summaryrefslogtreecommitdiffstats
path: root/OvmfPkg/PlatformPei/MemDetect.c
blob: 2f9e835513649457e2746015a7042cb161d34728 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
/**@file
  Memory Detection for Virtual Machines.

  Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
  This program and the accompanying materials
  are licensed and made available under the terms and conditions of the BSD License
  which accompanies this distribution.  The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

Module Name:

  MemDetect.c

**/

//
// The package level header files this module uses
//
#include <IndustryStandard/E820.h>
#include <IndustryStandard/Q35MchIch9.h>
#include <PiPei.h>

//
// The Library classes this module consumes
//
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/HobLib.h>
#include <Library/IoLib.h>
#include <Library/PcdLib.h>
#include <Library/PciLib.h>
#include <Library/PeimEntryPoint.h>
#include <Library/ResourcePublicationLib.h>
#include <Library/MtrrLib.h>
#include <Library/QemuFwCfgLib.h>

#include "Platform.h"
#include "Cmos.h"

UINT8 mPhysMemAddressWidth;

STATIC UINT32 mS3AcpiReservedMemoryBase;
STATIC UINT32 mS3AcpiReservedMemorySize;

STATIC UINT16 mQ35TsegMbytes;

VOID
Q35TsegMbytesInitialization (
  VOID
  )
{
  UINT16        ExtendedTsegMbytes;
  RETURN_STATUS PcdStatus;

  if (mHostBridgeDevId != INTEL_Q35_MCH_DEVICE_ID) {
    DEBUG ((
      DEBUG_ERROR,
      "%a: no TSEG (SMRAM) on host bridge DID=0x%04x; "
      "only DID=0x%04x (Q35) is supported\n",
      __FUNCTION__,
      mHostBridgeDevId,
      INTEL_Q35_MCH_DEVICE_ID
      ));
    ASSERT (FALSE);
    CpuDeadLoop ();
  }

  //
  // Check if QEMU offers an extended TSEG.
  //
  // This can be seen from writing MCH_EXT_TSEG_MB_QUERY to the MCH_EXT_TSEG_MB
  // register, and reading back the register.
  //
  // On a QEMU machine type that does not offer an extended TSEG, the initial
  // write overwrites whatever value a malicious guest OS may have placed in
  // the (unimplemented) register, before entering S3 or rebooting.
  // Subsequently, the read returns MCH_EXT_TSEG_MB_QUERY unchanged.
  //
  // On a QEMU machine type that offers an extended TSEG, the initial write
  // triggers an update to the register. Subsequently, the value read back
  // (which is guaranteed to differ from MCH_EXT_TSEG_MB_QUERY) tells us the
  // number of megabytes.
  //
  PciWrite16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB), MCH_EXT_TSEG_MB_QUERY);
  ExtendedTsegMbytes = PciRead16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB));
  if (ExtendedTsegMbytes == MCH_EXT_TSEG_MB_QUERY) {
    mQ35TsegMbytes = PcdGet16 (PcdQ35TsegMbytes);
    return;
  }

  DEBUG ((
    DEBUG_INFO,
    "%a: QEMU offers an extended TSEG (%d MB)\n",
    __FUNCTION__,
    ExtendedTsegMbytes
    ));
  PcdStatus = PcdSet16S (PcdQ35TsegMbytes, ExtendedTsegMbytes);
  ASSERT_RETURN_ERROR (PcdStatus);
  mQ35TsegMbytes = ExtendedTsegMbytes;
}


/**
  Iterate over the RAM entries in QEMU's fw_cfg E820 RAM map that start outside
  of the 32-bit address range.

  Find the highest exclusive >=4GB RAM address, or produce memory resource
  descriptor HOBs for RAM entries that start at or above 4GB.

  @param[out] MaxAddress  If MaxAddress is NULL, then ScanOrAdd64BitE820Ram()
                          produces memory resource descriptor HOBs for RAM
                          entries that start at or above 4GB.

