summaryrefslogtreecommitdiffstats
path: root/ShellPkg/Library/UefiShellDebug1CommandsLib/Compress.c
blob: 3dea3c2f2f45753e1ba5cf7f4f3feec30049455f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
/** @file
  Main file for compression routine.

  Compression routine. The compression algorithm is a mixture of
  LZ77 and Huffman coding. LZ77 transforms the source data into a
  sequence of Original Characters and Pointers to repeated strings.
  This sequence is further divided into Blocks and Huffman codings
  are applied to each Block.

  Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR>
  SPDX-License-Identifier: BSD-2-Clause-Patent

**/
#include <Uefi.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/ShellLib.h>

#include "Compress.h"

//
// Macro Definitions
//
typedef INT16 NODE;
#define UINT8_MAX     0xff
#define UINT8_BIT     8
#define THRESHOLD     3
#define INIT_CRC      0
#define WNDBIT        13
#define WNDSIZ        (1U << WNDBIT)
#define MAXMATCH      256
#define BLKSIZ        (1U << 14)      // 16 * 1024U
#define PERC_FLAG     0x8000U
#define CODE_BIT      16
#define NIL           0
#define MAX_HASH_VAL  (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)
#define HASH(LoopVar7, LoopVar5)  ((LoopVar7) + ((LoopVar5) << (WNDBIT - 9)) + WNDSIZ * 2)
#define CRCPOLY  0xA001
#define UPDATE_CRC(LoopVar5)  mCrc = mCrcTable[(mCrc ^ (LoopVar5)) & 0xFF] ^ (mCrc >> UINT8_BIT)

//
// C: the Char&Len Set; P: the Position Set; T: the exTra Set
//
#define NC    (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)
#define CBIT  9
#define NP    (WNDBIT + 1)
#define PBIT  4
#define NT    (CODE_BIT + 3)
#define TBIT  5
#if NT > NP
#define                 NPT  NT
#else
#define                 NPT  NP
#endif
//
// Function Prototypes
//

/**
  Put a dword to output stream

  @param[in] Data    The dword to put.
**/
VOID
PutDword (
  IN UINT32  Data
  );

//
//  Global Variables
//
STATIC UINT8  *mSrc;
STATIC UINT8  *mDst;
STATIC UINT8  *mSrcUpperLimit;
STATIC UINT8  *mDstUpperLimit;

STATIC UINT8   *mLevel;
STATIC UINT8   *mText;
STATIC UINT8   *mChildCount;
STATIC UINT8   *mBuf;
STATIC UINT8   mCLen[NC];
STATIC UINT8   mPTLen[NPT];
STATIC UINT8   *mLen;
STATIC INT16   mHeap[NC + 1];
STATIC INT32   mRemainder;
STATIC INT32   mMatchLen;
STATIC INT32   mBitCount;
STATIC INT32   mHeapSize;
STATIC INT32   mTempInt32;
STATIC UINT32  mBufSiz = 0;
STATIC UINT32  mOutputPos;
STATIC UINT32  mOutputMask;
STATIC UINT32  mSubBitBuf;
STATIC UINT32  mCrc;
STATIC UINT32  mCompSize;
STATIC UINT32  mOrigSize;

STATIC UINT16  *mFreq;
STATIC UINT16  *mSortPtr;
STATIC UINT16  mLenCnt[17];
STATIC UINT16  mLeft[2 * NC - 1];
STATIC UINT16  mRight[2 * NC - 1];
STATIC UINT16  mCrcTable[UINT8_MAX + 1];
STATIC UINT16  mCFreq[2 * NC - 1];
STATIC UINT16  mCCode[NC];
STATIC UINT16  mPFreq[2 * NP - 1];
STATIC UINT16  mPTCode[NPT];
STATIC UINT16  mTFreq[2 * NT - 1];

STATIC NODE  mPos;
STATIC NODE  mMatchPos;
STATIC NODE  mAvail;
STATIC NODE  *mPosition;
STATIC NODE  *mParent;
STATIC NODE  *mPrev;
STATIC NODE  *mNext        = NULL;
INT32        mHuffmanDepth = 0;

/**
  Make a CRC table.

