summaryrefslogtreecommitdiffstats
path: root/MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c
blob: 1d240e95966e8cedc96fca3b51ba175eb3834ab2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
/** @file
  x64 Virtual Memory Management Services in the form of an IA-32 driver.
  Used to establish a 1:1 Virtual to Physical Mapping that is required to
  enter Long Mode (x64 64-bit mode).

  While we make a 1:1 mapping (identity mapping) for all physical pages
  we still need to use the MTRR's to ensure that the cachability attributes
  for all memory regions is correct.

  The basic idea is to use 2MB page table entries where ever possible. If
  more granularity of cachability is required then 4K page tables are used.

  References:
    1) IA-32 Intel(R) Architecture Software Developer's Manual Volume 1:Basic Architecture, Intel
    2) IA-32 Intel(R) Architecture Software Developer's Manual Volume 2:Instruction Set Reference, Intel
    3) IA-32 Intel(R) Architecture Software Developer's Manual Volume 3:System Programmer's Guide, Intel

Copyright (c) 2006 - 2022, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>

SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include <Register/Intel/Cpuid.h>
#include "DxeIpl.h"
#include "VirtualMemory.h"

//
// Global variable to keep track current available memory used as page table.
//
PAGE_TABLE_POOL  *mPageTablePool = NULL;

/**
  Clear legacy memory located at the first 4K-page, if available.

  This function traverses the whole HOB list to check if memory from 0 to 4095
  exists and has not been allocated, and then clear it if so.

  @param HobStart                  The start of HobList passed to DxeCore.

**/
VOID
ClearFirst4KPage (
  IN  VOID  *HobStart
  )
{
  EFI_PEI_HOB_POINTERS  RscHob;
  EFI_PEI_HOB_POINTERS  MemHob;
  BOOLEAN               DoClear;

  RscHob.Raw = HobStart;
  MemHob.Raw = HobStart;
  DoClear    = FALSE;

  //
  // Check if page 0 exists and free
  //
  while ((RscHob.Raw = GetNextHob (
                         EFI_HOB_TYPE_RESOURCE_DESCRIPTOR,
                         RscHob.Raw
                         )) != NULL)
  {
    if ((RscHob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) &&
        (RscHob.ResourceDescriptor->PhysicalStart == 0))
    {
      DoClear = TRUE;
      //
      // Make sure memory at 0-4095 has not been allocated.
      //
      while ((MemHob.Raw = GetNextHob (
                             EFI_HOB_TYPE_MEMORY_ALLOCATION,
                             MemHob.Raw
                             )) != NULL)
      {
        if (MemHob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress
            < EFI_PAGE_SIZE)
        {
          DoClear = FALSE;
          break;
        }

        MemHob.Raw = GET_NEXT_HOB (MemHob);
      }

      break;
    }

    RscHob.Raw = GET_NEXT_HOB (RscHob);
  }

  if (DoClear) {
    DEBUG ((DEBUG_INFO, "Clearing first 4K-page!\r\n"));
    SetMem (NULL, EFI_PAGE_SIZE, 0);
  }

  return;
}

/**
  Return configure status of NULL pointer detection feature.

  @return TRUE   NULL pointer detection feature is enabled
  @return FALSE  NULL pointer detection feature is disabled

**/
BOOLEAN
IsNullDetectionEnabled (
  VOID
  )
{
  return ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT0) != 0);
}

/**
  The function will check if Execute Disable Bit is available.

  @retval TRUE      Execute Disable Bit is available.
  @retval FALSE     Execute Disable Bit is not available.

**/
BOOLEAN
IsExecuteDisableBitAvailable (
  VOID
  )
{
  UINT32   RegEax;
  UINT32   RegEdx;
  BOOLEAN  Available;

  Available = FALSE;
  AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
  if (RegEax >= 0x80000001) {
    AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
    if ((RegEdx & BIT20) != 0) {
      //
      // Bit 20: Execute Disable Bit available.
      //
      Available = TRUE;
    }
  }

  return Available;
}

/**
  Check if Execute Disable Bit (IA32_EFER.NXE) should be enabled or not.

  @retval TRUE    IA32_EFER.NXE should be enabled.
  @retval FALSE   IA32_EFER.NXE should not be enabled.