                          Otherwise, MaxAddress holds the highest exclusive
                          >=4GB RAM address on output. If QEMU's fw_cfg E820
                          RAM map contains no RAM entry that starts outside of
                          the 32-bit address range, then MaxAddress is exactly
                          4GB on output.

  @retval EFI_SUCCESS         The fw_cfg E820 RAM map was found and processed.

  @retval EFI_PROTOCOL_ERROR  The RAM map was found, but its size wasn't a
                              whole multiple of sizeof(EFI_E820_ENTRY64). No
                              RAM entry was processed.

  @return                     Error codes from QemuFwCfgFindFile(). No RAM
                              entry was processed.
**/
STATIC
EFI_STATUS
ScanOrAdd64BitE820Ram (
  OUT UINT64 *MaxAddress OPTIONAL
  )
{
  EFI_STATUS           Status;
  FIRMWARE_CONFIG_ITEM FwCfgItem;
  UINTN                FwCfgSize;
  EFI_E820_ENTRY64     E820Entry;
  UINTN                Processed;

  Status = QemuFwCfgFindFile ("etc/e820", &FwCfgItem, &FwCfgSize);
  if (EFI_ERROR (Status)) {
    return Status;
  }
  if (FwCfgSize % sizeof E820Entry != 0) {
    return EFI_PROTOCOL_ERROR;
  }

  if (MaxAddress != NULL) {
    *MaxAddress = BASE_4GB;
  }

  QemuFwCfgSelectItem (FwCfgItem);
  for (Processed = 0; Processed < FwCfgSize; Processed += sizeof E820Entry) {
    QemuFwCfgReadBytes (sizeof E820Entry, &E820Entry);
    DEBUG ((
      DEBUG_VERBOSE,
      "%a: Base=0x%Lx Length=0x%Lx Type=%u\n",
      __FUNCTION__,
      E820Entry.BaseAddr,
      E820Entry.Length,
      E820Entry.Type
      ));
    if (E820Entry.Type == EfiAcpiAddressRangeMemory &&
        E820Entry.BaseAddr >= BASE_4GB) {
      if (MaxAddress == NULL) {
        UINT64 Base;
        UINT64 End;

        //
        // Round up the start address, and round down the end address.
        //
        Base = ALIGN_VALUE (E820Entry.BaseAddr, (UINT64)EFI_PAGE_SIZE);
        End = (E820Entry.BaseAddr + E820Entry.Length) &
              ~(UINT64)EFI_PAGE_MASK;
        if (Base < End) {
          AddMemoryRangeHob (Base, End);
          DEBUG ((
            DEBUG_VERBOSE,
            "%a: AddMemoryRangeHob [0x%Lx, 0x%Lx)\n",
            __FUNCTION__,
            Base,
            End
            ));
        }
      } else {
        UINT64 Candidate;

        Candidate = E820Entry.BaseAddr + E820Entry.Length;
        if (Candidate > *MaxAddress) {
          *MaxAddress = Candidate;
          DEBUG ((
            DEBUG_VERBOSE,
            "%a: MaxAddress=0x%Lx\n",
            __FUNCTION__,
            *MaxAddress
            ));
        }
      }
    }
  }
  return EFI_SUCCESS;
}


UINT32
GetSystemMemorySizeBelow4gb (
  VOID
  )
{
  UINT8 Cmos0x34;
  UINT8 Cmos0x35;

  //
  // CMOS 0x34/0x35 specifies the system memory above 16 MB.
  // * CMOS(0x35) is the high byte
  // * CMOS(0x34) is the low byte
  // * The size is specified in 64kb chunks
  // * Since this is memory above 16MB, the 16MB must be added
  //   into the calculation to get the total memory size.
  //

  Cmos0x34 = (UINT8) CmosRead8 (0x34);
  Cmos0x35 = (UINT8) CmosRead8 (0x35);

  return (UINT32) (((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);
}


STATIC
UINT64
GetSystemMemorySizeAbove4gb (
  )
{
  UINT32 Size;
  UINTN  CmosIndex;