**/
VOID
MakeCrcTable (
  VOID
  )
{
  UINT32  LoopVar1;

  UINT32  LoopVar2;

  UINT32  LoopVar4;

  for (LoopVar1 = 0; LoopVar1 <= UINT8_MAX; LoopVar1++) {
    LoopVar4 = LoopVar1;
    for (LoopVar2 = 0; LoopVar2 < UINT8_BIT; LoopVar2++) {
      if ((LoopVar4 & 1) != 0) {
        LoopVar4 = (LoopVar4 >> 1) ^ CRCPOLY;
      } else {
        LoopVar4 >>= 1;
      }
    }

    mCrcTable[LoopVar1] = (UINT16)LoopVar4;
  }
}

/**
  Put a dword to output stream

  @param[in] Data    The dword to put.
**/
VOID
PutDword (
  IN UINT32  Data
  )
{
  if (mDst < mDstUpperLimit) {
    *mDst++ = (UINT8)(((UINT8)(Data)) & 0xff);
  }

  if (mDst < mDstUpperLimit) {
    *mDst++ = (UINT8)(((UINT8)(Data >> 0x08)) & 0xff);
  }

  if (mDst < mDstUpperLimit) {
    *mDst++ = (UINT8)(((UINT8)(Data >> 0x10)) & 0xff);
  }

  if (mDst < mDstUpperLimit) {
    *mDst++ = (UINT8)(((UINT8)(Data >> 0x18)) & 0xff);
  }
}

/**
  Allocate memory spaces for data structures used in compression process.

  @retval EFI_SUCCESS           Memory was allocated successfully.
  @retval EFI_OUT_OF_RESOURCES  A memory allocation failed.
**/
EFI_STATUS
AllocateMemory (
  VOID
  )
{
  mText       = AllocateZeroPool (WNDSIZ * 2 + MAXMATCH);
  mLevel      = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mLevel));
  mChildCount = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mChildCount));
  mPosition   = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mPosition));
  mParent     = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mParent));
  mPrev       = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mPrev));
  mNext       = AllocateZeroPool ((MAX_HASH_VAL + 1) * sizeof (*mNext));

  mBufSiz = BLKSIZ;
  mBuf    = AllocateZeroPool (mBufSiz);
  while (mBuf == NULL) {
    mBufSiz = (mBufSiz / 10U) * 9U;
    if (mBufSiz < 4 * 1024U) {
      return EFI_OUT_OF_RESOURCES;
    }

    mBuf = AllocateZeroPool (mBufSiz);
  }

  mBuf[0] = 0;

  return EFI_SUCCESS;
}

/**
  Called when compression is completed to free memory previously allocated.

**/
VOID
FreeMemory (
  VOID
  )
{
  SHELL_FREE_NON_NULL (mText);
  SHELL_FREE_NON_NULL (mLevel);
  SHELL_FREE_NON_NULL (mChildCount);
  SHELL_FREE_NON_NULL (mPosition);
  SHELL_FREE_NON_NULL (mParent);
  SHELL_FREE_NON_NULL (mPrev);
  SHELL_FREE_NON_NULL (mNext);
  SHELL_FREE_NON_NULL (mBuf);
}

/**
  Initialize String Info Log data structures.
**/
VOID
InitSlide (
  VOID
  )
{
  NODE  LoopVar1;

  SetMem (mLevel + WNDSIZ, (UINT8_MAX + 1) * sizeof (UINT8), 1);
  SetMem (mPosition + WNDSIZ, (UINT8_MAX + 1) * sizeof (NODE), 0);

  SetMem (mParent + WNDSIZ, WNDSIZ * sizeof (NODE), 0);

  mAvail = 1;
  for (LoopVar1 = 1; LoopVar1 < WNDSIZ - 1; LoopVar1++) {
    mNext[LoopVar1] = (NODE)(LoopVar1 + 1);
  }

  mNext[WNDSIZ - 1] = NIL;
  SetMem (mNext + WNDSIZ * 2, (MAX_HASH_VAL - WNDSIZ * 2 + 1) * sizeof (NODE), 0);
}

/**
  Find child node given the parent node and the edge character

  @param[in] LoopVar6       The parent node.
  @param[in] LoopVar5       The edge character.

  @return             The child node.
  @retval NIL(Zero)   No child could be found.

**/
NODE
Child (
  IN NODE   LoopVar6,
  IN UINT8  LoopVar5
  )
{
  NODE  LoopVar4;

  LoopVar4     = mNext[HASH (LoopVar6, LoopVar5)];
  mParent[NIL] = LoopVar6;   /* sentinel */
  while (mParent[LoopVar4] != LoopVar6) {
    LoopVar4 = mNext[LoopVar4];
  }

  return LoopVar4;
}

/**
  Create a new child for a given parent node.