**/
BOOLEAN
IsEnableNonExecNeeded (
  VOID
  )
{
  if (!IsExecuteDisableBitAvailable ()) {
    return FALSE;
  }

  //
  // XD flag (BIT63) in page table entry is only valid if IA32_EFER.NXE is set.
  // Features controlled by Following PCDs need this feature to be enabled.
  //
  return (PcdGetBool (PcdSetNxForStack) ||
          PcdGet64 (PcdDxeNxMemoryProtectionPolicy) != 0 ||
          PcdGet32 (PcdImageProtectionPolicy) != 0);
}

/**
  Enable Execute Disable Bit.

**/
VOID
EnableExecuteDisableBit (
  VOID
  )
{
  UINT64  MsrRegisters;

  MsrRegisters = AsmReadMsr64 (0xC0000080);
  if ((MsrRegisters & BIT11) == 0) {
    MsrRegisters |= BIT11;
    AsmWriteMsr64 (0xC0000080, MsrRegisters);
  }
}

/**
  The function will check if page table entry should be splitted to smaller
  granularity.

  @param Address      Physical memory address.
  @param Size         Size of the given physical memory.
  @param StackBase    Base address of stack.
  @param StackSize    Size of stack.
  @param GhcbBase     Base address of GHCB pages.
  @param GhcbSize     Size of GHCB area.

  @retval TRUE      Page table should be split.
  @retval FALSE     Page table should not be split.
**/
BOOLEAN
ToSplitPageTable (
  IN EFI_PHYSICAL_ADDRESS  Address,
  IN UINTN                 Size,
  IN EFI_PHYSICAL_ADDRESS  StackBase,
  IN UINTN                 StackSize,
  IN EFI_PHYSICAL_ADDRESS  GhcbBase,
  IN UINTN                 GhcbSize
  )
{
  if (IsNullDetectionEnabled () && (Address == 0)) {
    return TRUE;
  }

  if (PcdGetBool (PcdCpuStackGuard)) {
    if ((StackBase >= Address) && (StackBase < (Address + Size))) {
      return TRUE;
    }
  }

  if (PcdGetBool (PcdSetNxForStack)) {
    if ((Address < StackBase + StackSize) && ((Address + Size) > StackBase)) {
      return TRUE;
    }
  }

  if (GhcbBase != 0) {
    if ((Address < GhcbBase + GhcbSize) && ((Address + Size) > GhcbBase)) {
      return TRUE;
    }
  }

  return FALSE;
}

/**
  Initialize a buffer pool for page table use only.

  To reduce the potential split operation on page table, the pages reserved for
  page table should be allocated in the times of PAGE_TABLE_POOL_UNIT_PAGES and
  at the boundary of PAGE_TABLE_POOL_ALIGNMENT. So the page pool is always
  initialized with number of pages greater than or equal to the given PoolPages.

  Once the pages in the pool are used up, this method should be called again to
  reserve at least another PAGE_TABLE_POOL_UNIT_PAGES. But usually this won't
  happen in practice.

  @param PoolPages  The least page number of the pool to be created.

  @retval TRUE    The pool is initialized successfully.
  @retval FALSE   The memory is out of resource.
**/
BOOLEAN
InitializePageTablePool (
  IN UINTN  PoolPages
  )
{
  VOID  *Buffer;

  //
  // Always reserve at least PAGE_TABLE_POOL_UNIT_PAGES, including one page for
  // header.
  //
  PoolPages += 1;   // Add one page for header.
  PoolPages  = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) *
               PAGE_TABLE_POOL_UNIT_PAGES;
  Buffer = AllocateAlignedPages (PoolPages, PAGE_TABLE_POOL_ALIGNMENT);
  if (Buffer == NULL) {
    DEBUG ((DEBUG_ERROR, "ERROR: Out of aligned pages\r\n"));
    return FALSE;
  }

  //
  // Link all pools into a list for easier track later.
  //
  if (mPageTablePool == NULL) {
    mPageTablePool           = Buffer;
    mPageTablePool->NextPool = mPageTablePool;
  } else {
    ((PAGE_TABLE_POOL *)Buffer)->NextPool = mPageTablePool->NextPool;
    mPageTablePool->NextPool              = Buffer;
    mPageTablePool                        = Buffer;
  }

  //
  // Reserve one page for pool header.
  //
  mPageTablePool->FreePages = PoolPages - 1;
  mPageTablePool->Offset    = EFI_PAGES_TO_SIZE (1);

  return TRUE;
}

/**
  This API provides a way to allocate memory for page table.

