summaryrefslogtreecommitdiffstats
path: root/OvmfPkg/Library/BaseMemEncryptSevLib/X64/PeiDxeVirtualMemory.c
blob: c696745f9d26483fbced08354f57a7493e5f653c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
/** @file

  Virtual Memory Management Services to set or clear the memory encryption bit

  Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
  Copyright (c) 2017 - 2020, AMD Incorporated. All rights reserved.<BR>

  SPDX-License-Identifier: BSD-2-Clause-Patent

  Code is derived from MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c

**/

#include <Library/CpuLib.h>
#include <Library/MemEncryptSevLib.h>
#include <Register/Amd/Cpuid.h>
#include <Register/Cpuid.h>

#include "VirtualMemory.h"

STATIC BOOLEAN mAddressEncMaskChecked = FALSE;
STATIC UINT64  mAddressEncMask;
STATIC PAGE_TABLE_POOL   *mPageTablePool = NULL;

typedef enum {
   SetCBit,
   ClearCBit
} MAP_RANGE_MODE;

/**
  Return the pagetable memory encryption mask.

  @return  The pagetable memory encryption mask.

**/
UINT64
EFIAPI
InternalGetMemEncryptionAddressMask (
  VOID
  )
{
  UINT64                            EncryptionMask;

  if (mAddressEncMaskChecked) {
    return mAddressEncMask;
  }

  EncryptionMask = MemEncryptSevGetEncryptionMask ();

  mAddressEncMask = EncryptionMask & PAGING_1G_ADDRESS_MASK_64;
  mAddressEncMaskChecked = TRUE;

  return mAddressEncMask;
}

/**
  Initialize a buffer pool for page table use only.

  To reduce the potential split operation on page table, the pages reserved for
  page table should be allocated in the times of PAGE_TABLE_POOL_UNIT_PAGES and
  at the boundary of PAGE_TABLE_POOL_ALIGNMENT. So the page pool is always
  initialized with number of pages greater than or equal to the given
  PoolPages.

  Once the pages in the pool are used up, this method should be called again to
  reserve at least another PAGE_TABLE_POOL_UNIT_PAGES. Usually this won't
  happen often in practice.

  @param[in] PoolPages      The least page number of the pool to be created.

  @retval TRUE    The pool is initialized successfully.
  @retval FALSE   The memory is out of resource.
**/
STATIC
BOOLEAN
InitializePageTablePool (
  IN  UINTN                           PoolPages
  )
{
  VOID                      *Buffer;

  //
  // Always reserve at least PAGE_TABLE_POOL_UNIT_PAGES, including one page for
  // header.
  //
  PoolPages += 1;   // Add one page for header.
  PoolPages = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) *
              PAGE_TABLE_POOL_UNIT_PAGES;
  Buffer = AllocateAlignedPages (PoolPages, PAGE_TABLE_POOL_ALIGNMENT);
  if (Buffer == NULL) {
    DEBUG ((DEBUG_ERROR, "ERROR: Out of aligned pages\r\n"));
    return FALSE;
  }

  //
  // Link all pools into a list for easier track later.
  //
  if (mPageTablePool == NULL) {
    mPageTablePool = Buffer;
    mPageTablePool->NextPool = mPageTablePool;
  } else {
    ((PAGE_TABLE_POOL *)Buffer)->NextPool = mPageTablePool->NextPool;
    mPageTablePool->NextPool = Buffer;
    mPageTablePool = Buffer;
  }

  //
  // Reserve one page for pool header.
  //
  mPageTablePool->FreePages  = PoolPages - 1;
  mPageTablePool->Offset = EFI_PAGES_TO_SIZE (1);

  return TRUE;
}

/**
  This API provides a way to allocate memory for page table.

  This API can be called more than once to allocate memory for page tables.

  Allocates the number of 4KB pages and returns a pointer to the allocated
  buffer. The buffer returned is aligned on a 4KB boundary.

  If Pages is 0, then NULL is returned.
  If there is not enough memory remaining to satisfy the request, then NULL is
  returned.

  @param  Pages                 The number of 4 KB pages to allocate.

  @return A pointer to the allocated buffer or NULL if allocation fails.

