1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
;------------------------------------------------------------------------------
; @file
; Provide the functions to check whether SEV and SEV-ES is enabled.
;
; Copyright (c) 2017 - 2021, Advanced Micro Devices, Inc. All rights reserved.<BR>
; SPDX-License-Identifier: BSD-2-Clause-Patent
;
;------------------------------------------------------------------------------
BITS 32
;
; SEV-ES #VC exception handler support
;
; #VC handler local variable locations
;
%define VC_CPUID_RESULT_EAX 0
%define VC_CPUID_RESULT_EBX 4
%define VC_CPUID_RESULT_ECX 8
%define VC_CPUID_RESULT_EDX 12
%define VC_GHCB_MSR_EDX 16
%define VC_GHCB_MSR_EAX 20
%define VC_CPUID_REQUEST_REGISTER 24
%define VC_CPUID_FUNCTION 28
; #VC handler total local variable size
;
%define VC_VARIABLE_SIZE 32
; #VC handler GHCB CPUID request/response protocol values
;
%define GHCB_CPUID_REQUEST 4
%define GHCB_CPUID_RESPONSE 5
%define GHCB_CPUID_REGISTER_SHIFT 30
%define CPUID_INSN_LEN 2
%define SEV_GHCB_MSR 0xc0010130
%define SEV_STATUS_MSR 0xc0010131
; The #VC was not for CPUID
%define TERM_VC_NOT_CPUID 1
; The unexpected response code
%define TERM_UNEXPECTED_RESP_CODE 2
; Macro is used to issue the MSR protocol based VMGEXIT. The caller is
; responsible to populate values in the EDX:EAX registers. After the vmmcall
; returns, it verifies that the response code matches with the expected
; code. If it does not match then terminate the guest. The result of request
; is returned in the EDX:EAX.
;
; args 1:Request code, 2: Response code
%macro VmgExit 2
;
; Add request code:
; GHCB_MSR[11:0] = Request code
or eax, %1
mov ecx, SEV_GHCB_MSR
wrmsr
; Issue VMGEXIT - NASM doesn't support the vmmcall instruction in 32-bit
; mode, so work around this by temporarily switching to 64-bit mode.
;
BITS 64
rep vmmcall
BITS 32
mov ecx, SEV_GHCB_MSR
rdmsr
;
; Verify the reponse code, if it does not match then request to terminate
; GHCB_MSR[11:0] = Response code
mov ecx, eax
and ecx, 0xfff
cmp ecx, %2
jne SevEsUnexpectedRespTerminate
%endmacro
; Macro to terminate the guest using the VMGEXIT.
; arg 1: reason code
%macro TerminateVmgExit 1
mov eax, %1
;
; Use VMGEXIT to request termination. At this point the reason code is
; located in EAX, so shift it left 16 bits to the proper location.
;
; EAX[11:0] => 0x100 - request termination
; EAX[15:12] => 0x1 - OVMF
; EAX[23:16] => 0xXX - REASON CODE
;
shl eax, 16
or eax, 0x1100
xor edx, edx
mov ecx, SEV_GHCB_MSR
wrmsr
;
; Issue VMGEXIT - NASM doesn't support the vmmcall instruction in 32-bit
; mode, so work around this by temporarily switching to 64-bit mode.
;
BITS 64
rep vmmcall
BITS 32
;
; We shouldn't come back from the VMGEXIT, but if we do, just loop.
;
%%TerminateHlt:
hlt
jmp %%TerminateHlt
%endmacro
; Terminate the guest due to unexpected response code.
SevEsUnexpectedRespTerminate:
TerminateVmgExit TERM_UNEXPECTED_RESP_CODE
; Check if Secure Encrypted Virtualization (SEV) features are enabled.
;
; Register usage is tight in this routine, so multiple calls for the
; same CPUID and MSR data are performed to keep things simple.
;
; Modified: EAX, EBX, ECX, EDX, ESP
;
; If SEV is enabled then EAX will be at least 32.
; If SEV is disabled then EAX will be zero.