  This API can be called more than once to allocate memory for page tables.

  Allocates the number of 4KB pages and returns a pointer to the allocated
  buffer. The buffer returned is aligned on a 4KB boundary.

  If Pages is 0, then NULL is returned.
  If there is not enough memory remaining to satisfy the request, then NULL is
  returned.

  @param  Pages                 The number of 4 KB pages to allocate.

  @return A pointer to the allocated buffer or NULL if allocation fails.

**/
VOID *
AllocatePageTableMemory (
  IN UINTN  Pages
  )
{
  VOID  *Buffer;

  if (Pages == 0) {
    return NULL;
  }

  //
  // Renew the pool if necessary.
  //
  if ((mPageTablePool == NULL) ||
      (Pages > mPageTablePool->FreePages))
  {
    if (!InitializePageTablePool (Pages)) {
      return NULL;
    }
  }

  Buffer = (UINT8 *)mPageTablePool + mPageTablePool->Offset;

  mPageTablePool->Offset    += EFI_PAGES_TO_SIZE (Pages);
  mPageTablePool->FreePages -= Pages;

  return Buffer;
}

/**
  Split 2M page to 4K.

  @param[in]      PhysicalAddress       Start physical address the 2M page covered.
  @param[in, out] PageEntry2M           Pointer to 2M page entry.
  @param[in]      StackBase             Stack base address.
  @param[in]      StackSize             Stack size.
  @param[in]      GhcbBase              GHCB page area base address.
  @param[in]      GhcbSize              GHCB page area size.

**/
VOID
Split2MPageTo4K (
  IN EFI_PHYSICAL_ADDRESS  PhysicalAddress,
  IN OUT UINT64            *PageEntry2M,
  IN EFI_PHYSICAL_ADDRESS  StackBase,
  IN UINTN                 StackSize,
  IN EFI_PHYSICAL_ADDRESS  GhcbBase,
  IN UINTN                 GhcbSize
  )
{
  EFI_PHYSICAL_ADDRESS  PhysicalAddress4K;
  UINTN                 IndexOfPageTableEntries;
  PAGE_TABLE_4K_ENTRY   *PageTableEntry;
  UINT64                AddressEncMask;

  //
  // Make sure AddressEncMask is contained to smallest supported address field
  //
  AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;

  PageTableEntry = AllocatePageTableMemory (1);
  ASSERT (PageTableEntry != NULL);

  //
  // Fill in 2M page entry.
  //
  *PageEntry2M = (UINT64)(UINTN)PageTableEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;

  PhysicalAddress4K = PhysicalAddress;
  for (IndexOfPageTableEntries = 0; IndexOfPageTableEntries < 512; IndexOfPageTableEntries++, PageTableEntry++, PhysicalAddress4K += SIZE_4KB) {
    //
    // Fill in the Page Table entries
    //
    PageTableEntry->Uint64 = (UINT64)PhysicalAddress4K;

    //
    // The GHCB range consists of two pages per CPU, the GHCB and a
    // per-CPU variable page. The GHCB page needs to be mapped as an
    // unencrypted page while the per-CPU variable page needs to be
    // mapped encrypted. These pages alternate in assignment.
    //
    if (  (GhcbBase == 0)
       || (PhysicalAddress4K < GhcbBase)
       || (PhysicalAddress4K >= GhcbBase + GhcbSize)
       || (((PhysicalAddress4K - GhcbBase) & SIZE_4KB) != 0))
    {
      PageTableEntry->Uint64 |= AddressEncMask;
    }

    PageTableEntry->Bits.ReadWrite = 1;

    if ((IsNullDetectionEnabled () && (PhysicalAddress4K == 0)) ||
        (PcdGetBool (PcdCpuStackGuard) && (PhysicalAddress4K == StackBase)))
    {
      PageTableEntry->Bits.Present = 0;
    } else {
      PageTableEntry->Bits.Present = 1;
    }

    if (  PcdGetBool (PcdSetNxForStack)
       && (PhysicalAddress4K >= StackBase)
       && (PhysicalAddress4K < StackBase + StackSize))
    {
      //
      // Set Nx bit for stack.
      //
      PageTableEntry->Bits.Nx = 1;
    }
  }
}

/**
  Split 1G page to 2M.