**/
STATIC
VOID *
EFIAPI
AllocatePageTableMemory (
  IN UINTN           Pages
  )
{
  VOID                            *Buffer;

  if (Pages == 0) {
    return NULL;
  }

  //
  // Renew the pool if necessary.
  //
  if (mPageTablePool == NULL ||
      Pages > mPageTablePool->FreePages) {
    if (!InitializePageTablePool (Pages)) {
      return NULL;
    }
  }

  Buffer = (UINT8 *)mPageTablePool + mPageTablePool->Offset;

  mPageTablePool->Offset     += EFI_PAGES_TO_SIZE (Pages);
  mPageTablePool->FreePages  -= Pages;

  DEBUG ((
    DEBUG_VERBOSE,
    "%a:%a: Buffer=0x%Lx Pages=%ld\n",
    gEfiCallerBaseName,
    __FUNCTION__,
    Buffer,
    Pages
    ));

  return Buffer;
}


/**
  Split 2M page to 4K.

  @param[in]      PhysicalAddress       Start physical address the 2M page
                                        covered.
  @param[in, out] PageEntry2M           Pointer to 2M page entry.
  @param[in]      StackBase             Stack base address.
  @param[in]      StackSize             Stack size.

**/
STATIC
VOID
Split2MPageTo4K (
  IN        PHYSICAL_ADDRESS               PhysicalAddress,
  IN  OUT   UINT64                        *PageEntry2M,
  IN        PHYSICAL_ADDRESS               StackBase,
  IN        UINTN                          StackSize
  )
{
  PHYSICAL_ADDRESS                  PhysicalAddress4K;
  UINTN                             IndexOfPageTableEntries;
  PAGE_TABLE_4K_ENTRY               *PageTableEntry;
  PAGE_TABLE_4K_ENTRY               *PageTableEntry1;
  UINT64                            AddressEncMask;

  PageTableEntry = AllocatePageTableMemory(1);

  PageTableEntry1 = PageTableEntry;

  AddressEncMask = InternalGetMemEncryptionAddressMask ();

  ASSERT (PageTableEntry != NULL);
  ASSERT (*PageEntry2M & AddressEncMask);

  PhysicalAddress4K = PhysicalAddress;
  for (IndexOfPageTableEntries = 0;
       IndexOfPageTableEntries < 512;
       (IndexOfPageTableEntries++,
        PageTableEntry++,
        PhysicalAddress4K += SIZE_4KB)) {
    //
    // Fill in the Page Table entries
    //
    PageTableEntry->Uint64 = (UINT64) PhysicalAddress4K | AddressEncMask;
    PageTableEntry->Bits.ReadWrite = 1;
    PageTableEntry->Bits.Present = 1;
    if ((PhysicalAddress4K >= StackBase) &&
        (PhysicalAddress4K < StackBase + StackSize)) {
      //
      // Set Nx bit for stack.
      //
      PageTableEntry->Bits.Nx = 1;
    }
  }

  //
  // Fill in 2M page entry.
  //
  *PageEntry2M = ((UINT64)(UINTN)PageTableEntry1 |
                  IA32_PG_P | IA32_PG_RW | AddressEncMask);
}

/**
  Set one page of page table pool memory to be read-only.

  @param[in] PageTableBase    Base address of page table (CR3).
  @param[in] Address          Start address of a page to be set as read-only.
  @param[in] Level4Paging     Level 4 paging flag.

**/
STATIC
VOID
SetPageTablePoolReadOnly (
  IN  UINTN                             PageTableBase,
  IN  EFI_PHYSICAL_ADDRESS              Address,
  IN  BOOLEAN                           Level4Paging
  )
{
  UINTN                 Index;
  UINTN                 EntryIndex;
  UINT64                AddressEncMask;
  EFI_PHYSICAL_ADDRESS  PhysicalAddress;
  UINT64                *PageTable;
  UINT64                *NewPageTable;
  UINT64                PageAttr;
  UINT64                LevelSize[5];
  UINT64                LevelMask[5];
  UINTN                 LevelShift[5];
  UINTN                 Level;
  UINT64                PoolUnitSize;

  ASSERT (PageTableBase != 0);

  //
  // Since the page table is always from page table pool, which is always
  // located at the boundary of PcdPageTablePoolAlignment, we just need to
  // set the whole pool unit to be read-only.
  //
  Address = Address & PAGE_TABLE_POOL_ALIGN_MASK;