;
CheckSevFeatures:
; Set the first byte of the workarea to zero to communicate to the SEC
; phase that SEV-ES is not enabled. If SEV-ES is enabled, the CPUID
; instruction will trigger a #VC exception where the first byte of the
; workarea will be set to one or, if CPUID is not being intercepted,
; the MSR check below will set the first byte of the workarea to one.
mov byte[SEV_ES_WORK_AREA], 0
;
; Set up exception handlers to check for SEV-ES
; Load temporary RAM stack based on PCDs (see SevEsIdtVmmComm for
; stack usage)
; Establish exception handlers
;
mov esp, SEV_ES_VC_TOP_OF_STACK
mov eax, ADDR_OF(Idtr)
lidt [cs:eax]
; Check if we have a valid (0x8000_001F) CPUID leaf
; CPUID raises a #VC exception if running as an SEV-ES guest
mov eax, 0x80000000
cpuid
; This check should fail on Intel or Non SEV AMD CPUs. In future if
; Intel CPUs supports this CPUID leaf then we are guranteed to have exact
; same bit definition.
cmp eax, 0x8000001f
jl NoSev
; Check for SEV memory encryption feature:
; CPUID Fn8000_001F[EAX] - Bit 1
; CPUID raises a #VC exception if running as an SEV-ES guest
mov eax, 0x8000001f
cpuid
bt eax, 1
jnc NoSev
; Check if SEV memory encryption is enabled
; MSR_0xC0010131 - Bit 0 (SEV enabled)
mov ecx, SEV_STATUS_MSR
rdmsr
bt eax, 0
jnc NoSev
; Set the work area header to indicate that the SEV is enabled
mov byte[WORK_AREA_GUEST_TYPE], 1
; Check for SEV-ES memory encryption feature:
; CPUID Fn8000_001F[EAX] - Bit 3
; CPUID raises a #VC exception if running as an SEV-ES guest
mov eax, 0x8000001f
cpuid
bt eax, 3
jnc GetSevEncBit
; Check if SEV-ES is enabled
; MSR_0xC0010131 - Bit 1 (SEV-ES enabled)
mov ecx, SEV_STATUS_MSR
rdmsr
bt eax, 1
jnc GetSevEncBit
; Set the first byte of the workarea to one to communicate to the SEC
; phase that SEV-ES is enabled.
mov byte[SEV_ES_WORK_AREA], 1
GetSevEncBit:
; Get pte bit position to enable memory encryption
; CPUID Fn8000_001F[EBX] - Bits 5:0
;
and ebx, 0x3f
mov eax, ebx
; The encryption bit position is always above 31
sub ebx, 32
jns SevSaveMask
; Encryption bit was reported as 31 or below, enter a HLT loop
SevEncBitLowHlt:
cli
hlt
jmp SevEncBitLowHlt
SevSaveMask:
xor edx, edx
bts edx, ebx
mov dword[SEV_ES_WORK_AREA_ENC_MASK], 0
mov dword[SEV_ES_WORK_AREA_ENC_MASK + 4], edx
jmp SevExit
NoSev:
;
; Perform an SEV-ES sanity check by seeing if a #VC exception occurred.
;
cmp byte[SEV_ES_WORK_AREA], 0
jz NoSevPass
;
; A #VC was received, yet CPUID indicates no SEV-ES support, something
; isn't right.
;
NoSevEsVcHlt:
cli
hlt
jmp NoSevEsVcHlt
NoSevPass:
xor eax, eax
SevExit:
;
; Clear exception handlers and stack
;
push eax
mov eax, ADDR_OF(IdtrClear)
lidt [cs:eax]
pop eax
mov esp, 0
OneTimeCallRet CheckSevFeatures
; Check if Secure Encrypted Virtualization - Encrypted State (SEV-ES) feature
; is enabled.
;
; Modified: EAX
;
; If SEV-ES is enabled then EAX will be non-zero.
; If SEV-ES is disabled then EAX will be zero.
;
IsSevEsEnabled:
xor eax, eax
; During CheckSevFeatures, the WORK_AREA_GUEST_TYPE is set
; to 1 if SEV is enabled.
cmp byte[WORK_AREA_GUEST_TYPE], 1
jne SevEsDisabled
; During CheckSevFeatures, the SEV_ES_WORK_AREA was set to 1 if
; SEV-ES is enabled.
cmp byte[SEV_ES_WORK_AREA], 1
jne SevEsDisabled
mov eax, 1
SevEsDisabled:
OneTimeCallRet IsSevEsEnabled
; Start of #VC exception handling routines
;
SevEsIdtNotCpuid:
TerminateVmgExit TERM_VC_NOT_CPUID
iret
;
; Total stack usage for the #VC handler is 44 bytes:
; - 12 bytes for the exception IRET (after popping error code)
; - 32 bytes for the local variables.
