summaryrefslogtreecommitdiffstats
path: root/MdeModulePkg/Core/Dxe/Mem/Pool.c
blob: 72293e6dfe40fd3dba49195094f33e91d98177a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
/** @file
  UEFI Memory pool management functions.

Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "DxeMain.h"
#include "Imem.h"
#include "HeapGuard.h"

STATIC EFI_LOCK  mPoolMemoryLock = EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTIFY);

#define POOL_FREE_SIGNATURE  SIGNATURE_32('p','f','r','0')
typedef struct {
  UINT32        Signature;
  UINT32        Index;
  LIST_ENTRY    Link;
} POOL_FREE;

#define POOL_HEAD_SIGNATURE      SIGNATURE_32('p','h','d','0')
#define POOLPAGE_HEAD_SIGNATURE  SIGNATURE_32('p','h','d','1')
typedef struct {
  UINT32             Signature;
  UINT32             Reserved;
  EFI_MEMORY_TYPE    Type;
  UINTN              Size;
  CHAR8              Data[1];
} POOL_HEAD;

#define SIZE_OF_POOL_HEAD  OFFSET_OF(POOL_HEAD,Data)

#define POOL_TAIL_SIGNATURE  SIGNATURE_32('p','t','a','l')
typedef struct {
  UINT32    Signature;
  UINT32    Reserved;
  UINTN     Size;
} POOL_TAIL;

#define POOL_OVERHEAD  (SIZE_OF_POOL_HEAD + sizeof(POOL_TAIL))

#define HEAD_TO_TAIL(a)   \
  ((POOL_TAIL *) (((CHAR8 *) (a)) + (a)->Size - sizeof(POOL_TAIL)));

//
// Each element is the sum of the 2 previous ones: this allows us to migrate
// blocks between bins by splitting them up, while not wasting too much memory
// as we would in a strict power-of-2 sequence
//
STATIC CONST UINT16  mPoolSizeTable[] = {
  128, 256, 384, 640, 1024, 1664, 2688, 4352, 7040, 11392, 18432, 29824
};

#define SIZE_TO_LIST(a)  (GetPoolIndexFromSize (a))
#define LIST_TO_SIZE(a)  (mPoolSizeTable [a])

#define MAX_POOL_LIST  (ARRAY_SIZE (mPoolSizeTable))

#define MAX_POOL_SIZE  (MAX_ADDRESS - POOL_OVERHEAD)

//
// Globals
//

#define POOL_SIGNATURE  SIGNATURE_32('p','l','s','t')
typedef struct {
  INTN               Signature;
  UINTN              Used;
  EFI_MEMORY_TYPE    MemoryType;
  LIST_ENTRY         FreeList[MAX_POOL_LIST];
  LIST_ENTRY         Link;
} POOL;

//
// Pool header for each memory type.
//
POOL  mPoolHead[EfiMaxMemoryType];

//
// List of pool header to search for the appropriate memory type.
//
LIST_ENTRY  mPoolHeadList = INITIALIZE_LIST_HEAD_VARIABLE (mPoolHeadList);

/**
  Get pool size table index from the specified size.

  @param  Size          The specified size to get index from pool table.

  @return               The index of pool size table.

**/
STATIC
UINTN
GetPoolIndexFromSize (
  UINTN  Size
  )
{
  UINTN  Index;

  for (Index = 0; Index < MAX_POOL_LIST; Index++) {
    if (mPoolSizeTable[Index] >= Size) {
      return Index;
    }
  }

  return MAX_POOL_LIST;
}

/**
  Called to initialize the pool.

**/
VOID
CoreInitializePool (
  VOID
  )
{
  UINTN  Type;
  UINTN  Index;

  for (Type = 0; Type < EfiMaxMemoryType; Type++) {
    mPoolHead[Type].Signature  = 0;
    mPoolHead[Type].Used       = 0;
    mPoolHead[Type].MemoryType = (EFI_MEMORY_TYPE)Type;
    for (Index = 0; Index < MAX_POOL_LIST; Index++) {
      InitializeListHead (&mPoolHead[Type].FreeList[Index]);
    }
  }
}

/**
  Look up pool head for specified memory type.