  LevelShift[1] = PAGING_L1_ADDRESS_SHIFT;
  LevelShift[2] = PAGING_L2_ADDRESS_SHIFT;
  LevelShift[3] = PAGING_L3_ADDRESS_SHIFT;
  LevelShift[4] = PAGING_L4_ADDRESS_SHIFT;

  LevelMask[1] = PAGING_4K_ADDRESS_MASK_64;
  LevelMask[2] = PAGING_2M_ADDRESS_MASK_64;
  LevelMask[3] = PAGING_1G_ADDRESS_MASK_64;
  LevelMask[4] = PAGING_1G_ADDRESS_MASK_64;

  LevelSize[1] = SIZE_4KB;
  LevelSize[2] = SIZE_2MB;
  LevelSize[3] = SIZE_1GB;
  LevelSize[4] = SIZE_512GB;

  AddressEncMask  = InternalGetMemEncryptionAddressMask();
  PageTable       = (UINT64 *)(UINTN)PageTableBase;
  PoolUnitSize    = PAGE_TABLE_POOL_UNIT_SIZE;

  for (Level = (Level4Paging) ? 4 : 3; Level > 0; --Level) {
    Index = ((UINTN)RShiftU64 (Address, LevelShift[Level]));
    Index &= PAGING_PAE_INDEX_MASK;

    PageAttr = PageTable[Index];
    if ((PageAttr & IA32_PG_PS) == 0) {
      //
      // Go to next level of table.
      //
      PageTable = (UINT64 *)(UINTN)(PageAttr & ~AddressEncMask &
                                    PAGING_4K_ADDRESS_MASK_64);
      continue;
    }

    if (PoolUnitSize >= LevelSize[Level]) {
      //
      // Clear R/W bit if current page granularity is not larger than pool unit
      // size.
      //
      if ((PageAttr & IA32_PG_RW) != 0) {
        while (PoolUnitSize > 0) {
          //
          // PAGE_TABLE_POOL_UNIT_SIZE and PAGE_TABLE_POOL_ALIGNMENT are fit in
          // one page (2MB). Then we don't need to update attributes for pages
          // crossing page directory. ASSERT below is for that purpose.
          //
          ASSERT (Index < EFI_PAGE_SIZE/sizeof (UINT64));

          PageTable[Index] &= ~(UINT64)IA32_PG_RW;
          PoolUnitSize    -= LevelSize[Level];

          ++Index;
        }
      }

      break;

    } else {
      //
      // The smaller granularity of page must be needed.
      //
      ASSERT (Level > 1);

      NewPageTable = AllocatePageTableMemory (1);
      ASSERT (NewPageTable != NULL);

      PhysicalAddress = PageAttr & LevelMask[Level];
      for (EntryIndex = 0;
            EntryIndex < EFI_PAGE_SIZE/sizeof (UINT64);
            ++EntryIndex) {
        NewPageTable[EntryIndex] = PhysicalAddress  | AddressEncMask |
                                   IA32_PG_P | IA32_PG_RW;
        if (Level > 2) {
          NewPageTable[EntryIndex] |= IA32_PG_PS;
        }
        PhysicalAddress += LevelSize[Level - 1];
      }

      PageTable[Index] = (UINT64)(UINTN)NewPageTable | AddressEncMask |
                                        IA32_PG_P | IA32_PG_RW;
      PageTable = NewPageTable;
    }
  }
}

/**
  Prevent the memory pages used for page table from been overwritten.

  @param[in] PageTableBase    Base address of page table (CR3).
  @param[in] Level4Paging     Level 4 paging flag.

**/
STATIC
VOID
EnablePageTableProtection (
  IN  UINTN     PageTableBase,
  IN  BOOLEAN   Level4Paging
  )
{
  PAGE_TABLE_POOL         *HeadPool;
  PAGE_TABLE_POOL         *Pool;
  UINT64                  PoolSize;
  EFI_PHYSICAL_ADDRESS    Address;

  if (mPageTablePool == NULL) {
    return;
  }

  //
  // SetPageTablePoolReadOnly might update mPageTablePool. It's safer to
  // remember original one in advance.
  //
  HeadPool = mPageTablePool;
  Pool = HeadPool;
  do {
    Address  = (EFI_PHYSICAL_ADDRESS)(UINTN)Pool;
    PoolSize = Pool->Offset + EFI_PAGES_TO_SIZE (Pool->FreePages);

    //
    // The size of one pool must be multiple of PAGE_TABLE_POOL_UNIT_SIZE,
    // which is one of page size of the processor (2MB by default). Let's apply
    // the protection to them one by one.
    //
    while (PoolSize > 0) {
      SetPageTablePoolReadOnly(PageTableBase, Address, Level4Paging);
      Address   += PAGE_TABLE_POOL_UNIT_SIZE;
      PoolSize  -= PAGE_TABLE_POOL_UNIT_SIZE;
    }

    Pool = Pool->NextPool;
  } while (Pool != HeadPool);

}


/**
  Split 1G page to 2M.