  @param[in]      PhysicalAddress       Start physical address the 1G page covered.
  @param[in, out] PageEntry1G           Pointer to 1G page entry.
  @param[in]      StackBase             Stack base address.
  @param[in]      StackSize             Stack size.
  @param[in]      GhcbBase              GHCB page area base address.
  @param[in]      GhcbSize              GHCB page area size.

**/
VOID
Split1GPageTo2M (
  IN EFI_PHYSICAL_ADDRESS  PhysicalAddress,
  IN OUT UINT64            *PageEntry1G,
  IN EFI_PHYSICAL_ADDRESS  StackBase,
  IN UINTN                 StackSize,
  IN EFI_PHYSICAL_ADDRESS  GhcbBase,
  IN UINTN                 GhcbSize
  )
{
  EFI_PHYSICAL_ADDRESS  PhysicalAddress2M;
  UINTN                 IndexOfPageDirectoryEntries;
  PAGE_TABLE_ENTRY      *PageDirectoryEntry;
  UINT64                AddressEncMask;

  //
  // Make sure AddressEncMask is contained to smallest supported address field
  //
  AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;

  PageDirectoryEntry = AllocatePageTableMemory (1);
  ASSERT (PageDirectoryEntry != NULL);

  //
  // Fill in 1G page entry.
  //
  *PageEntry1G = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;

  PhysicalAddress2M = PhysicalAddress;
  for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress2M += SIZE_2MB) {
    if (ToSplitPageTable (PhysicalAddress2M, SIZE_2MB, StackBase, StackSize, GhcbBase, GhcbSize)) {
      //
      // Need to split this 2M page that covers NULL or stack range.
      //
      Split2MPageTo4K (PhysicalAddress2M, (UINT64 *)PageDirectoryEntry, StackBase, StackSize, GhcbBase, GhcbSize);
    } else {
      //
      // Fill in the Page Directory entries
      //
      PageDirectoryEntry->Uint64         = (UINT64)PhysicalAddress2M | AddressEncMask;
      PageDirectoryEntry->Bits.ReadWrite = 1;
      PageDirectoryEntry->Bits.Present   = 1;
      PageDirectoryEntry->Bits.MustBe1   = 1;
    }
  }
}

/**
  Set one page of page table pool memory to be read-only.

  @param[in] PageTableBase    Base address of page table (CR3).
  @param[in] Address          Start address of a page to be set as read-only.
  @param[in] Level4Paging     Level 4 paging flag.

**/
VOID
SetPageTablePoolReadOnly (
  IN  UINTN                 PageTableBase,
  IN  EFI_PHYSICAL_ADDRESS  Address,
  IN  BOOLEAN               Level4Paging
  )
{
  UINTN                 Index;
  UINTN                 EntryIndex;
  UINT64                AddressEncMask;
  EFI_PHYSICAL_ADDRESS  PhysicalAddress;
  UINT64                *PageTable;
  UINT64                *NewPageTable;
  UINT64                PageAttr;
  UINT64                LevelSize[5];
  UINT64                LevelMask[5];
  UINTN                 LevelShift[5];
  UINTN                 Level;
  UINT64                PoolUnitSize;

  ASSERT (PageTableBase != 0);

  //
  // Since the page table is always from page table pool, which is always
  // located at the boundary of PcdPageTablePoolAlignment, we just need to
  // set the whole pool unit to be read-only.
  //
  Address = Address & PAGE_TABLE_POOL_ALIGN_MASK;

  LevelShift[1] = PAGING_L1_ADDRESS_SHIFT;
  LevelShift[2] = PAGING_L2_ADDRESS_SHIFT;
  LevelShift[3] = PAGING_L3_ADDRESS_SHIFT;
  LevelShift[4] = PAGING_L4_ADDRESS_SHIFT;