  //
  // CMOS 0x5b-0x5d specifies the system memory above 4GB MB.
  // * CMOS(0x5d) is the most significant size byte
  // * CMOS(0x5c) is the middle size byte
  // * CMOS(0x5b) is the least significant size byte
  // * The size is specified in 64kb chunks
  //

  Size = 0;
  for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) {
    Size = (UINT32) (Size << 8) + (UINT32) CmosRead8 (CmosIndex);
  }

  return LShiftU64 (Size, 16);
}


/**
  Return the highest address that DXE could possibly use, plus one.
**/
STATIC
UINT64
GetFirstNonAddress (
  VOID
  )
{
  UINT64               FirstNonAddress;
  UINT64               Pci64Base, Pci64Size;
  CHAR8                MbString[7 + 1];
  EFI_STATUS           Status;
  FIRMWARE_CONFIG_ITEM FwCfgItem;
  UINTN                FwCfgSize;
  UINT64               HotPlugMemoryEnd;
  RETURN_STATUS        PcdStatus;

  //
  // set FirstNonAddress to suppress incorrect compiler/analyzer warnings
  //
  FirstNonAddress = 0;

  //
  // If QEMU presents an E820 map, then get the highest exclusive >=4GB RAM
  // address from it. This can express an address >= 4GB+1TB.
  //
  // Otherwise, get the flat size of the memory above 4GB from the CMOS (which
  // can only express a size smaller than 1TB), and add it to 4GB.
  //
  Status = ScanOrAdd64BitE820Ram (&FirstNonAddress);
  if (EFI_ERROR (Status)) {
    FirstNonAddress = BASE_4GB + GetSystemMemorySizeAbove4gb ();
  }

  //
  // If DXE is 32-bit, then we're done; PciBusDxe will degrade 64-bit MMIO
  // resources to 32-bit anyway. See DegradeResource() in
  // "PciResourceSupport.c".
  //
#ifdef MDE_CPU_IA32
  if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
    return FirstNonAddress;
  }
#endif

  //
  // Otherwise, in order to calculate the highest address plus one, we must
  // consider the 64-bit PCI host aperture too. Fetch the default size.
  //
  Pci64Size = PcdGet64 (PcdPciMmio64Size);

  //
  // See if the user specified the number of megabytes for the 64-bit PCI host
  // aperture. The number of non-NUL characters in MbString allows for
  // 9,999,999 MB, which is approximately 10 TB.
  //
  // As signaled by the "X-" prefix, this knob is experimental, and might go
  // away at any time.
  //
  Status = QemuFwCfgFindFile ("opt/ovmf/X-PciMmio64Mb", &FwCfgItem,
             &FwCfgSize);
  if (!EFI_ERROR (Status)) {
    if (FwCfgSize >= sizeof MbString) {
      DEBUG ((EFI_D_WARN,
        "%a: ignoring malformed 64-bit PCI host aperture size from fw_cfg\n",
        __FUNCTION__));
    } else {
      QemuFwCfgSelectItem (FwCfgItem);
      QemuFwCfgReadBytes (FwCfgSize, MbString);
      MbString[FwCfgSize] = '\0';
      Pci64Size = LShiftU64 (AsciiStrDecimalToUint64 (MbString), 20);
    }
  }

  if (Pci64Size == 0) {
    if (mBootMode != BOOT_ON_S3_RESUME) {
      DEBUG ((EFI_D_INFO, "%a: disabling 64-bit PCI host aperture\n",
        __FUNCTION__));
      PcdStatus = PcdSet64S (PcdPciMmio64Size, 0);
      ASSERT_RETURN_ERROR (PcdStatus);
    }

    //
    // There's nothing more to do; the amount of memory above 4GB fully
    // determines the highest address plus one. The memory hotplug area (see
    // below) plays no role for the firmware in this case.
    //
    return FirstNonAddress;
  }