  @param[in]      PhysicalAddress       Start physical address the 1G page
                                        covered.
  @param[in, out] PageEntry1G           Pointer to 1G page entry.
  @param[in]      StackBase             Stack base address.
  @param[in]      StackSize             Stack size.

**/
STATIC
VOID
Split1GPageTo2M (
  IN          PHYSICAL_ADDRESS               PhysicalAddress,
  IN  OUT     UINT64                         *PageEntry1G,
  IN          PHYSICAL_ADDRESS               StackBase,
  IN          UINTN                          StackSize
  )
{
  PHYSICAL_ADDRESS                  PhysicalAddress2M;
  UINTN                             IndexOfPageDirectoryEntries;
  PAGE_TABLE_ENTRY                  *PageDirectoryEntry;
  UINT64                            AddressEncMask;

  PageDirectoryEntry = AllocatePageTableMemory(1);

  AddressEncMask = InternalGetMemEncryptionAddressMask ();
  ASSERT (PageDirectoryEntry != NULL);
  ASSERT (*PageEntry1G & AddressEncMask);
  //
  // Fill in 1G page entry.
  //
  *PageEntry1G = ((UINT64)(UINTN)PageDirectoryEntry |
                  IA32_PG_P | IA32_PG_RW | AddressEncMask);

  PhysicalAddress2M = PhysicalAddress;
  for (IndexOfPageDirectoryEntries = 0;
       IndexOfPageDirectoryEntries < 512;
       (IndexOfPageDirectoryEntries++,
        PageDirectoryEntry++,
        PhysicalAddress2M += SIZE_2MB)) {
    if ((PhysicalAddress2M < StackBase + StackSize) &&
        ((PhysicalAddress2M + SIZE_2MB) > StackBase)) {
      //
      // Need to split this 2M page that covers stack range.
      //
      Split2MPageTo4K (
        PhysicalAddress2M,
        (UINT64 *)PageDirectoryEntry,
        StackBase,
        StackSize
        );
    } else {
      //
      // Fill in the Page Directory entries
      //
      PageDirectoryEntry->Uint64 = (UINT64) PhysicalAddress2M | AddressEncMask;
      PageDirectoryEntry->Bits.ReadWrite = 1;
      PageDirectoryEntry->Bits.Present = 1;
      PageDirectoryEntry->Bits.MustBe1 = 1;
    }
  }
}


/**
  Set or Clear the memory encryption bit

  @param[in, out] PageTablePointer      Page table entry pointer (PTE).
  @param[in]      Mode                  Set or Clear encryption bit

**/
STATIC VOID
SetOrClearCBit(
  IN   OUT     UINT64*            PageTablePointer,
  IN           MAP_RANGE_MODE     Mode
  )
{
  UINT64      AddressEncMask;

  AddressEncMask = InternalGetMemEncryptionAddressMask ();

  if (Mode == SetCBit) {
    *PageTablePointer |= AddressEncMask;
  } else {
    *PageTablePointer &= ~AddressEncMask;
  }

}

/**
 Check the WP status in CR0 register. This bit is used to lock or unlock write
 access to pages marked as read-only.

  @retval TRUE    Write protection is enabled.
  @retval FALSE   Write protection is disabled.
**/
STATIC
BOOLEAN
IsReadOnlyPageWriteProtected (
  VOID
  )
{
  return ((AsmReadCr0 () & BIT16) != 0);
}


/**
 Disable Write Protect on pages marked as read-only.
**/
STATIC
VOID
DisableReadOnlyPageWriteProtect (
  VOID
  )
{
  AsmWriteCr0 (AsmReadCr0() & ~BIT16);
}

/**
 Enable Write Protect on pages marked as read-only.
**/
STATIC
VOID
EnableReadOnlyPageWriteProtect (
  VOID
  )
{
  AsmWriteCr0 (AsmReadCr0() | BIT16);
}


/**
  This function either sets or clears memory encryption bit for the memory
  region specified by PhysicalAddress and Length from the current page table
  context.