  @param[in] LoopVar6       The parent node.
  @param[in] LoopVar5       The edge character.
  @param[in] LoopVar4       The child node.
**/
VOID
MakeChild (
  IN NODE   LoopVar6,
  IN UINT8  LoopVar5,
  IN NODE   LoopVar4
  )
{
  NODE  LoopVar12;

  NODE  LoopVar10;

  LoopVar12         = (NODE)HASH (LoopVar6, LoopVar5);
  LoopVar10         = mNext[LoopVar12];
  mNext[LoopVar12]  = LoopVar4;
  mNext[LoopVar4]   = LoopVar10;
  mPrev[LoopVar10]  = LoopVar4;
  mPrev[LoopVar4]   = LoopVar12;
  mParent[LoopVar4] = LoopVar6;
  mChildCount[LoopVar6]++;
}

/**
  Split a node.

  @param[in] Old     The node to split.
**/
VOID
Split (
  IN NODE  Old
  )
{
  NODE  New;

  NODE  LoopVar10;

  New              = mAvail;
  mAvail           = mNext[New];
  mChildCount[New] = 0;
  LoopVar10        = mPrev[Old];
  mPrev[New]       = LoopVar10;
  mNext[LoopVar10] = New;
  LoopVar10        = mNext[Old];
  mNext[New]       = LoopVar10;
  mPrev[LoopVar10] = New;
  mParent[New]     = mParent[Old];
  mLevel[New]      = (UINT8)mMatchLen;
  mPosition[New]   = mPos;
  MakeChild (New, mText[mMatchPos + mMatchLen], Old);
  MakeChild (New, mText[mPos + mMatchLen], mPos);
}

/**
  Insert string info for current position into the String Info Log.

**/
VOID
InsertNode (
  VOID
  )
{
  NODE  LoopVar6;

  NODE  LoopVar4;

  NODE  LoopVar2;

  NODE   LoopVar10;
  UINT8  LoopVar5;
  UINT8  *TempString3;
  UINT8  *TempString2;

  if (mMatchLen >= 4) {
    //
    // We have just got a long match, the target tree
    // can be located by MatchPos + 1. Travese the tree
    // from bottom up to get to a proper starting point.
    // The usage of PERC_FLAG ensures proper node deletion
    // in DeleteNode() later.
    //
    mMatchLen--;
    LoopVar4 = (NODE)((mMatchPos + 1) | WNDSIZ);
    LoopVar6 = mParent[LoopVar4];
    while (LoopVar6 == NIL) {
      LoopVar4 = mNext[LoopVar4];
      LoopVar6 = mParent[LoopVar4];
    }

    while (mLevel[LoopVar6] >= mMatchLen) {
      LoopVar4 = LoopVar6;
      LoopVar6 = mParent[LoopVar6];
    }

    LoopVar10 = LoopVar6;
    while (mPosition[LoopVar10] < 0) {
      mPosition[LoopVar10] = mPos;
      LoopVar10            = mParent[LoopVar10];
    }

    if (LoopVar10 < WNDSIZ) {
      mPosition[LoopVar10] = (NODE)(mPos | PERC_FLAG);
    }
  } else {
    //
    // Locate the target tree
    //
    LoopVar6 = (NODE)(mText[mPos] + WNDSIZ);
    LoopVar5 = mText[mPos + 1];
    LoopVar4 = Child (LoopVar6, LoopVar5);
    if (LoopVar4 == NIL) {
      MakeChild (LoopVar6, LoopVar5, mPos);
      mMatchLen = 1;
      return;
    }

    mMatchLen = 2;
  }

  //
  // Traverse down the tree to find a match.
  // Update Position value along the route.
  // Node split or creation is involved.
  //
  for ( ; ;) {
    if (LoopVar4 >= WNDSIZ) {
      LoopVar2  = MAXMATCH;
      mMatchPos = LoopVar4;
    } else {
      LoopVar2  = mLevel[LoopVar4];
      mMatchPos = (NODE)(mPosition[LoopVar4] & ~PERC_FLAG);
    }

    if (mMatchPos >= mPos) {
      mMatchPos -= WNDSIZ;
    }

    TempString3 = &mText[mPos + mMatchLen];
    TempString2 = &mText[mMatchPos + mMatchLen];
    while (mMatchLen < LoopVar2) {
      if (*TempString3 != *TempString2) {
        Split (LoopVar4);
        return;
      }

      mMatchLen++;
      TempString3++;
      TempString2++;
    }

    if (mMatchLen >= MAXMATCH) {
      break;
    }

    mPosition[LoopVar4] = mPos;
    LoopVar6            = LoopVar4;
    LoopVar4            = Child (LoopVar6, *TempString3);
    if (LoopVar4 == NIL) {
      MakeChild (LoopVar6, *TempString3, mPos);
      return;
    }

    mMatchLen++;
  }

  LoopVar10         = mPrev[LoopVar4];
  mPrev[mPos]       = LoopVar10;
  mNext[LoopVar10]  = mPos;
  LoopVar10         = mNext[LoopVar4];
  mNext[mPos]       = LoopVar10;
  mPrev[LoopVar10]  = mPos;
  mParent[mPos]     = LoopVar6;
  mParent[LoopVar4] = NIL;

