1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
/** @file
Stateful and implicitly initialized fw_cfg library implementation.
Copyright (C) 2013 - 2014, Red Hat, Inc.
Copyright (c) 2011 - 2013, Intel Corporation. All rights reserved.<BR>
(C) Copyright 2021 Hewlett Packard Enterprise Development LP<BR>
Copyright (c) 2024 Loongson Technology Corporation Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Uefi.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/IoLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/QemuFwCfgLib.h>
#include <libfdt.h>
#include "QemuFwCfgLibMmioInternal.h"
/**
To get firmware configure selector address.
@param VOID
@retval firmware configure selector address
**/
UINTN
EFIAPI
QemuGetFwCfgSelectorAddress (
VOID
)
{
QEMU_FW_CFG_RESOURCE *FwCfgResource;
FwCfgResource = QemuGetFwCfgResourceHob ();
ASSERT (FwCfgResource != NULL);
return FwCfgResource->FwCfgSelectorAddress;
}
/**
To get firmware configure Data address.
@param VOID
@retval firmware configure data address
**/
UINTN
EFIAPI
QemuGetFwCfgDataAddress (
VOID
)
{
QEMU_FW_CFG_RESOURCE *FwCfgResource;
FwCfgResource = QemuGetFwCfgResourceHob ();
ASSERT (FwCfgResource != NULL);
return FwCfgResource->FwCfgDataAddress;
}
/**
To get firmware DMA address.
@param VOID
@retval firmware DMA address
**/
UINTN
EFIAPI
QemuGetFwCfgDmaAddress (
VOID
)
{
QEMU_FW_CFG_RESOURCE *FwCfgResource;
FwCfgResource = QemuGetFwCfgResourceHob ();
ASSERT (FwCfgResource != NULL);
return FwCfgResource->FwCfgDmaAddress;
}
RETURN_STATUS
EFIAPI
QemuFwCfgInitialize (
VOID
)
{
VOID *DeviceTreeBase;
INT32 Node;
INT32 Prev;
UINT32 Signature;
CONST CHAR8 *Type;
INT32 Len;
CONST UINT64 *Reg;
UINT64 FwCfgSelectorAddress;
UINT64 FwCfgSelectorSize;
UINT64 FwCfgDataAddress;
UINT64 FwCfgDataSize;
UINT64 FwCfgDmaAddress;
UINT64 FwCfgDmaSize;
QEMU_FW_CFG_RESOURCE *FwCfgResource;
//
// Check whether the Qemu firmware configure resources HOB has been created,
// if so use the resources in the HOB.
//
FwCfgResource = QemuGetFwCfgResourceHob ();
if (FwCfgResource != NULL) {
return RETURN_SUCCESS;
}
DeviceTreeBase = (VOID *)(UINTN)PcdGet64 (PcdDeviceTreeInitialBaseAddress);
ASSERT (DeviceTreeBase != NULL);
//
// Make sure we have a valid device tree blob
//
ASSERT (fdt_check_header (DeviceTreeBase) == 0);
//
// Create resouce memory
//
FwCfgResource = AllocateZeroPool (sizeof (QEMU_FW_CFG_RESOURCE));
ASSERT (FwCfgResource != NULL);
for (Prev = 0; ; Prev = Node) {
Node = fdt_next_node (DeviceTreeBase, Prev, NULL);
if (Node < 0) {
break;
}
//
// Check for memory node
//
Type = fdt_getprop (DeviceTreeBase, Node, "compatible", &Len);
if ((Type != NULL) &&
(AsciiStrnCmp (Type, "qemu,fw-cfg-mmio", Len) == 0))
{
//
// Get the 'reg' property of this node. For now, we will assume
// two 8 byte quantities for base and size, respectively.
//
Reg = fdt_getprop (DeviceTreeBase, Node, "reg", &Len);
if ((Reg != 0) && (Len == (2 * sizeof (UINT64)))) {
FwCfgDataAddress = SwapBytes64 (Reg[0]);
FwCfgDataSize = 8;
FwCfgSelectorAddress = FwCfgDataAddress + FwCfgDataSize;
FwCfgSelectorSize = 2;
//
// The following ASSERT()s express
//
// Address + Size - 1 <= MAX_UINTN
//
// for both registers, that is, that the last byte in each MMIO range is
// expressible as a MAX_UINTN. The form below is mathematically
// equivalent, and it also prevents any unsigned overflow before the
// comparison.
//
ASSERT (FwCfgSelectorAddress <= MAX_UINTN - FwCfgSelectorSize + 1);
ASSERT (FwCfgDataAddress <= MAX_UINTN - FwCfgDataSize + 1);
FwCfgResource->FwCfgSelectorAddress = FwCfgSelectorAddress;
FwCfgResource->FwCfgDataAddress = FwCfgDataAddress;
DEBUG ((
DEBUG_INFO,
"Found FwCfg @ 0x%Lx/0x%Lx\n",
FwCfgSelectorAddress,
FwCfgDataAddress
));
if (SwapBytes64 (Reg[1]) >= 0x18) {
FwCfgDmaAddress = FwCfgDataAddress + 0x10;
FwCfgDmaSize = 0x08;
//
// See explanation above.
//
ASSERT (FwCfgDmaAddress <= MAX_UINTN - FwCfgDmaSize + 1);
DEBUG ((DEBUG_INFO, "Found FwCfg DMA @ 0x%Lx\n", FwCfgDmaAddress));
FwCfgResource->FwCfgDmaAddress = FwCfgDmaAddress;
} else {
FwCfgDmaAddress = 0;
}
if ((FwCfgSelectorAddress != 0) && (FwCfgDataAddress != 0)) {
//
// Select Item Signature
//
MmioWrite16 (FwCfgSelectorAddress, SwapBytes16 ((UINT16)QemuFwCfgItemSignature));
//
// Readout the Signature.
//
Signature = MmioRead32 (FwCfgDataAddress);
if (Signature == SIGNATURE_32 ('Q', 'E', 'M', 'U')) {
//
// Build the firmware configure resource HOB.
//
QemuBuildFwCfgResourceHob (FwCfgResource);
} else {
FwCfgResource->FwCfgDataAddress = 0;
FwCfgResource->FwCfgSelectorAddress = 0;
FwCfgResource->FwCfgDmaAddress = 0;
DEBUG ((
DEBUG_ERROR,
"%a: Signature dose not match QEMU!\n",
__func__
));
break;
}
}
break;
} else {
DEBUG ((
DEBUG_ERROR,
"%a: Failed to parse FDT QemuCfg node\n",
__func__
));
break;
}
}
}
return RETURN_SUCCESS;
}
|