  @param  MemoryType             Memory type of which pool head is looked for

  @return Pointer of Corresponding pool head.

**/
POOL *
LookupPoolHead (
  IN EFI_MEMORY_TYPE  MemoryType
  )
{
  LIST_ENTRY  *Link;
  POOL        *Pool;
  UINTN       Index;

  if ((UINT32)MemoryType < EfiMaxMemoryType) {
    return &mPoolHead[MemoryType];
  }

  //
  // MemoryType values in the range 0x80000000..0xFFFFFFFF are reserved for use by UEFI
  // OS loaders that are provided by operating system vendors.
  // MemoryType values in the range 0x70000000..0x7FFFFFFF are reserved for OEM use.
  //
  if ((UINT32)MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) {
    for (Link = mPoolHeadList.ForwardLink; Link != &mPoolHeadList; Link = Link->ForwardLink) {
      Pool = CR (Link, POOL, Link, POOL_SIGNATURE);
      if (Pool->MemoryType == MemoryType) {
        return Pool;
      }
    }

    Pool = CoreAllocatePoolI (EfiBootServicesData, sizeof (POOL), FALSE);
    if (Pool == NULL) {
      return NULL;
    }

    Pool->Signature  = POOL_SIGNATURE;
    Pool->Used       = 0;
    Pool->MemoryType = MemoryType;
    for (Index = 0; Index < MAX_POOL_LIST; Index++) {
      InitializeListHead (&Pool->FreeList[Index]);
    }

    InsertHeadList (&mPoolHeadList, &Pool->Link);

    return Pool;
  }

  return NULL;
}

/**
  Allocate pool of a particular type.

  @param  PoolType               Type of pool to allocate
  @param  Size                   The amount of pool to allocate
  @param  Buffer                 The address to return a pointer to the allocated
                                 pool

  @retval EFI_INVALID_PARAMETER  Buffer is NULL.
                                 PoolType is in the range EfiMaxMemoryType..0x6FFFFFFF.
                                 PoolType is EfiPersistentMemory.
  @retval EFI_OUT_OF_RESOURCES   Size exceeds max pool size or allocation failed.
  @retval EFI_SUCCESS            Pool successfully allocated.

**/
EFI_STATUS
EFIAPI
CoreInternalAllocatePool (
  IN EFI_MEMORY_TYPE  PoolType,
  IN UINTN            Size,
  OUT VOID            **Buffer
  )
{
  EFI_STATUS  Status;
  BOOLEAN     NeedGuard;

  //
  // If it's not a valid type, fail it
  //
  if (((PoolType >= EfiMaxMemoryType) && (PoolType < MEMORY_TYPE_OEM_RESERVED_MIN)) ||
      (PoolType == EfiConventionalMemory) || (PoolType == EfiPersistentMemory) || (PoolType == EfiUnacceptedMemoryType))
  {
    return EFI_INVALID_PARAMETER;
  }

  if (Buffer == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  *Buffer = NULL;

  //
  // If size is too large, fail it
  // Base on the EFI spec, return status of EFI_OUT_OF_RESOURCES
  //
  if (Size > MAX_POOL_SIZE) {
    return EFI_OUT_OF_RESOURCES;
  }

  NeedGuard = IsPoolTypeToGuard (PoolType) && !mOnGuarding;

  //
  // Acquire the memory lock and make the allocation
  //
  Status = CoreAcquireLockOrFail (&mPoolMemoryLock);
  if (EFI_ERROR (Status)) {
    return EFI_OUT_OF_RESOURCES;
  }

  *Buffer = CoreAllocatePoolI (PoolType, Size, NeedGuard);
  CoreReleaseLock (&mPoolMemoryLock);
  return (*Buffer != NULL) ? EFI_SUCCESS : EFI_OUT_OF_RESOURCES;
}

/**
  Allocate pool of a particular type.