  //
  // Special usage of 'next'
  //
  mNext[LoopVar4] = mPos;
}

/**
  Delete outdated string info. (The Usage of PERC_FLAG
  ensures a clean deletion).

**/
VOID
DeleteNode (
  VOID
  )
{
  NODE  LoopVar6;

  NODE  LoopVar4;

  NODE  LoopVar11;

  NODE  LoopVar10;

  NODE  LoopVar9;

  if (mParent[mPos] == NIL) {
    return;
  }

  LoopVar4         = mPrev[mPos];
  LoopVar11        = mNext[mPos];
  mNext[LoopVar4]  = LoopVar11;
  mPrev[LoopVar11] = LoopVar4;
  LoopVar4         = mParent[mPos];
  mParent[mPos]    = NIL;
  if (LoopVar4 >= WNDSIZ) {
    return;
  }

  mChildCount[LoopVar4]--;
  if (mChildCount[LoopVar4] > 1) {
    return;
  }

  LoopVar10 = (NODE)(mPosition[LoopVar4] & ~PERC_FLAG);
  if (LoopVar10 >= mPos) {
    LoopVar10 -= WNDSIZ;
  }

  LoopVar11 = LoopVar10;
  LoopVar6  = mParent[LoopVar4];
  LoopVar9  = mPosition[LoopVar6];
  while ((LoopVar9 & PERC_FLAG) != 0) {
    LoopVar9 &= ~PERC_FLAG;
    if (LoopVar9 >= mPos) {
      LoopVar9 -= WNDSIZ;
    }

    if (LoopVar9 > LoopVar11) {
      LoopVar11 = LoopVar9;
    }

    mPosition[LoopVar6] = (NODE)(LoopVar11 | WNDSIZ);
    LoopVar6            = mParent[LoopVar6];
    LoopVar9            = mPosition[LoopVar6];
  }

  if (LoopVar6 < WNDSIZ) {
    if (LoopVar9 >= mPos) {
      LoopVar9 -= WNDSIZ;
    }

    if (LoopVar9 > LoopVar11) {
      LoopVar11 = LoopVar9;
    }

    mPosition[LoopVar6] = (NODE)(LoopVar11 | WNDSIZ | PERC_FLAG);
  }

  LoopVar11          = Child (LoopVar4, mText[LoopVar10 + mLevel[LoopVar4]]);
  LoopVar10          = mPrev[LoopVar11];
  LoopVar9           = mNext[LoopVar11];
  mNext[LoopVar10]   = LoopVar9;
  mPrev[LoopVar9]    = LoopVar10;
  LoopVar10          = mPrev[LoopVar4];
  mNext[LoopVar10]   = LoopVar11;
  mPrev[LoopVar11]   = LoopVar10;
  LoopVar10          = mNext[LoopVar4];
  mPrev[LoopVar10]   = LoopVar11;
  mNext[LoopVar11]   = LoopVar10;
  mParent[LoopVar11] = mParent[LoopVar4];
  mParent[LoopVar4]  = NIL;
  mNext[LoopVar4]    = mAvail;
  mAvail             = LoopVar4;
}

/**
  Read in source data

  @param[out] LoopVar7   The buffer to hold the data.
  @param[in] LoopVar8    The number of bytes to read.

  @return The number of bytes actually read.
**/
INT32
FreadCrc (
  OUT UINT8  *LoopVar7,
  IN  INT32  LoopVar8
  )
{
  INT32  LoopVar1;

  for (LoopVar1 = 0; mSrc < mSrcUpperLimit && LoopVar1 < LoopVar8; LoopVar1++) {
    *LoopVar7++ = *mSrc++;
  }

  LoopVar8 = LoopVar1;

  LoopVar7  -= LoopVar8;
  mOrigSize += LoopVar8;
  LoopVar1--;
  while (LoopVar1 >= 0) {
    UPDATE_CRC (*LoopVar7++);
    LoopVar1--;
  }

  return LoopVar8;
}

/**
  Advance the current position (read in new data if needed).
  Delete outdated string info. Find a match string for current position.