  The function iterates through the PhysicalAddress one page at a time, and set
  or clears the memory encryption mask in the page table. If it encounters
  that a given physical address range is part of large page then it attempts to
  change the attribute at one go (based on size), otherwise it splits the
  large pages into smaller (e.g 2M page into 4K pages) and then try to set or
  clear the encryption bit on the smallest page size.

  @param[in]  Cr3BaseAddress          Cr3 Base Address (if zero then use
                                      current CR3)
  @param[in]  PhysicalAddress         The physical address that is the start
                                      address of a memory region.
  @param[in]  Length                  The length of memory region
  @param[in]  Mode                    Set or Clear mode
  @param[in]  CacheFlush              Flush the caches before applying the
                                      encryption mask

  @retval RETURN_SUCCESS              The attributes were cleared for the
                                      memory region.
  @retval RETURN_INVALID_PARAMETER    Number of pages is zero.
  @retval RETURN_UNSUPPORTED          Setting the memory encyrption attribute
                                      is not supported
**/
STATIC
RETURN_STATUS
EFIAPI
SetMemoryEncDec (
  IN    PHYSICAL_ADDRESS         Cr3BaseAddress,
  IN    PHYSICAL_ADDRESS         PhysicalAddress,
  IN    UINTN                    Length,
  IN    MAP_RANGE_MODE           Mode,
  IN    BOOLEAN                  CacheFlush
  )
{
  PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry;
  PAGE_MAP_AND_DIRECTORY_POINTER *PageUpperDirectoryPointerEntry;
  PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
  PAGE_TABLE_1G_ENTRY            *PageDirectory1GEntry;
  PAGE_TABLE_ENTRY               *PageDirectory2MEntry;
  PAGE_TABLE_4K_ENTRY            *PageTableEntry;
  UINT64                         PgTableMask;
  UINT64                         AddressEncMask;
  BOOLEAN                        IsWpEnabled;
  RETURN_STATUS                  Status;

  //
  // Set PageMapLevel4Entry to suppress incorrect compiler/analyzer warnings.
  //
  PageMapLevel4Entry = NULL;

  DEBUG ((
    DEBUG_VERBOSE,
    "%a:%a: Cr3Base=0x%Lx Physical=0x%Lx Length=0x%Lx Mode=%a CacheFlush=%u\n",
    gEfiCallerBaseName,
    __FUNCTION__,
    Cr3BaseAddress,
    PhysicalAddress,
    (UINT64)Length,
    (Mode == SetCBit) ? "Encrypt" : "Decrypt",
    (UINT32)CacheFlush
    ));

  //
  // Check if we have a valid memory encryption mask
  //
  AddressEncMask = InternalGetMemEncryptionAddressMask ();
  if (!AddressEncMask) {
    return RETURN_ACCESS_DENIED;
  }

  PgTableMask = AddressEncMask | EFI_PAGE_MASK;

  if (Length == 0) {
    return RETURN_INVALID_PARAMETER;
  }

  //
  // We are going to change the memory encryption attribute from C=0 -> C=1 or
  // vice versa Flush the caches to ensure that data is written into memory
  // with correct C-bit
  //
  if (CacheFlush) {
    WriteBackInvalidateDataCacheRange((VOID*) (UINTN)PhysicalAddress, Length);
  }

  //
  // Make sure that the page table is changeable.
  //
  IsWpEnabled = IsReadOnlyPageWriteProtected ();
  if (IsWpEnabled) {
    DisableReadOnlyPageWriteProtect ();
  }

  Status = EFI_SUCCESS;

  while (Length != 0)
  {
    //
    // If Cr3BaseAddress is not specified then read the current CR3
    //
    if (Cr3BaseAddress == 0) {
      Cr3BaseAddress = AsmReadCr3();
    }

    PageMapLevel4Entry = (VOID*) (Cr3BaseAddress & ~PgTableMask);
    PageMapLevel4Entry += PML4_OFFSET(PhysicalAddress);
    if (!PageMapLevel4Entry->Bits.Present) {
      DEBUG ((
        DEBUG_ERROR,
        "%a:%a: bad PML4 for Physical=0x%Lx\n",
        gEfiCallerBaseName,
        __FUNCTION__,
        PhysicalAddress
        ));
      Status = RETURN_NO_MAPPING;
      goto Done;
    }

