1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
;------------------------------------------------------------------------------
; @file
; Transition from 32 bit flat protected mode into 64 bit flat protected mode
;
; Copyright (c) 2008 - 2018, Intel Corporation. All rights reserved.<BR>
; Copyright (c) 2020, Advanced Micro Devices, Inc. All rights reserved.<BR>
; SPDX-License-Identifier: BSD-2-Clause-Patent
;
;------------------------------------------------------------------------------
BITS 32
;
; Modified: EAX, ECX, EDX
;
Transition32FlatTo64Flat:
OneTimeCall SetCr3ForPageTables64
mov eax, cr4
bts eax, 5 ; enable PAE
mov cr4, eax
;
; In TDX LME has already been set. So we're done and jump to enable
; paging directly if Tdx is enabled.
; EBX is cleared because in the later it will be used to check if
; the second step of the SEV-ES mitigation is to be performed.
;
xor ebx, ebx
OneTimeCall IsTdxEnabled
test eax, eax
jnz EnablePaging
mov ecx, 0xc0000080
rdmsr
bts eax, 8 ; set LME
wrmsr
;
; SEV-ES mitigation check support
;
xor ebx, ebx
mov ecx, 1
bt [SEV_ES_WORK_AREA_STATUS_MSR], ecx
jnc EnablePaging
;
; SEV-ES is active, perform a quick sanity check against the reported
; encryption bit position. This is to help mitigate against attacks where
; the hypervisor reports an incorrect encryption bit position.
;
; This is the first step in a two step process. Before paging is enabled
; writes to memory are encrypted. Using the RDRAND instruction (available
; on all SEV capable processors), write 64-bits of random data to the
; SEV_ES_WORK_AREA and maintain the random data in registers (register
; state is protected under SEV-ES). This will be used in the second step.
;
RdRand1:
rdrand ecx
jnc RdRand1
mov dword[SEV_ES_WORK_AREA_RDRAND], ecx
RdRand2:
rdrand edx
jnc RdRand2
mov dword[SEV_ES_WORK_AREA_RDRAND + 4], edx
;
; Use EBX instead of the SEV_ES_WORK_AREA memory to determine whether to
; perform the second step.
;
mov ebx, 1
EnablePaging:
mov eax, cr0
bts eax, 31 ; set PG
mov cr0, eax ; enable paging
jmp LINEAR_CODE64_SEL:ADDR_OF(jumpTo64BitAndLandHere)
BITS 64
jumpTo64BitAndLandHere:
;
; Check if the second step of the SEV-ES mitigation is to be performed.
;
test ebx, ebx
jz InsnCompare
;
; SEV-ES is active, perform the second step of the encryption bit postion
; mitigation check. The ECX and EDX register contain data from RDRAND that
; was stored to memory in encrypted form. If the encryption bit position is
; valid, the contents of ECX and EDX will match the memory location.
;
cmp dword[SEV_ES_WORK_AREA_RDRAND], ecx
jne SevEncBitHlt
cmp dword[SEV_ES_WORK_AREA_RDRAND + 4], edx
jne SevEncBitHlt
;
; If SEV or SEV-ES is active, perform a quick sanity check against
; the reported encryption bit position. This is to help mitigate
; against attacks where the hypervisor reports an incorrect encryption
; bit position. If SEV is not active, this check will always succeed.
;
; The cmp instruction compares the first four bytes of the cmp instruction
; itself (which will be read decrypted if SEV or SEV-ES is active and the
; encryption bit position is valid) against the immediate within the
; instruction (an instruction fetch is always decrypted correctly by
; hardware) based on RIP relative addressing.
;
InsnCompare:
cmp dword[rel InsnCompare], 0xFFF63D81
je GoodCompare
;
; The hypervisor provided an incorrect encryption bit position, do not
; proceed.
;
SevEncBitHlt:
cli
hlt
jmp SevEncBitHlt
GoodCompare:
debugShowPostCode POSTCODE_64BIT_MODE
OneTimeCallRet Transition32FlatTo64Flat
|