  //
  // The "etc/reserved-memory-end" fw_cfg file, when present, contains an
  // absolute, exclusive end address for the memory hotplug area. This area
  // starts right at the end of the memory above 4GB. The 64-bit PCI host
  // aperture must be placed above it.
  //
  Status = QemuFwCfgFindFile ("etc/reserved-memory-end", &FwCfgItem,
             &FwCfgSize);
  if (!EFI_ERROR (Status) && FwCfgSize == sizeof HotPlugMemoryEnd) {
    QemuFwCfgSelectItem (FwCfgItem);
    QemuFwCfgReadBytes (FwCfgSize, &HotPlugMemoryEnd);
    DEBUG ((DEBUG_VERBOSE, "%a: HotPlugMemoryEnd=0x%Lx\n", __FUNCTION__,
      HotPlugMemoryEnd));

    ASSERT (HotPlugMemoryEnd >= FirstNonAddress);
    FirstNonAddress = HotPlugMemoryEnd;
  }

  //
  // SeaBIOS aligns both boundaries of the 64-bit PCI host aperture to 1GB, so
  // that the host can map it with 1GB hugepages. Follow suit.
  //
  Pci64Base = ALIGN_VALUE (FirstNonAddress, (UINT64)SIZE_1GB);
  Pci64Size = ALIGN_VALUE (Pci64Size, (UINT64)SIZE_1GB);

  //
  // The 64-bit PCI host aperture should also be "naturally" aligned. The
  // alignment is determined by rounding the size of the aperture down to the
  // next smaller or equal power of two. That is, align the aperture by the
  // largest BAR size that can fit into it.
  //
  Pci64Base = ALIGN_VALUE (Pci64Base, GetPowerOfTwo64 (Pci64Size));

  if (mBootMode != BOOT_ON_S3_RESUME) {
    //
    // The core PciHostBridgeDxe driver will automatically add this range to
    // the GCD memory space map through our PciHostBridgeLib instance; here we
    // only need to set the PCDs.
    //
    PcdStatus = PcdSet64S (PcdPciMmio64Base, Pci64Base);
    ASSERT_RETURN_ERROR (PcdStatus);
    PcdStatus = PcdSet64S (PcdPciMmio64Size, Pci64Size);
    ASSERT_RETURN_ERROR (PcdStatus);

    DEBUG ((EFI_D_INFO, "%a: Pci64Base=0x%Lx Pci64Size=0x%Lx\n",
      __FUNCTION__, Pci64Base, Pci64Size));
  }

  //
  // The useful address space ends with the 64-bit PCI host aperture.
  //
  FirstNonAddress = Pci64Base + Pci64Size;
  return FirstNonAddress;
}


/**
  Initialize the mPhysMemAddressWidth variable, based on guest RAM size.
**/
VOID
AddressWidthInitialization (
  VOID
  )
{
  UINT64 FirstNonAddress;

  //
  // As guest-physical memory size grows, the permanent PEI RAM requirements
  // are dominated by the identity-mapping page tables built by the DXE IPL.
  // The DXL IPL keys off of the physical address bits advertized in the CPU
  // HOB. To conserve memory, we calculate the minimum address width here.
  //
  FirstNonAddress      = GetFirstNonAddress ();
  mPhysMemAddressWidth = (UINT8)HighBitSet64 (FirstNonAddress);

  //
  // If FirstNonAddress is not an integral power of two, then we need an
  // additional bit.
  //
  if ((FirstNonAddress & (FirstNonAddress - 1)) != 0) {
    ++mPhysMemAddressWidth;
  }

  //
  // The minimum address width is 36 (covers up to and excluding 64 GB, which
  // is the maximum for Ia32 + PAE). The theoretical architecture maximum for
  // X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We
  // can simply assert that here, since 48 bits are good enough for 256 TB.
  //
  if (mPhysMemAddressWidth <= 36) {
    mPhysMemAddressWidth = 36;
  }
  ASSERT (mPhysMemAddressWidth <= 48);
}


/**
  Calculate the cap for the permanent PEI memory.
**/
STATIC
UINT32
GetPeiMemoryCap (
  VOID
  )
{
  BOOLEAN Page1GSupport;
  UINT32  RegEax;
  UINT32  RegEdx;
  UINT32  Pml4Entries;
  UINT32  PdpEntries;
  UINTN   TotalPages;