  @param  PoolType               Type of pool to allocate
  @param  Size                   The amount of pool to allocate
  @param  Buffer                 The address to return a pointer to the allocated
                                 pool

  @retval EFI_INVALID_PARAMETER  Buffer is NULL.
                                 PoolType is in the range EfiMaxMemoryType..0x6FFFFFFF.
                                 PoolType is EfiPersistentMemory.
  @retval EFI_OUT_OF_RESOURCES   Size exceeds max pool size or allocation failed.
  @retval EFI_SUCCESS            Pool successfully allocated.

**/
EFI_STATUS
EFIAPI
CoreAllocatePool (
  IN EFI_MEMORY_TYPE  PoolType,
  IN UINTN            Size,
  OUT VOID            **Buffer
  )
{
  EFI_STATUS  Status;

  Status = CoreInternalAllocatePool (PoolType, Size, Buffer);
  if (!EFI_ERROR (Status)) {
    CoreUpdateProfile (
      (EFI_PHYSICAL_ADDRESS)(UINTN)RETURN_ADDRESS (0),
      MemoryProfileActionAllocatePool,
      PoolType,
      Size,
      *Buffer,
      NULL
      );
    InstallMemoryAttributesTableOnMemoryAllocation (PoolType);
  }

  return Status;
}

/**
  Internal function.  Used by the pool functions to allocate pages
  to back pool allocation requests.

  @param  PoolType               The type of memory for the new pool pages
  @param  NoPages                No of pages to allocate
  @param  Granularity            Bits to align.
  @param  NeedGuard              Flag to indicate Guard page is needed or not

  @return The allocated memory, or NULL

**/
STATIC
VOID *
CoreAllocatePoolPagesI (
  IN EFI_MEMORY_TYPE  PoolType,
  IN UINTN            NoPages,
  IN UINTN            Granularity,
  IN BOOLEAN          NeedGuard
  )
{
  VOID        *Buffer;
  EFI_STATUS  Status;

  Status = CoreAcquireLockOrFail (&gMemoryLock);
  if (EFI_ERROR (Status)) {
    return NULL;
  }

  Buffer = CoreAllocatePoolPages (PoolType, NoPages, Granularity, NeedGuard);
  CoreReleaseMemoryLock ();

  if (Buffer != NULL) {
    if (NeedGuard) {
      SetGuardForMemory ((EFI_PHYSICAL_ADDRESS)(UINTN)Buffer, NoPages);
    }

    ApplyMemoryProtectionPolicy (
      EfiConventionalMemory,
      PoolType,
      (EFI_PHYSICAL_ADDRESS)(UINTN)Buffer,
      EFI_PAGES_TO_SIZE (NoPages)
      );
  }

  return Buffer;
}

/**
  Internal function to allocate pool of a particular type.
  Caller must have the memory lock held

  @param  PoolType               Type of pool to allocate
  @param  Size                   The amount of pool to allocate
  @param  NeedGuard              Flag to indicate Guard page is needed or not

  @return The allocate pool, or NULL

**/
VOID *
CoreAllocatePoolI (
  IN EFI_MEMORY_TYPE  PoolType,
  IN UINTN            Size,
  IN BOOLEAN          NeedGuard
  )
{
  POOL       *Pool;
  POOL_FREE  *Free;
  POOL_HEAD  *Head;
  POOL_TAIL  *Tail;
  CHAR8      *NewPage;
  VOID       *Buffer;
  UINTN      Index;
  UINTN      FSize;
  UINTN      Offset, MaxOffset;
  UINTN      NoPages;
  UINTN      Granularity;
  BOOLEAN    HasPoolTail;
  BOOLEAN    PageAsPool;

  ASSERT_LOCKED (&mPoolMemoryLock);

  if ((PoolType == EfiReservedMemoryType) ||
      (PoolType == EfiACPIMemoryNVS) ||
      (PoolType == EfiRuntimeServicesCode) ||
      (PoolType == EfiRuntimeServicesData))
  {
    Granularity = RUNTIME_PAGE_ALLOCATION_GRANULARITY;
  } else {
    Granularity = DEFAULT_PAGE_ALLOCATION_GRANULARITY;
  }