  @retval TRUE      The operation was successful.
  @retval FALSE     The operation failed due to insufficient memory.
**/
BOOLEAN
GetNextMatch (
  VOID
  )
{
  INT32  LoopVar8;
  VOID   *Temp;

  mRemainder--;
  mPos++;
  if (mPos == WNDSIZ * 2) {
    Temp = AllocateZeroPool (WNDSIZ + MAXMATCH);
    if (Temp == NULL) {
      return (FALSE);
    }

    CopyMem (Temp, &mText[WNDSIZ], WNDSIZ + MAXMATCH);
    CopyMem (&mText[0], Temp, WNDSIZ + MAXMATCH);
    FreePool (Temp);
    LoopVar8    = FreadCrc (&mText[WNDSIZ + MAXMATCH], WNDSIZ);
    mRemainder += LoopVar8;
    mPos        = WNDSIZ;
  }

  DeleteNode ();
  InsertNode ();

  return (TRUE);
}

/**
  Send entry LoopVar1 down the queue.

  @param[in] LoopVar1    The index of the item to move.
**/
VOID
DownHeap (
  IN INT32  i
  )
{
  INT32  LoopVar1;

  INT32  LoopVar2;

  //
  // priority queue: send i-th entry down heap
  //
  LoopVar2 = mHeap[i];
  LoopVar1 = 2 * i;
  while (LoopVar1 <= mHeapSize) {
    if ((LoopVar1 < mHeapSize) && (mFreq[mHeap[LoopVar1]] > mFreq[mHeap[LoopVar1 + 1]])) {
      LoopVar1++;
    }

    if (mFreq[LoopVar2] <= mFreq[mHeap[LoopVar1]]) {
      break;
    }

    mHeap[i] = mHeap[LoopVar1];
    i        = LoopVar1;
    LoopVar1 = 2 * i;
  }

  mHeap[i] = (INT16)LoopVar2;
}

/**
  Count the number of each code length for a Huffman tree.

  @param[in] LoopVar1      The top node.
**/
VOID
CountLen (
  IN INT32  LoopVar1
  )
{
  if (LoopVar1 < mTempInt32) {
    mLenCnt[(mHuffmanDepth < 16) ? mHuffmanDepth : 16]++;
  } else {
    mHuffmanDepth++;
    CountLen (mLeft[LoopVar1]);
    CountLen (mRight[LoopVar1]);
    mHuffmanDepth--;
  }
}

/**
  Create code length array for a Huffman tree.

  @param[in] Root   The root of the tree.
**/
VOID
MakeLen (
  IN INT32  Root
  )
{
  INT32  LoopVar1;

  INT32   LoopVar2;
  UINT32  Cum;

  for (LoopVar1 = 0; LoopVar1 <= 16; LoopVar1++) {
    mLenCnt[LoopVar1] = 0;
  }

  CountLen (Root);

  //
  // Adjust the length count array so that
  // no code will be generated longer than its designated length
  //
  Cum = 0;
  for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) {
    Cum += mLenCnt[LoopVar1] << (16 - LoopVar1);
  }

  while (Cum != (1U << 16)) {
    mLenCnt[16]--;
    for (LoopVar1 = 15; LoopVar1 > 0; LoopVar1--) {
      if (mLenCnt[LoopVar1] != 0) {
        mLenCnt[LoopVar1]--;
        mLenCnt[LoopVar1 + 1] += 2;
        break;
      }
    }

    Cum--;
  }

  for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) {
    LoopVar2 = mLenCnt[LoopVar1];
    LoopVar2--;
    while (LoopVar2 >= 0) {
      mLen[*mSortPtr++] = (UINT8)LoopVar1;
      LoopVar2--;
    }
  }
}

/**
  Assign code to each symbol based on the code length array.

  @param[in] LoopVar8      The number of symbols.
  @param[in] Len    The code length array.
  @param[out] Code  The stores codes for each symbol.
**/
VOID
MakeCode (
  IN  INT32   LoopVar8,
  IN  UINT8   Len[],
  OUT UINT16  Code[]
  )
{
  INT32   LoopVar1;
  UINT16  Start[18];

  Start[1] = 0;
  for (LoopVar1 = 1; LoopVar1 <= 16; LoopVar1++) {
    Start[LoopVar1 + 1] = (UINT16)((Start[LoopVar1] + mLenCnt[LoopVar1]) << 1);
  }

  for (LoopVar1 = 0; LoopVar1 < LoopVar8; LoopVar1++) {
    Code[LoopVar1] = Start[Len[LoopVar1]]++;
  }
}

/**
  Generates Huffman codes given a frequency distribution of symbols.