  //
  // If DXE is 32-bit, then just return the traditional 64 MB cap.
  //
#ifdef MDE_CPU_IA32
  if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
    return SIZE_64MB;
  }
#endif

  //
  // Dependent on physical address width, PEI memory allocations can be
  // dominated by the page tables built for 64-bit DXE. So we key the cap off
  // of those. The code below is based on CreateIdentityMappingPageTables() in
  // "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c".
  //
  Page1GSupport = FALSE;
  if (PcdGetBool (PcdUse1GPageTable)) {
    AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
    if (RegEax >= 0x80000001) {
      AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
      if ((RegEdx & BIT26) != 0) {
        Page1GSupport = TRUE;
      }
    }
  }

  if (mPhysMemAddressWidth <= 39) {
    Pml4Entries = 1;
    PdpEntries = 1 << (mPhysMemAddressWidth - 30);
    ASSERT (PdpEntries <= 0x200);
  } else {
    Pml4Entries = 1 << (mPhysMemAddressWidth - 39);
    ASSERT (Pml4Entries <= 0x200);
    PdpEntries = 512;
  }

  TotalPages = Page1GSupport ? Pml4Entries + 1 :
                               (PdpEntries + 1) * Pml4Entries + 1;
  ASSERT (TotalPages <= 0x40201);

  //
  // Add 64 MB for miscellaneous allocations. Note that for
  // mPhysMemAddressWidth values close to 36, the cap will actually be
  // dominated by this increment.
  //
  return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB);
}


/**
  Publish PEI core memory

  @return EFI_SUCCESS     The PEIM initialized successfully.

**/
EFI_STATUS
PublishPeiMemory (
  VOID
  )
{
  EFI_STATUS                  Status;
  EFI_PHYSICAL_ADDRESS        MemoryBase;
  UINT64                      MemorySize;
  UINT32                      LowerMemorySize;
  UINT32                      PeiMemoryCap;

  LowerMemorySize = GetSystemMemorySizeBelow4gb ();
  if (FeaturePcdGet (PcdSmmSmramRequire)) {
    //
    // TSEG is chipped from the end of low RAM
    //
    LowerMemorySize -= mQ35TsegMbytes * SIZE_1MB;
  }

  //
  // If S3 is supported, then the S3 permanent PEI memory is placed next,
  // downwards. Its size is primarily dictated by CpuMpPei. The formula below
  // is an approximation.
  //
  if (mS3Supported) {
    mS3AcpiReservedMemorySize = SIZE_512KB +
      mMaxCpuCount *
      PcdGet32 (PcdCpuApStackSize);
    mS3AcpiReservedMemoryBase = LowerMemorySize - mS3AcpiReservedMemorySize;
    LowerMemorySize = mS3AcpiReservedMemoryBase;
  }

  if (mBootMode == BOOT_ON_S3_RESUME) {
    MemoryBase = mS3AcpiReservedMemoryBase;
    MemorySize = mS3AcpiReservedMemorySize;
  } else {
    PeiMemoryCap = GetPeiMemoryCap ();
    DEBUG ((EFI_D_INFO, "%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n",
      __FUNCTION__, mPhysMemAddressWidth, PeiMemoryCap >> 10));

    //
    // Determine the range of memory to use during PEI
    //
    // Technically we could lay the permanent PEI RAM over SEC's temporary
    // decompression and scratch buffer even if "secure S3" is needed, since
    // their lifetimes don't overlap. However, PeiFvInitialization() will cover
    // RAM up to PcdOvmfDecompressionScratchEnd with an EfiACPIMemoryNVS memory
    // allocation HOB, and other allocations served from the permanent PEI RAM
    // shouldn't overlap with that HOB.
    //
    MemoryBase = mS3Supported && FeaturePcdGet (PcdSmmSmramRequire) ?
      PcdGet32 (PcdOvmfDecompressionScratchEnd) :
      PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize);
    MemorySize = LowerMemorySize - MemoryBase;
    if (MemorySize > PeiMemoryCap) {
      MemoryBase = LowerMemorySize - PeiMemoryCap;
      MemorySize = PeiMemoryCap;
    }
  }