  //
  // The heap guard system does not support non-EFI_PAGE_SIZE alignments.
  // Architectures that require larger RUNTIME_PAGE_ALLOCATION_GRANULARITY
  // will have the runtime memory regions unguarded. OSes do not
  // map guard pages anyway, so this is a minimal loss. Not guarding prevents
  // alignment mismatches
  //
  if (Granularity != EFI_PAGE_SIZE) {
    NeedGuard = FALSE;
  }

  //
  // Adjust the size by the pool header & tail overhead
  //

  HasPoolTail = !(NeedGuard &&
                  ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0));
  PageAsPool = (IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED) && !mOnGuarding);

  //
  // Adjusting the Size to be of proper alignment so that
  // we don't get an unaligned access fault later when
  // pool_Tail is being initialized
  //
  Size = ALIGN_VARIABLE (Size);

  Size += POOL_OVERHEAD;
  Index = SIZE_TO_LIST (Size);
  Pool  = LookupPoolHead (PoolType);
  if (Pool == NULL) {
    return NULL;
  }

  Head = NULL;

  //
  // If allocation is over max size, just allocate pages for the request
  // (slow)
  //
  if ((Index >= SIZE_TO_LIST (Granularity)) || NeedGuard || PageAsPool) {
    if (!HasPoolTail) {
      Size -= sizeof (POOL_TAIL);
    }

    NoPages  = EFI_SIZE_TO_PAGES (Size) + EFI_SIZE_TO_PAGES (Granularity) - 1;
    NoPages &= ~(UINTN)(EFI_SIZE_TO_PAGES (Granularity) - 1);
    Head     = CoreAllocatePoolPagesI (PoolType, NoPages, Granularity, NeedGuard);
    if (NeedGuard) {
      Head = AdjustPoolHeadA ((EFI_PHYSICAL_ADDRESS)(UINTN)Head, NoPages, Size);
    }

    goto Done;
  }

  //
  // If there's no free pool in the proper list size, go get some more pages
  //
  if (IsListEmpty (&Pool->FreeList[Index])) {
    Offset    = LIST_TO_SIZE (Index);
    MaxOffset = Granularity;

    //
    // Check the bins holding larger blocks, and carve one up if needed
    //
    while (++Index < SIZE_TO_LIST (Granularity)) {
      if (!IsListEmpty (&Pool->FreeList[Index])) {
        Free = CR (Pool->FreeList[Index].ForwardLink, POOL_FREE, Link, POOL_FREE_SIGNATURE);
        RemoveEntryList (&Free->Link);
        NewPage   = (VOID *)Free;
        MaxOffset = LIST_TO_SIZE (Index);
        goto Carve;
      }
    }

    //
    // Get another page
    //
    NewPage = CoreAllocatePoolPagesI (
                PoolType,
                EFI_SIZE_TO_PAGES (Granularity),
                Granularity,
                NeedGuard
                );
    if (NewPage == NULL) {
      goto Done;
    }

    //
    // Serve the allocation request from the head of the allocated block
    //
Carve:
    Head = (POOL_HEAD *)NewPage;

    //
    // Carve up remaining space into free pool blocks
    //
    Index--;
    while (Offset < MaxOffset) {
      ASSERT (Index < MAX_POOL_LIST);
      FSize = LIST_TO_SIZE (Index);

      while (Offset + FSize <= MaxOffset) {
        Free            = (POOL_FREE *)&NewPage[Offset];
        Free->Signature = POOL_FREE_SIGNATURE;
        Free->Index     = (UINT32)Index;
        InsertHeadList (&Pool->FreeList[Index], &Free->Link);
        Offset += FSize;
      }

      Index -= 1;
    }

    ASSERT (Offset == MaxOffset);
    goto Done;
  }

  //
  // Remove entry from free pool list
  //
  Free = CR (Pool->FreeList[Index].ForwardLink, POOL_FREE, Link, POOL_FREE_SIGNATURE);
  RemoveEntryList (&Free->Link);