;
SevEsIdtVmmComm:
;
; If we're here, then we are an SEV-ES guest and this
; was triggered by a CPUID instruction
;
; Set the first byte of the workarea to one to communicate that
; a #VC was taken.
mov byte[SEV_ES_WORK_AREA], 1
pop ecx ; Error code
cmp ecx, 0x72 ; Be sure it was CPUID
jne SevEsIdtNotCpuid
; Set up local variable room on the stack
; CPUID function : + 28
; CPUID request register : + 24
; GHCB MSR (EAX) : + 20
; GHCB MSR (EDX) : + 16
; CPUID result (EDX) : + 12
; CPUID result (ECX) : + 8
; CPUID result (EBX) : + 4
; CPUID result (EAX) : + 0
sub esp, VC_VARIABLE_SIZE
; Save the CPUID function being requested
mov [esp + VC_CPUID_FUNCTION], eax
; The GHCB CPUID protocol uses the following mapping to request
; a specific register:
; 0 => EAX, 1 => EBX, 2 => ECX, 3 => EDX
;
; Set EAX as the first register to request. This will also be used as a
; loop variable to request all register values (EAX to EDX).
xor eax, eax
mov [esp + VC_CPUID_REQUEST_REGISTER], eax
; Save current GHCB MSR value
mov ecx, SEV_GHCB_MSR
rdmsr
mov [esp + VC_GHCB_MSR_EAX], eax
mov [esp + VC_GHCB_MSR_EDX], edx
NextReg:
;
; Setup GHCB MSR
; GHCB_MSR[63:32] = CPUID function
; GHCB_MSR[31:30] = CPUID register
; GHCB_MSR[11:0] = CPUID request protocol
;
mov eax, [esp + VC_CPUID_REQUEST_REGISTER]
cmp eax, 4
jge VmmDone
shl eax, GHCB_CPUID_REGISTER_SHIFT
mov edx, [esp + VC_CPUID_FUNCTION]
VmgExit GHCB_CPUID_REQUEST, GHCB_CPUID_RESPONSE
;
; Response GHCB MSR
; GHCB_MSR[63:32] = CPUID register value
; GHCB_MSR[31:30] = CPUID register
; GHCB_MSR[11:0] = CPUID response protocol
;
; Save returned value
shr eax, GHCB_CPUID_REGISTER_SHIFT
mov [esp + eax * 4], edx
; Next register
inc word [esp + VC_CPUID_REQUEST_REGISTER]
jmp NextReg
VmmDone:
;
; At this point we have all CPUID register values. Restore the GHCB MSR,
; set the return register values and return.
;
mov eax, [esp + VC_GHCB_MSR_EAX]
mov edx, [esp + VC_GHCB_MSR_EDX]
mov ecx, SEV_GHCB_MSR
wrmsr
mov eax, [esp + VC_CPUID_RESULT_EAX]
mov ebx, [esp + VC_CPUID_RESULT_EBX]
mov ecx, [esp + VC_CPUID_RESULT_ECX]
mov edx, [esp + VC_CPUID_RESULT_EDX]
add esp, VC_VARIABLE_SIZE
; Update the EIP value to skip over the now handled CPUID instruction
; (the CPUID instruction has a length of 2)
add word [esp], CPUID_INSN_LEN
iret
ALIGN 2
Idtr:
dw IDT_END - IDT_BASE - 1 ; Limit
dd ADDR_OF(IDT_BASE) ; Base
IdtrClear:
dw 0 ; Limit
dd 0 ; Base
ALIGN 16
;
; The Interrupt Descriptor Table (IDT)
; This will be used to determine if SEV-ES is enabled. Upon execution
; of the CPUID instruction, a VMM Communication Exception will occur.
; This will tell us if SEV-ES is enabled. We can use the current value
; of the GHCB MSR to determine the SEV attributes.
;
IDT_BASE:
;
; Vectors 0 - 28 (No handlers)
;
%rep 29
dw 0 ; Offset low bits 15..0
dw 0x10 ; Selector
db 0 ; Reserved
db 0x8E ; Gate Type (IA32_IDT_GATE_TYPE_INTERRUPT_32)
dw 0 ; Offset high bits 31..16
%endrep
;
; Vector 29 (VMM Communication Exception)
;
dw (ADDR_OF(SevEsIdtVmmComm) & 0xffff) ; Offset low bits 15..0
dw 0x10 ; Selector
db 0 ; Reserved
db 0x8E ; Gate Type (IA32_IDT_GATE_TYPE_INTERRUPT_32)
dw (ADDR_OF(SevEsIdtVmmComm) >> 16) ; Offset high bits 31..16
;
; Vectors 30 - 31 (No handlers)
;
%rep 2
dw 0 ; Offset low bits 15..0
dw 0x10 ; Selector
db 0 ; Reserved
db 0x8E ; Gate Type (IA32_IDT_GATE_TYPE_INTERRUPT_32)
dw 0 ; Offset high bits 31..16
%endrep
IDT_END:
|