  @param[in] NParm      The number of symbols.
  @param[in] FreqParm   The frequency of each symbol.
  @param[out] LenParm   The code length for each symbol.
  @param[out] CodeParm  The code for each symbol.

  @return The root of the Huffman tree.
**/
INT32
MakeTree (
  IN  INT32   NParm,
  IN  UINT16  FreqParm[],
  OUT UINT8   LenParm[],
  OUT UINT16  CodeParm[]
  )
{
  INT32  LoopVar1;

  INT32  LoopVar2;

  INT32  LoopVar3;

  INT32  Avail;

  //
  // make tree, calculate len[], return root
  //
  mTempInt32 = NParm;
  mFreq      = FreqParm;
  mLen       = LenParm;
  Avail      = mTempInt32;
  mHeapSize  = 0;
  mHeap[1]   = 0;
  for (LoopVar1 = 0; LoopVar1 < mTempInt32; LoopVar1++) {
    mLen[LoopVar1] = 0;
    if ((mFreq[LoopVar1]) != 0) {
      mHeapSize++;
      mHeap[mHeapSize] = (INT16)LoopVar1;
    }
  }

  if (mHeapSize < 2) {
    CodeParm[mHeap[1]] = 0;
    return mHeap[1];
  }

  for (LoopVar1 = mHeapSize / 2; LoopVar1 >= 1; LoopVar1--) {
    //
    // make priority queue
    //
    DownHeap (LoopVar1);
  }

  mSortPtr = CodeParm;
  do {
    LoopVar1 = mHeap[1];
    if (LoopVar1 < mTempInt32) {
      *mSortPtr++ = (UINT16)LoopVar1;
    }

    mHeap[1] = mHeap[mHeapSize--];
    DownHeap (1);
    LoopVar2 = mHeap[1];
    if (LoopVar2 < mTempInt32) {
      *mSortPtr++ = (UINT16)LoopVar2;
    }

    LoopVar3        = Avail++;
    mFreq[LoopVar3] = (UINT16)(mFreq[LoopVar1] + mFreq[LoopVar2]);
    mHeap[1]        = (INT16)LoopVar3;
    DownHeap (1);
    mLeft[LoopVar3]  = (UINT16)LoopVar1;
    mRight[LoopVar3] = (UINT16)LoopVar2;
  } while (mHeapSize > 1);

  mSortPtr = CodeParm;
  MakeLen (LoopVar3);
  MakeCode (NParm, LenParm, CodeParm);

  //
  // return root
  //
  return LoopVar3;
}

/**
  Outputs rightmost LoopVar8 bits of x

  @param[in] LoopVar8   The rightmost LoopVar8 bits of the data is used.
  @param[in] x   The data.
**/
VOID
PutBits (
  IN INT32   LoopVar8,
  IN UINT32  x
  )
{
  UINT8  Temp;

  if (LoopVar8 < mBitCount) {
    mSubBitBuf |= x << (mBitCount -= LoopVar8);
  } else {
    Temp = (UINT8)(mSubBitBuf | (x >> (LoopVar8 -= mBitCount)));
    if (mDst < mDstUpperLimit) {
      *mDst++ = Temp;
    }

    mCompSize++;

    if (LoopVar8 < UINT8_BIT) {
      mSubBitBuf = x << (mBitCount = UINT8_BIT - LoopVar8);
    } else {
      Temp = (UINT8)(x >> (LoopVar8 - UINT8_BIT));
      if (mDst < mDstUpperLimit) {
        *mDst++ = Temp;
      }

      mCompSize++;

      mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - LoopVar8);
    }
  }
}

/**
  Encode a signed 32 bit number.

  @param[in] LoopVar5     The number to encode.
**/
VOID
EncodeC (
  IN INT32  LoopVar5
  )
{
  PutBits (mCLen[LoopVar5], mCCode[LoopVar5]);
}

/**
  Encode a unsigned 32 bit number.

  @param[in] LoopVar7     The number to encode.
**/
VOID
EncodeP (
  IN UINT32  LoopVar7
  )
{
  UINT32  LoopVar5;

  UINT32  LoopVar6;

  LoopVar5 = 0;
  LoopVar6 = LoopVar7;
  while (LoopVar6 != 0) {
    LoopVar6 >>= 1;
    LoopVar5++;
  }

  PutBits (mPTLen[LoopVar5], mPTCode[LoopVar5]);
  if (LoopVar5 > 1) {
    PutBits (LoopVar5 - 1, LoopVar7 & (0xFFFFU >> (17 - LoopVar5)));
  }
}

/**
  Count the frequencies for the Extra Set.