  Head = (POOL_HEAD *)Free;

Done:
  Buffer = NULL;

  if (Head != NULL) {
    //
    // Account the allocation
    //
    Pool->Used += Size;

    //
    // If we have a pool buffer, fill in the header & tail info
    //
    Head->Signature = (PageAsPool) ? POOLPAGE_HEAD_SIGNATURE : POOL_HEAD_SIGNATURE;
    Head->Size      = Size;
    Head->Type      = (EFI_MEMORY_TYPE)PoolType;
    Buffer          = Head->Data;

    if (HasPoolTail) {
      Tail            = HEAD_TO_TAIL (Head);
      Tail->Signature = POOL_TAIL_SIGNATURE;
      Tail->Size      = Size;

      Size -= POOL_OVERHEAD;
    } else {
      Size -= SIZE_OF_POOL_HEAD;
    }

    DEBUG_CLEAR_MEMORY (Buffer, Size);

    DEBUG ((
      DEBUG_POOL,
      "AllocatePoolI: Type %x, Addr %p (len %lx) %,ld\n",
      PoolType,
      Buffer,
      (UINT64)Size,
      (UINT64)Pool->Used
      ));
  } else {
    DEBUG ((DEBUG_ERROR | DEBUG_POOL, "AllocatePool: failed to allocate %ld bytes\n", (UINT64)Size));
  }

  return Buffer;
}

/**
  Frees pool.

  @param  Buffer                 The allocated pool entry to free
  @param  PoolType               Pointer to pool type

  @retval EFI_INVALID_PARAMETER  Buffer is not a valid value.
  @retval EFI_SUCCESS            Pool successfully freed.

**/
EFI_STATUS
EFIAPI
CoreInternalFreePool (
  IN VOID              *Buffer,
  OUT EFI_MEMORY_TYPE  *PoolType OPTIONAL
  )
{
  EFI_STATUS  Status;

  if (Buffer == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  CoreAcquireLock (&mPoolMemoryLock);
  Status = CoreFreePoolI (Buffer, PoolType);
  CoreReleaseLock (&mPoolMemoryLock);
  return Status;
}

/**
  Frees pool.

  @param  Buffer                 The allocated pool entry to free

  @retval EFI_INVALID_PARAMETER  Buffer is not a valid value.
  @retval EFI_SUCCESS            Pool successfully freed.

**/
EFI_STATUS
EFIAPI
CoreFreePool (
  IN VOID  *Buffer
  )
{
  EFI_STATUS       Status;
  EFI_MEMORY_TYPE  PoolType;

  Status = CoreInternalFreePool (Buffer, &PoolType);
  if (!EFI_ERROR (Status)) {
    CoreUpdateProfile (
      (EFI_PHYSICAL_ADDRESS)(UINTN)RETURN_ADDRESS (0),
      MemoryProfileActionFreePool,
      PoolType,
      0,
      Buffer,
      NULL
      );
    InstallMemoryAttributesTableOnMemoryAllocation (PoolType);
  }

  return Status;
}

/**
  Internal function.  Frees pool pages allocated via CoreAllocatePoolPagesI().

  @param  PoolType               The type of memory for the pool pages
  @param  Memory                 The base address to free
  @param  NoPages                The number of pages to free

**/
STATIC
VOID
CoreFreePoolPagesI (
  IN EFI_MEMORY_TYPE       PoolType,
  IN EFI_PHYSICAL_ADDRESS  Memory,
  IN UINTN                 NoPages
  )
{
  CoreAcquireMemoryLock ();
  CoreFreePoolPages (Memory, NoPages);
  CoreReleaseMemoryLock ();

  GuardFreedPagesChecked (Memory, NoPages);
  ApplyMemoryProtectionPolicy (
    PoolType,
    EfiConventionalMemory,
    (EFI_PHYSICAL_ADDRESS)(UINTN)Memory,
    EFI_PAGES_TO_SIZE (NoPages)
    );
}

/**
  Internal function.  Frees guarded pool pages.