  //
  // Publish this memory to the PEI Core
  //
  Status = PublishSystemMemory(MemoryBase, MemorySize);
  ASSERT_EFI_ERROR (Status);

  return Status;
}


/**
  Peform Memory Detection for QEMU / KVM

**/
STATIC
VOID
QemuInitializeRam (
  VOID
  )
{
  UINT64                      LowerMemorySize;
  UINT64                      UpperMemorySize;
  MTRR_SETTINGS               MtrrSettings;
  EFI_STATUS                  Status;

  DEBUG ((EFI_D_INFO, "%a called\n", __FUNCTION__));

  //
  // Determine total memory size available
  //
  LowerMemorySize = GetSystemMemorySizeBelow4gb ();
  UpperMemorySize = GetSystemMemorySizeAbove4gb ();

  if (mBootMode == BOOT_ON_S3_RESUME) {
    //
    // Create the following memory HOB as an exception on the S3 boot path.
    //
    // Normally we'd create memory HOBs only on the normal boot path. However,
    // CpuMpPei specifically needs such a low-memory HOB on the S3 path as
    // well, for "borrowing" a subset of it temporarily, for the AP startup
    // vector.
    //
    // CpuMpPei saves the original contents of the borrowed area in permanent
    // PEI RAM, in a backup buffer allocated with the normal PEI services.
    // CpuMpPei restores the original contents ("returns" the borrowed area) at
    // End-of-PEI. End-of-PEI in turn is emitted by S3Resume2Pei before
    // transferring control to the OS's wakeup vector in the FACS.
    //
    // We expect any other PEIMs that "borrow" memory similarly to CpuMpPei to
    // restore the original contents. Furthermore, we expect all such PEIMs
    // (CpuMpPei included) to claim the borrowed areas by producing memory
    // allocation HOBs, and to honor preexistent memory allocation HOBs when
    // looking for an area to borrow.
    //
    AddMemoryRangeHob (0, BASE_512KB + BASE_128KB);
  } else {
    //
    // Create memory HOBs
    //
    AddMemoryRangeHob (0, BASE_512KB + BASE_128KB);

    if (FeaturePcdGet (PcdSmmSmramRequire)) {
      UINT32 TsegSize;

      TsegSize = mQ35TsegMbytes * SIZE_1MB;
      AddMemoryRangeHob (BASE_1MB, LowerMemorySize - TsegSize);
      AddReservedMemoryBaseSizeHob (LowerMemorySize - TsegSize, TsegSize,
        TRUE);
    } else {
      AddMemoryRangeHob (BASE_1MB, LowerMemorySize);
    }

    //
    // If QEMU presents an E820 map, then create memory HOBs for the >=4GB RAM
    // entries. Otherwise, create a single memory HOB with the flat >=4GB
    // memory size read from the CMOS.
    //
    Status = ScanOrAdd64BitE820Ram (NULL);
    if (EFI_ERROR (Status) && UpperMemorySize != 0) {
      AddMemoryBaseSizeHob (BASE_4GB, UpperMemorySize);
    }
  }

  //
  // We'd like to keep the following ranges uncached:
  // - [640 KB, 1 MB)
  // - [LowerMemorySize, 4 GB)
  //
  // Everything else should be WB. Unfortunately, programming the inverse (ie.
  // keeping the default UC, and configuring the complement set of the above as
  // WB) is not reliable in general, because the end of the upper RAM can have
  // practically any alignment, and we may not have enough variable MTRRs to
  // cover it exactly.
  //
  if (IsMtrrSupported ()) {
    MtrrGetAllMtrrs (&MtrrSettings);

    //
    // MTRRs disabled, fixed MTRRs disabled, default type is uncached
    //
    ASSERT ((MtrrSettings.MtrrDefType & BIT11) == 0);
    ASSERT ((MtrrSettings.MtrrDefType & BIT10) == 0);
    ASSERT ((MtrrSettings.MtrrDefType & 0xFF) == 0);

