSERT (Entry->Type != EfiACPIReclaimMemory);
          ASSERT (Entry->Type != EfiACPIMemoryNVS);
          if ((Entry->Start & (RUNTIME_PAGE_ALLOCATION_GRANULARITY - 1)) != 0) {
            DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));
            Status =  EFI_INVALID_PARAMETER;
            goto Done;
          }

          if (((Entry->End + 1) & (RUNTIME_PAGE_ALLOCATION_GRANULARITY - 1)) != 0) {
            DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));
            Status =  EFI_INVALID_PARAMETER;
            goto Done;
          }
        }
      }
    }

    //
    // The map key they gave us matches what we expect. Fall through and
    // return success. In an ideal world we would clear out all of
    // EfiBootServicesCode and EfiBootServicesData. However this function
    // is not the last one called by ExitBootServices(), so we have to
    // preserve the memory contents.
    //
  } else {
    Status = EFI_INVALID_PARAMETER;
  }

Done:
  CoreReleaseMemoryLock ();

  return Status;
}