  @param  PoolType               The type of memory for the pool pages
  @param  Memory                 The base address to free
  @param  NoPages                The number of pages to free

**/
STATIC
VOID
CoreFreePoolPagesWithGuard (
  IN EFI_MEMORY_TYPE       PoolType,
  IN EFI_PHYSICAL_ADDRESS  Memory,
  IN UINTN                 NoPages
  )
{
  EFI_PHYSICAL_ADDRESS  MemoryGuarded;
  UINTN                 NoPagesGuarded;

  MemoryGuarded  = Memory;
  NoPagesGuarded = NoPages;

  AdjustMemoryF (&Memory, &NoPages);
  //
  // It's safe to unset Guard page inside memory lock because there should
  // be no memory allocation occurred in updating memory page attribute at
  // this point. And unsetting Guard page before free will prevent Guard
  // page just freed back to pool from being allocated right away before
  // marking it usable (from non-present to present).
  //
  UnsetGuardForMemory (MemoryGuarded, NoPagesGuarded);
  if (NoPages > 0) {
    CoreFreePoolPagesI (PoolType, Memory, NoPages);
  }
}

/**
  Internal function to free a pool entry.
  Caller must have the memory lock held

  @param  Buffer                 The allocated pool entry to free
  @param  PoolType               Pointer to pool type

  @retval EFI_INVALID_PARAMETER  Buffer not valid
  @retval EFI_SUCCESS            Buffer successfully freed.

**/
EFI_STATUS
CoreFreePoolI (
  IN VOID              *Buffer,
  OUT EFI_MEMORY_TYPE  *PoolType OPTIONAL
  )
{
  POOL       *Pool;
  POOL_HEAD  *Head;
  POOL_TAIL  *Tail;
  POOL_FREE  *Free;
  UINTN      Index;
  UINTN      NoPages;
  UINTN      Size;
  CHAR8      *NewPage;
  UINTN      Offset;
  BOOLEAN    AllFree;
  UINTN      Granularity;
  BOOLEAN    IsGuarded;
  BOOLEAN    HasPoolTail;
  BOOLEAN    PageAsPool;

  ASSERT (Buffer != NULL);
  //
  // Get the head & tail of the pool entry
  //
  Head = BASE_CR (Buffer, POOL_HEAD, Data);
  ASSERT (Head != NULL);

  if ((Head->Signature != POOL_HEAD_SIGNATURE) &&
      (Head->Signature != POOLPAGE_HEAD_SIGNATURE))
  {
    ASSERT (
      Head->Signature == POOL_HEAD_SIGNATURE ||
      Head->Signature == POOLPAGE_HEAD_SIGNATURE
      );
    return EFI_INVALID_PARAMETER;
  }

  IsGuarded = IsPoolTypeToGuard (Head->Type) &&
              IsMemoryGuarded ((EFI_PHYSICAL_ADDRESS)(UINTN)Head);
  HasPoolTail = !(IsGuarded &&
                  ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0));
  PageAsPool = (Head->Signature == POOLPAGE_HEAD_SIGNATURE);

  if (HasPoolTail) {
    Tail = HEAD_TO_TAIL (Head);
    ASSERT (Tail != NULL);

    //
    // Debug
    //
    ASSERT (Tail->Signature == POOL_TAIL_SIGNATURE);
    ASSERT (Head->Size == Tail->Size);

    if (Tail->Signature != POOL_TAIL_SIGNATURE) {
      return EFI_INVALID_PARAMETER;
    }

    if (Head->Size != Tail->Size) {
      return EFI_INVALID_PARAMETER;
    }
  }

  ASSERT_LOCKED (&mPoolMemoryLock);