    //
    // flip default type to writeback
    //
    SetMem (&MtrrSettings.Fixed, sizeof MtrrSettings.Fixed, 0x06);
    ZeroMem (&MtrrSettings.Variables, sizeof MtrrSettings.Variables);
    MtrrSettings.MtrrDefType |= BIT11 | BIT10 | 6;
    MtrrSetAllMtrrs (&MtrrSettings);

    //
    // Set memory range from 640KB to 1MB to uncacheable
    //
    Status = MtrrSetMemoryAttribute (BASE_512KB + BASE_128KB,
               BASE_1MB - (BASE_512KB + BASE_128KB), CacheUncacheable);
    ASSERT_EFI_ERROR (Status);

    //
    // Set memory range from the "top of lower RAM" (RAM below 4GB) to 4GB as
    // uncacheable
    //
    Status = MtrrSetMemoryAttribute (LowerMemorySize,
               SIZE_4GB - LowerMemorySize, CacheUncacheable);
    ASSERT_EFI_ERROR (Status);
  }
}

/**
  Publish system RAM and reserve memory regions

**/
VOID
InitializeRamRegions (
  VOID
  )
{
  if (!mXen) {
    QemuInitializeRam ();
  } else {
    XenPublishRamRegions ();
  }

  if (mS3Supported && mBootMode != BOOT_ON_S3_RESUME) {
    //
    // This is the memory range that will be used for PEI on S3 resume
    //
    BuildMemoryAllocationHob (
      mS3AcpiReservedMemoryBase,
      mS3AcpiReservedMemorySize,
      EfiACPIMemoryNVS
      );

    //
    // Cover the initial RAM area used as stack and temporary PEI heap.
    //
    // This is reserved as ACPI NVS so it can be used on S3 resume.
    //
    BuildMemoryAllocationHob (
      PcdGet32 (PcdOvmfSecPeiTempRamBase),
      PcdGet32 (PcdOvmfSecPeiTempRamSize),
      EfiACPIMemoryNVS
      );

    //
    // SEC stores its table of GUIDed section handlers here.
    //
    BuildMemoryAllocationHob (
      PcdGet64 (PcdGuidedExtractHandlerTableAddress),
      PcdGet32 (PcdGuidedExtractHandlerTableSize),
      EfiACPIMemoryNVS
      );

#ifdef MDE_CPU_X64
    //
    // Reserve the initial page tables built by the reset vector code.
    //
    // Since this memory range will be used by the Reset Vector on S3
    // resume, it must be reserved as ACPI NVS.
    //
    BuildMemoryAllocationHob (
      (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfSecPageTablesBase),
      (UINT64)(UINTN) PcdGet32 (PcdOvmfSecPageTablesSize),
      EfiACPIMemoryNVS
      );
#endif
  }

  if (mBootMode != BOOT_ON_S3_RESUME) {
    if (!FeaturePcdGet (PcdSmmSmramRequire)) {
      //
      // Reserve the lock box storage area
      //
      // Since this memory range will be used on S3 resume, it must be
      // reserved as ACPI NVS.
      //
      // If S3 is unsupported, then various drivers might still write to the
      // LockBox area. We ought to prevent DXE from serving allocation requests
      // such that they would overlap the LockBox storage.
      //
      ZeroMem (
        (VOID*)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),
        (UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize)
        );
      BuildMemoryAllocationHob (
        (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),
        (UINT64)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize),
        mS3Supported ? EfiACPIMemoryNVS : EfiBootServicesData
        );
    }

    if (FeaturePcdGet (PcdSmmSmramRequire)) {
      UINT32 TsegSize;

      //
      // Make sure the TSEG area that we reported as a reserved memory resource
      // cannot be used for reserved memory allocations.
      //
      TsegSize = mQ35TsegMbytes * SIZE_1MB;
      BuildMemoryAllocationHob (
        GetSystemMemorySizeBelow4gb() - TsegSize,
        TsegSize,
        EfiReservedMemoryType
        );
    }
  }
}