**/
VOID
CountTFreq (
  VOID
  )
{
  INT32  LoopVar1;

  INT32  LoopVar3;

  INT32  LoopVar8;

  INT32  Count;

  for (LoopVar1 = 0; LoopVar1 < NT; LoopVar1++) {
    mTFreq[LoopVar1] = 0;
  }

  LoopVar8 = NC;
  while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) {
    LoopVar8--;
  }

  LoopVar1 = 0;
  while (LoopVar1 < LoopVar8) {
    LoopVar3 = mCLen[LoopVar1++];
    if (LoopVar3 == 0) {
      Count = 1;
      while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) {
        LoopVar1++;
        Count++;
      }

      if (Count <= 2) {
        mTFreq[0] = (UINT16)(mTFreq[0] + Count);
      } else if (Count <= 18) {
        mTFreq[1]++;
      } else if (Count == 19) {
        mTFreq[0]++;
        mTFreq[1]++;
      } else {
        mTFreq[2]++;
      }
    } else {
      ASSERT ((LoopVar3+2) < (2 * NT - 1));
      mTFreq[LoopVar3 + 2]++;
    }
  }
}

/**
  Outputs the code length array for the Extra Set or the Position Set.

  @param[in] LoopVar8       The number of symbols.
  @param[in] nbit           The number of bits needed to represent 'LoopVar8'.
  @param[in] Special        The special symbol that needs to be take care of.

**/
VOID
WritePTLen (
  IN INT32  LoopVar8,
  IN INT32  nbit,
  IN INT32  Special
  )
{
  INT32  LoopVar1;

  INT32  LoopVar3;

  while (LoopVar8 > 0 && mPTLen[LoopVar8 - 1] == 0) {
    LoopVar8--;
  }

  PutBits (nbit, LoopVar8);
  LoopVar1 = 0;
  while (LoopVar1 < LoopVar8) {
    LoopVar3 = mPTLen[LoopVar1++];
    if (LoopVar3 <= 6) {
      PutBits (3, LoopVar3);
    } else {
      PutBits (LoopVar3 - 3, (1U << (LoopVar3 - 3)) - 2);
    }

    if (LoopVar1 == Special) {
      while (LoopVar1 < 6 && mPTLen[LoopVar1] == 0) {
        LoopVar1++;
      }

      PutBits (2, (LoopVar1 - 3) & 3);
    }
  }
}

/**
  Outputs the code length array for Char&Length Set.
**/
VOID
WriteCLen (
  VOID
  )
{
  INT32  LoopVar1;

  INT32  LoopVar3;

  INT32  LoopVar8;

  INT32  Count;

  LoopVar8 = NC;
  while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) {
    LoopVar8--;
  }

  PutBits (CBIT, LoopVar8);
  LoopVar1 = 0;
  while (LoopVar1 < LoopVar8) {
    LoopVar3 = mCLen[LoopVar1++];
    if (LoopVar3 == 0) {
      Count = 1;
      while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) {
        LoopVar1++;
        Count++;
      }

      if (Count <= 2) {
        for (LoopVar3 = 0; LoopVar3 < Count; LoopVar3++) {
          PutBits (mPTLen[0], mPTCode[0]);
        }
      } else if (Count <= 18) {
        PutBits (mPTLen[1], mPTCode[1]);
        PutBits (4, Count - 3);
      } else if (Count == 19) {
        PutBits (mPTLen[0], mPTCode[0]);
        PutBits (mPTLen[1], mPTCode[1]);
        PutBits (4, 15);
      } else {
        PutBits (mPTLen[2], mPTCode[2]);
        PutBits (CBIT, Count - 20);
      }
    } else {
      ASSERT ((LoopVar3+2) < NPT);
      PutBits (mPTLen[LoopVar3 + 2], mPTCode[LoopVar3 + 2]);
    }
  }
}

/**
  Huffman code the block and output it.