  //
  // Determine the pool type and account for it
  //
  Size = Head->Size;
  Pool = LookupPoolHead (Head->Type);
  if (Pool == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  Pool->Used -= Size;
  DEBUG ((DEBUG_POOL, "FreePool: %p (len %lx) %,ld\n", Head->Data, (UINT64)(Head->Size - POOL_OVERHEAD), (UINT64)Pool->Used));

  if ((Head->Type == EfiReservedMemoryType) ||
      (Head->Type == EfiACPIMemoryNVS) ||
      (Head->Type == EfiRuntimeServicesCode) ||
      (Head->Type == EfiRuntimeServicesData))
  {
    Granularity = RUNTIME_PAGE_ALLOCATION_GRANULARITY;
  } else {
    Granularity = DEFAULT_PAGE_ALLOCATION_GRANULARITY;
  }

  if (PoolType != NULL) {
    *PoolType = Head->Type;
  }

  //
  // Determine the pool list
  //
  Index = SIZE_TO_LIST (Size);
  DEBUG_CLEAR_MEMORY (Head, Size);

  //
  // If it's not on the list, it must be pool pages
  //
  if ((Index >= SIZE_TO_LIST (Granularity)) || IsGuarded || PageAsPool) {
    //
    // Return the memory pages back to free memory
    //
    NoPages  = EFI_SIZE_TO_PAGES (Size) + EFI_SIZE_TO_PAGES (Granularity) - 1;
    NoPages &= ~(UINTN)(EFI_SIZE_TO_PAGES (Granularity) - 1);
    if (IsGuarded) {
      Head = AdjustPoolHeadF ((EFI_PHYSICAL_ADDRESS)(UINTN)Head, NoPages, Size);
      CoreFreePoolPagesWithGuard (
        Pool->MemoryType,
        (EFI_PHYSICAL_ADDRESS)(UINTN)Head,
        NoPages
        );
    } else {
      CoreFreePoolPagesI (
        Pool->MemoryType,
        (EFI_PHYSICAL_ADDRESS)(UINTN)Head,
        NoPages
        );
    }
  } else {
    //
    // Put the pool entry onto the free pool list
    //
    Free = (POOL_FREE *)Head;
    ASSERT (Free != NULL);
    Free->Signature = POOL_FREE_SIGNATURE;
    Free->Index     = (UINT32)Index;
    InsertHeadList (&Pool->FreeList[Index], &Free->Link);

    //
    // See if all the pool entries in the same page as Free are freed pool
    // entries
    //
    NewPage = (CHAR8 *)((UINTN)Free & ~(Granularity - 1));
    Free    = (POOL_FREE *)&NewPage[0];
    ASSERT (Free != NULL);

    if (Free->Signature == POOL_FREE_SIGNATURE) {
      AllFree = TRUE;
      Offset  = 0;

      while ((Offset < Granularity) && (AllFree)) {
        Free = (POOL_FREE *)&NewPage[Offset];
        ASSERT (Free != NULL);
        if (Free->Signature != POOL_FREE_SIGNATURE) {
          AllFree = FALSE;
        }

        Offset += LIST_TO_SIZE (Free->Index);
      }

      if (AllFree) {
        //
        // All of the pool entries in the same page as Free are free pool
        // entries
        // Remove all of these pool entries from the free loop lists.
        //
        Free = (POOL_FREE *)&NewPage[0];
        ASSERT (Free != NULL);
        Offset = 0;

        while (Offset < Granularity) {
          Free = (POOL_FREE *)&NewPage[Offset];
          ASSERT (Free != NULL);
          RemoveEntryList (&Free->Link);
          Offset += LIST_TO_SIZE (Free->Index);
        }

        //
        // Free the page
        //
        CoreFreePoolPagesI (
          Pool->MemoryType,
          (EFI_PHYSICAL_ADDRESS)(UINTN)NewPage,
          EFI_SIZE_TO_PAGES (Granularity)
          );
      }
    }
  }

  //
  // If this is an OS/OEM specific memory type, then check to see if the last
  // portion of that memory type has been freed.  If it has, then free the
  // list entry for that memory type
  //
  if (((UINT32)Pool->MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) && (Pool->Used == 0)) {
    RemoveEntryList (&Pool->Link);
    CoreFreePoolI (Pool, NULL);
  }

  return EFI_SUCCESS;
}