  LevelMask[1] = PAGING_4K_ADDRESS_MASK_64;
  LevelMask[2] = PAGING_2M_ADDRESS_MASK_64;
  LevelMask[3] = PAGING_1G_ADDRESS_MASK_64;
  LevelMask[4] = PAGING_1G_ADDRESS_MASK_64;

  LevelSize[1] = SIZE_4KB;
  LevelSize[2] = SIZE_2MB;
  LevelSize[3] = SIZE_1GB;
  LevelSize[4] = SIZE_512GB;

  AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) &
                   PAGING_1G_ADDRESS_MASK_64;
  PageTable    = (UINT64 *)(UINTN)PageTableBase;
  PoolUnitSize = PAGE_TABLE_POOL_UNIT_SIZE;

  for (Level = (Level4Paging) ? 4 : 3; Level > 0; --Level) {
    Index  = ((UINTN)RShiftU64 (Address, LevelShift[Level]));
    Index &= PAGING_PAE_INDEX_MASK;

    PageAttr = PageTable[Index];
    if ((PageAttr & IA32_PG_PS) == 0) {
      //
      // Go to next level of table.
      //
      PageTable = (UINT64 *)(UINTN)(PageAttr & ~AddressEncMask &
                                    PAGING_4K_ADDRESS_MASK_64);
      continue;
    }

    if (PoolUnitSize >= LevelSize[Level]) {
      //
      // Clear R/W bit if current page granularity is not larger than pool unit
      // size.
      //
      if ((PageAttr & IA32_PG_RW) != 0) {
        while (PoolUnitSize > 0) {
          //
          // PAGE_TABLE_POOL_UNIT_SIZE and PAGE_TABLE_POOL_ALIGNMENT are fit in
          // one page (2MB). Then we don't need to update attributes for pages
          // crossing page directory. ASSERT below is for that purpose.
          //
          ASSERT (Index < EFI_PAGE_SIZE/sizeof (UINT64));

          PageTable[Index] &= ~(UINT64)IA32_PG_RW;
          PoolUnitSize     -= LevelSize[Level];

          ++Index;
        }
      }

      break;
    } else {
      //
      // The smaller granularity of page must be needed.
      //
      ASSERT (Level > 1);

      NewPageTable = AllocatePageTableMemory (1);
      ASSERT (NewPageTable != NULL);

      PhysicalAddress = PageAttr & LevelMask[Level];
      for (EntryIndex = 0;
           EntryIndex < EFI_PAGE_SIZE/sizeof (UINT64);
           ++EntryIndex)
      {
        NewPageTable[EntryIndex] = PhysicalAddress  | AddressEncMask |
                                   IA32_PG_P | IA32_PG_RW;
        if (Level > 2) {
          NewPageTable[EntryIndex] |= IA32_PG_PS;
        }

        PhysicalAddress += LevelSize[Level - 1];
      }

      PageTable[Index] = (UINT64)(UINTN)NewPageTable | AddressEncMask |
                         IA32_PG_P | IA32_PG_RW;
      PageTable = NewPageTable;
    }
  }
}

/**
  Prevent the memory pages used for page table from been overwritten.

  @param[in] PageTableBase    Base address of page table (CR3).
  @param[in] Level4Paging     Level 4 paging flag.

**/
VOID
EnablePageTableProtection (
  IN  UINTN    PageTableBase,
  IN  BOOLEAN  Level4Paging
  )
{
  PAGE_TABLE_POOL       *HeadPool;
  PAGE_TABLE_POOL       *Pool;
  UINT64                PoolSize;
  EFI_PHYSICAL_ADDRESS  Address;

  if (mPageTablePool == NULL) {
    return;
  }

  //
  // No need to clear CR0.WP since PageTableBase has't been written to CR3 yet.
  // SetPageTablePoolReadOnly might update mPageTablePool. It's safer to
  // remember original one in advance.
  //
  HeadPool = mPageTablePool;
  Pool     = HeadPool;
  do {
    Address  = (EFI_PHYSICAL_ADDRESS)(UINTN)Pool;
    PoolSize = Pool->Offset + EFI_PAGES_TO_SIZE (Pool->FreePages);