    PageDirectory1GEntry = (VOID *)(
                             (PageMapLevel4Entry->Bits.PageTableBaseAddress <<
                              12) & ~PgTableMask
                             );
    PageDirectory1GEntry += PDP_OFFSET(PhysicalAddress);
    if (!PageDirectory1GEntry->Bits.Present) {
      DEBUG ((
        DEBUG_ERROR,
        "%a:%a: bad PDPE for Physical=0x%Lx\n",
        gEfiCallerBaseName,
        __FUNCTION__,
        PhysicalAddress
        ));
      Status = RETURN_NO_MAPPING;
      goto Done;
    }

    //
    // If the MustBe1 bit is not 1, it's not actually a 1GB entry
    //
    if (PageDirectory1GEntry->Bits.MustBe1) {
      //
      // Valid 1GB page
      // If we have at least 1GB to go, we can just update this entry
      //
      if ((PhysicalAddress & (BIT30 - 1)) == 0 && Length >= BIT30) {
        SetOrClearCBit(&PageDirectory1GEntry->Uint64, Mode);
        DEBUG ((
          DEBUG_VERBOSE,
          "%a:%a: updated 1GB entry for Physical=0x%Lx\n",
          gEfiCallerBaseName,
          __FUNCTION__,
          PhysicalAddress
          ));
        PhysicalAddress += BIT30;
        Length -= BIT30;
      } else {
        //
        // We must split the page
        //
        DEBUG ((
          DEBUG_VERBOSE,
          "%a:%a: splitting 1GB page for Physical=0x%Lx\n",
          gEfiCallerBaseName,
          __FUNCTION__,
          PhysicalAddress
          ));
        Split1GPageTo2M (
          (UINT64)PageDirectory1GEntry->Bits.PageTableBaseAddress << 30,
          (UINT64 *)PageDirectory1GEntry,
          0,
          0
          );
        continue;
      }
    } else {
      //
      // Actually a PDP
      //
      PageUpperDirectoryPointerEntry =
        (PAGE_MAP_AND_DIRECTORY_POINTER *)PageDirectory1GEntry;
      PageDirectory2MEntry =
        (VOID *)(
          (PageUpperDirectoryPointerEntry->Bits.PageTableBaseAddress <<
           12) & ~PgTableMask
          );
      PageDirectory2MEntry += PDE_OFFSET(PhysicalAddress);
      if (!PageDirectory2MEntry->Bits.Present) {
        DEBUG ((
          DEBUG_ERROR,
          "%a:%a: bad PDE for Physical=0x%Lx\n",
          gEfiCallerBaseName,
          __FUNCTION__,
          PhysicalAddress
          ));
        Status = RETURN_NO_MAPPING;
        goto Done;
      }
      //
      // If the MustBe1 bit is not a 1, it's not a 2MB entry
      //
      if (PageDirectory2MEntry->Bits.MustBe1) {
        //
        // Valid 2MB page
        // If we have at least 2MB left to go, we can just update this entry
        //
        if ((PhysicalAddress & (BIT21-1)) == 0 && Length >= BIT21) {
          SetOrClearCBit (&PageDirectory2MEntry->Uint64, Mode);
          PhysicalAddress += BIT21;
          Length -= BIT21;
        } else {
          //
          // We must split up this page into 4K pages
          //
          DEBUG ((
            DEBUG_VERBOSE,
            "%a:%a: splitting 2MB page for Physical=0x%Lx\n",
            gEfiCallerBaseName,
            __FUNCTION__,
            PhysicalAddress
            ));
          Split2MPageTo4K (
            (UINT64)PageDirectory2MEntry->Bits.PageTableBaseAddress << 21,
            (UINT64 *)PageDirectory2MEntry,
            0,
            0
            );
          continue;
        }
      } else {
        PageDirectoryPointerEntry =
          (PAGE_MAP_AND_DIRECTORY_POINTER *)PageDirectory2MEntry;
        PageTableEntry =
          (VOID *)(
            (PageDirectoryPointerEntry->Bits.PageTableBaseAddress <<
             12) & ~PgTableMask
            );
        PageTableEntry += PTE_OFFSET(PhysicalAddress);
        if (!PageTableEntry->Bits.Present) {
          DEBUG ((
            DEBUG_ERROR,
            "%a:%a: bad PTE for Physical=0x%Lx\n",
            gEfiCallerBaseName,
            __FUNCTION__,
            PhysicalAddress
            ));
          Status = RETURN_NO_MAPPING;
          goto Done;
        }
        SetOrClearCBit (&PageTableEntry->Uint64, Mode);
        PhysicalAddress += EFI_PAGE_SIZE;
        Length -= EFI_PAGE_SIZE;
      }
    }
  }