    //
    // The size of one pool must be multiple of PAGE_TABLE_POOL_UNIT_SIZE, which
    // is one of page size of the processor (2MB by default). Let's apply the
    // protection to them one by one.
    //
    while (PoolSize > 0) {
      SetPageTablePoolReadOnly (PageTableBase, Address, Level4Paging);
      Address  += PAGE_TABLE_POOL_UNIT_SIZE;
      PoolSize -= PAGE_TABLE_POOL_UNIT_SIZE;
    }

    Pool = Pool->NextPool;
  } while (Pool != HeadPool);

  //
  // Enable write protection, after page table attribute updated.
  //
  AsmWriteCr0 (AsmReadCr0 () | CR0_WP);
}

/**
  Allocates and fills in the Page Directory and Page Table Entries to
  establish a 1:1 Virtual to Physical mapping.

  @param[in] StackBase  Stack base address.
  @param[in] StackSize  Stack size.
  @param[in] GhcbBase   GHCB base address.
  @param[in] GhcbSize   GHCB size.

  @return The address of 4 level page map.

**/
UINTN
CreateIdentityMappingPageTables (
  IN EFI_PHYSICAL_ADDRESS  StackBase,
  IN UINTN                 StackSize,
  IN EFI_PHYSICAL_ADDRESS  GhcbBase,
  IN UINTN                 GhcbSize
  )
{
  UINT32                                       RegEax;
  CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX  EcxFlags;
  UINT32                                       RegEdx;
  UINT8                                        PhysicalAddressBits;
  EFI_PHYSICAL_ADDRESS                         PageAddress;
  UINTN                                        IndexOfPml5Entries;
  UINTN                                        IndexOfPml4Entries;
  UINTN                                        IndexOfPdpEntries;
  UINTN                                        IndexOfPageDirectoryEntries;
  UINT32                                       NumberOfPml5EntriesNeeded;
  UINT32                                       NumberOfPml4EntriesNeeded;
  UINT32                                       NumberOfPdpEntriesNeeded;
  PAGE_MAP_AND_DIRECTORY_POINTER               *PageMapLevel5Entry;
  PAGE_MAP_AND_DIRECTORY_POINTER               *PageMapLevel4Entry;
  PAGE_MAP_AND_DIRECTORY_POINTER               *PageMap;
  PAGE_MAP_AND_DIRECTORY_POINTER               *PageDirectoryPointerEntry;
  PAGE_TABLE_ENTRY                             *PageDirectoryEntry;
  UINTN                                        TotalPagesNum;
  UINTN                                        BigPageAddress;
  VOID                                         *Hob;
  BOOLEAN                                      Page5LevelSupport;
  BOOLEAN                                      Page1GSupport;
  PAGE_TABLE_1G_ENTRY                          *PageDirectory1GEntry;
  UINT64                                       AddressEncMask;
  IA32_CR4                                     Cr4;

  //
  // Set PageMapLevel5Entry to suppress incorrect compiler/analyzer warnings
  //
  PageMapLevel5Entry = NULL;

  //
  // Make sure AddressEncMask is contained to smallest supported address field
  //
  AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;

  Page1GSupport = FALSE;
  if (PcdGetBool (PcdUse1GPageTable)) {
    AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
    if (RegEax >= 0x80000001) {
      AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
      if ((RegEdx & BIT26) != 0) {
        Page1GSupport = TRUE;
      }
    }
  }

  //
  // Get physical address bits supported.
  //
  Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
  if (Hob != NULL) {
    PhysicalAddressBits = ((EFI_HOB_CPU *)Hob)->SizeOfMemorySpace;
  } else {
    AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
    if (RegEax >= 0x80000008) {
      AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
      PhysicalAddressBits = (UINT8)RegEax;
    } else {
      PhysicalAddressBits = 36;
    }
  }

  if (sizeof (UINTN) == sizeof (UINT64)) {
    //
    // If cpu has already run in 64bit long mode PEI, Page table Level in DXE must align with previous level.
    //
    Cr4.UintN         = AsmReadCr4 ();
    Page5LevelSupport = (Cr4.Bits.LA57 != 0);
    if (Page5LevelSupport) {
      ASSERT (PcdGetBool (PcdUse5LevelPageTable));
    }
  } else {
    //
    // If cpu runs in 32bit protected mode PEI, Page table Level in DXE is decided by PCD and feature capability.
    //
    Page5LevelSupport = FALSE;
    if (PcdGetBool (PcdUse5LevelPageTable)) {
      AsmCpuidEx (
        CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS,
        CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO,
        NULL,
        NULL,
        &EcxFlags.Uint32,
        NULL
        );
      if (EcxFlags.Bits.FiveLevelPage != 0) {
        Page5LevelSupport = TRUE;
      }
    }
  }