  //
  // Protect the page table by marking the memory used for page table to be
  // read-only.
  //
  if (IsWpEnabled) {
    EnablePageTableProtection ((UINTN)PageMapLevel4Entry, TRUE);
  }

  //
  // Flush TLB
  //
  CpuFlushTlb();

Done:
  //
  // Restore page table write protection, if any.
  //
  if (IsWpEnabled) {
    EnableReadOnlyPageWriteProtect ();
  }

  return Status;
}

/**
  This function clears memory encryption bit for the memory region specified by
  PhysicalAddress and Length from the current page table context.

  @param[in]  Cr3BaseAddress          Cr3 Base Address (if zero then use
                                      current CR3)
  @param[in]  PhysicalAddress         The physical address that is the start
                                      address of a memory region.
  @param[in]  Length                  The length of memory region

  @retval RETURN_SUCCESS              The attributes were cleared for the
                                      memory region.
  @retval RETURN_INVALID_PARAMETER    Number of pages is zero.
  @retval RETURN_UNSUPPORTED          Clearing the memory encyrption attribute
                                      is not supported
**/
RETURN_STATUS
EFIAPI
InternalMemEncryptSevSetMemoryDecrypted (
  IN  PHYSICAL_ADDRESS        Cr3BaseAddress,
  IN  PHYSICAL_ADDRESS        PhysicalAddress,
  IN  UINTN                   Length
  )
{

  return SetMemoryEncDec (
           Cr3BaseAddress,
           PhysicalAddress,
           Length,
           ClearCBit,
           TRUE
           );
}

/**
  This function sets memory encryption bit for the memory region specified by
  PhysicalAddress and Length from the current page table context.

  @param[in]  Cr3BaseAddress          Cr3 Base Address (if zero then use
                                      current CR3)
  @param[in]  PhysicalAddress         The physical address that is the start
                                      address of a memory region.
  @param[in]  Length                  The length of memory region

  @retval RETURN_SUCCESS              The attributes were set for the memory
                                      region.
  @retval RETURN_INVALID_PARAMETER    Number of pages is zero.
  @retval RETURN_UNSUPPORTED          Setting the memory encyrption attribute
                                      is not supported
**/
RETURN_STATUS
EFIAPI
InternalMemEncryptSevSetMemoryEncrypted (
  IN  PHYSICAL_ADDRESS        Cr3BaseAddress,
  IN  PHYSICAL_ADDRESS        PhysicalAddress,
  IN  UINTN                   Length
  )
{
  return SetMemoryEncDec (
           Cr3BaseAddress,
           PhysicalAddress,
           Length,
           SetCBit,
           TRUE
           );
}

/**
  This function clears memory encryption bit for the MMIO region specified by
  PhysicalAddress and Length.

  @param[in]  Cr3BaseAddress          Cr3 Base Address (if zero then use
                                      current CR3)
  @param[in]  PhysicalAddress         The physical address that is the start
                                      address of a MMIO region.
  @param[in]  Length                  The length of memory region

  @retval RETURN_SUCCESS              The attributes were cleared for the
                                      memory region.
  @retval RETURN_INVALID_PARAMETER    Length is zero.
  @retval RETURN_UNSUPPORTED          Clearing the memory encyrption attribute
                                      is not supported
**/
RETURN_STATUS
EFIAPI
InternalMemEncryptSevClearMmioPageEncMask (
  IN  PHYSICAL_ADDRESS        Cr3BaseAddress,
  IN  PHYSICAL_ADDRESS        PhysicalAddress,
  IN  UINTN                   Length
  )
{
  return SetMemoryEncDec (
           Cr3BaseAddress,
           PhysicalAddress,
           Length,
           ClearCBit,
           FALSE
           );
}