  DEBUG ((DEBUG_INFO, "AddressBits=%u 5LevelPaging=%u 1GPage=%u\n", PhysicalAddressBits, Page5LevelSupport, Page1GSupport));

  //
  // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses
  //  when 5-Level Paging is disabled,
  //  due to either unsupported by HW, or disabled by PCD.
  //
  ASSERT (PhysicalAddressBits <= 52);
  if (!Page5LevelSupport && (PhysicalAddressBits > 48)) {
    PhysicalAddressBits = 48;
  }

  //
  // Calculate the table entries needed.
  //
  NumberOfPml5EntriesNeeded = 1;
  if (PhysicalAddressBits > 48) {
    NumberOfPml5EntriesNeeded = (UINT32)LShiftU64 (1, PhysicalAddressBits - 48);
    PhysicalAddressBits       = 48;
  }

  NumberOfPml4EntriesNeeded = 1;
  if (PhysicalAddressBits > 39) {
    NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, PhysicalAddressBits - 39);
    PhysicalAddressBits       = 39;
  }

  NumberOfPdpEntriesNeeded = 1;
  ASSERT (PhysicalAddressBits > 30);
  NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, PhysicalAddressBits - 30);

  //
  // Pre-allocate big pages to avoid later allocations.
  //
  if (!Page1GSupport) {
    TotalPagesNum = ((NumberOfPdpEntriesNeeded + 1) * NumberOfPml4EntriesNeeded + 1) * NumberOfPml5EntriesNeeded + 1;
  } else {
    TotalPagesNum = (NumberOfPml4EntriesNeeded + 1) * NumberOfPml5EntriesNeeded + 1;
  }

  //
  // Substract the one page occupied by PML5 entries if 5-Level Paging is disabled.
  //
  if (!Page5LevelSupport) {
    TotalPagesNum--;
  }

  DEBUG ((
    DEBUG_INFO,
    "Pml5=%u Pml4=%u Pdp=%u TotalPage=%Lu\n",
    NumberOfPml5EntriesNeeded,
    NumberOfPml4EntriesNeeded,
    NumberOfPdpEntriesNeeded,
    (UINT64)TotalPagesNum
    ));

  BigPageAddress = (UINTN)AllocatePageTableMemory (TotalPagesNum);
  ASSERT (BigPageAddress != 0);

  //
  // By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
  //
  PageMap = (VOID *)BigPageAddress;
  if (Page5LevelSupport) {
    //
    // By architecture only one PageMapLevel5 exists - so lets allocate storage for it.
    //
    PageMapLevel5Entry = PageMap;
    BigPageAddress    += SIZE_4KB;
  }

  PageAddress = 0;

  for ( IndexOfPml5Entries = 0
        ; IndexOfPml5Entries < NumberOfPml5EntriesNeeded
        ; IndexOfPml5Entries++)
  {
    //
    // Each PML5 entry points to a page of PML4 entires.
    // So lets allocate space for them and fill them in in the IndexOfPml4Entries loop.
    // When 5-Level Paging is disabled, below allocation happens only once.
    //
    PageMapLevel4Entry = (VOID *)BigPageAddress;
    BigPageAddress    += SIZE_4KB;

    if (Page5LevelSupport) {
      //
      // Make a PML5 Entry
      //
      PageMapLevel5Entry->Uint64         = (UINT64)(UINTN)PageMapLevel4Entry | AddressEncMask;
      PageMapLevel5Entry->Bits.ReadWrite = 1;
      PageMapLevel5Entry->Bits.Present   = 1;
      PageMapLevel5Entry++;
    }

    for ( IndexOfPml4Entries = 0
          ; IndexOfPml4Entries < (NumberOfPml5EntriesNeeded == 1 ? NumberOfPml4EntriesNeeded : 512)
          ; IndexOfPml4Entries++, PageMapLevel4Entry++)
    {
      //
      // Each PML4 entry points to a page of Page Directory Pointer entires.
      // So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.
      //
      PageDirectoryPointerEntry = (VOID *)BigPageAddress;
      BigPageAddress           += SIZE_4KB;

      //
      // Make a PML4 Entry
      //
      PageMapLevel4Entry->Uint64         = (UINT64)(UINTN)PageDirectoryPointerEntry | AddressEncMask;
      PageMapLevel4Entry->Bits.ReadWrite = 1;
      PageMapLevel4Entry->Bits.Present   = 1;

      if (Page1GSupport) {
        PageDirectory1GEntry = (VOID *)PageDirectoryPointerEntry;

        for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
          if (ToSplitPageTable (PageAddress, SIZE_1GB, StackBase, StackSize, GhcbBase, GhcbSize)) {
            Split1GPageTo2M (PageAddress, (UINT64 *)PageDirectory1GEntry, StackBase, StackSize, GhcbBase, GhcbSize);
          } else {
            //
            // Fill in the Page Directory entries
            //
            PageDirectory1GEntry->Uint64         = (UINT64)PageAddress | AddressEncMask;
            PageDirectory1GEntry->Bits.ReadWrite = 1;
            PageDirectory1GEntry->Bits.Present   = 1;
            PageDirectory1GEntry->Bits.MustBe1   = 1;
          }
        }
      } else {
        for ( IndexOfPdpEntries = 0
              ; IndexOfPdpEntries < (NumberOfPml4EntriesNeeded == 1 ? NumberOfPdpEntriesNeeded : 512)
              ; IndexOfPdpEntries++, PageDirectoryPointerEntry++)
        {
          //
          // Each Directory Pointer entries points to a page of Page Directory entires.
          // So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
          //
          PageDirectoryEntry = (VOID *)BigPageAddress;
          BigPageAddress    += SIZE_4KB;

          //
          // Fill in a Page Directory Pointer Entries
          //
          PageDirectoryPointerEntry->Uint64         = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask;
          PageDirectoryPointerEntry->Bits.ReadWrite = 1;
          PageDirectoryPointerEntry->Bits.Present   = 1;

          for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
            if (ToSplitPageTable (PageAddress, SIZE_2MB, StackBase, StackSize, GhcbBase, GhcbSize)) {
              //
              // Need to split this 2M page that covers NULL or stack range.
              //
              Split2MPageTo4K (PageAddress, (UINT64 *)PageDirectoryEntry, StackBase, StackSize, GhcbBase, GhcbSize);
            } else {
              //
              // Fill in the Page Directory entries
              //
              PageDirectoryEntry->Uint64         = (UINT64)PageAddress | AddressEncMask;
              PageDirectoryEntry->Bits.ReadWrite = 1;
              PageDirectoryEntry->Bits.Present   = 1;
              PageDirectoryEntry->Bits.MustBe1   = 1;
            }
          }
        }

        //
        // Fill with null entry for unused PDPTE
        //
        ZeroMem (PageDirectoryPointerEntry, (512 - IndexOfPdpEntries) * sizeof (PAGE_MAP_AND_DIRECTORY_POINTER));
      }
    }

    //
    // For the PML4 entries we are not using fill in a null entry.
    //
    ZeroMem (PageMapLevel4Entry, (512 - IndexOfPml4Entries) * sizeof (PAGE_MAP_AND_DIRECTORY_POINTER));
  }

  if (Page5LevelSupport) {
    Cr4.UintN     = AsmReadCr4 ();
    Cr4.Bits.LA57 = 1;
    AsmWriteCr4 (Cr4.UintN);
    //
    // For the PML5 entries we are not using fill in a null entry.
    //
    ZeroMem (PageMapLevel5Entry, (512 - IndexOfPml5Entries) * sizeof (PAGE_MAP_AND_DIRECTORY_POINTER));
  }

  //
  // Protect the page table by marking the memory used for page table to be
  // read-only.
  //
  EnablePageTableProtection ((UINTN)PageMap, TRUE);

  //
  // Set IA32_EFER.NXE if necessary.
  //
  if (IsEnableNonExecNeeded ()) {
    EnableExecuteDisableBit ();
  }

  return (UINTN)PageMap;
}