**/
VOID
SendBlock (
  VOID
  )
{
  UINT32  LoopVar1;

  UINT32  LoopVar3;

  UINT32  Flags;

  UINT32  Root;

  UINT32  Pos;

  UINT32  Size;

  Flags = 0;

  Root = MakeTree (NC, mCFreq, mCLen, mCCode);
  Size = mCFreq[Root];
  PutBits (16, Size);
  if (Root >= NC) {
    CountTFreq ();
    Root = MakeTree (NT, mTFreq, mPTLen, mPTCode);
    if (Root >= NT) {
      WritePTLen (NT, TBIT, 3);
    } else {
      PutBits (TBIT, 0);
      PutBits (TBIT, Root);
    }

    WriteCLen ();
  } else {
    PutBits (TBIT, 0);
    PutBits (TBIT, 0);
    PutBits (CBIT, 0);
    PutBits (CBIT, Root);
  }

  Root = MakeTree (NP, mPFreq, mPTLen, mPTCode);
  if (Root >= NP) {
    WritePTLen (NP, PBIT, -1);
  } else {
    PutBits (PBIT, 0);
    PutBits (PBIT, Root);
  }

  Pos = 0;
  for (LoopVar1 = 0; LoopVar1 < Size; LoopVar1++) {
    if (LoopVar1 % UINT8_BIT == 0) {
      Flags = mBuf[Pos++];
    } else {
      Flags <<= 1;
    }

    if ((Flags & (1U << (UINT8_BIT - 1))) != 0) {
      EncodeC (mBuf[Pos++] + (1U << UINT8_BIT));
      LoopVar3  = mBuf[Pos++] << UINT8_BIT;
      LoopVar3 += mBuf[Pos++];

      EncodeP (LoopVar3);
    } else {
      EncodeC (mBuf[Pos++]);
    }
  }

  SetMem (mCFreq, NC * sizeof (UINT16), 0);
  SetMem (mPFreq, NP * sizeof (UINT16), 0);
}

/**
  Start the huffman encoding.

**/
VOID
HufEncodeStart (
  VOID
  )
{
  SetMem (mCFreq, NC * sizeof (UINT16), 0);
  SetMem (mPFreq, NP * sizeof (UINT16), 0);

  mOutputPos = mOutputMask = 0;

  mBitCount  = UINT8_BIT;
  mSubBitBuf = 0;
}

/**
  Outputs an Original Character or a Pointer.

  @param[in] LoopVar5     The original character or the 'String Length' element of
                   a Pointer.
  @param[in] LoopVar7     The 'Position' field of a Pointer.
**/
VOID
CompressOutput (
  IN UINT32  LoopVar5,
  IN UINT32  LoopVar7
  )
{
  STATIC UINT32  CPos;

  if ((mOutputMask >>= 1) == 0) {
    mOutputMask = 1U << (UINT8_BIT - 1);
    if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) {
      SendBlock ();
      mOutputPos = 0;
    }

    CPos       = mOutputPos++;
    mBuf[CPos] = 0;
  }

  mBuf[mOutputPos++] = (UINT8)LoopVar5;
  mCFreq[LoopVar5]++;
  if (LoopVar5 >= (1U << UINT8_BIT)) {
    mBuf[CPos]         = (UINT8)(mBuf[CPos]|mOutputMask);
    mBuf[mOutputPos++] = (UINT8)(LoopVar7 >> UINT8_BIT);
    mBuf[mOutputPos++] = (UINT8)LoopVar7;
    LoopVar5           = 0;
    while (LoopVar7 != 0) {
      LoopVar7 >>= 1;
      LoopVar5++;
    }

    mPFreq[LoopVar5]++;
  }
}

/**
  End the huffman encoding.

**/
VOID
HufEncodeEnd (
  VOID
  )
{
  SendBlock ();

  //
  // Flush remaining bits
  //
  PutBits (UINT8_BIT - 1, 0);
}

/**
  The main controlling routine for compression process.

  @retval EFI_SUCCESS           The compression is successful.
  @retval EFI_OUT_0F_RESOURCES  Not enough memory for compression process.
**/
EFI_STATUS
Encode (
  VOID
  )
{
  EFI_STATUS  Status;
  INT32       LastMatchLen;
  NODE        LastMatchPos;

  Status = AllocateMemory ();
  if (EFI_ERROR (Status)) {
    FreeMemory ();
    return Status;
  }

  InitSlide ();

  HufEncodeStart ();

  mRemainder = FreadCrc (&mText[WNDSIZ], WNDSIZ + MAXMATCH);

  mMatchLen = 0;
  mPos      = WNDSIZ;
  InsertNode ();
  if (mMatchLen > mRemainder) {
    mMatchLen = mRemainder;
  }

  while (mRemainder > 0) {
    LastMatchLen = mMatchLen;
    LastMatchPos = mMatchPos;
    if (!GetNextMatch ()) {
      Status = EFI_OUT_OF_RESOURCES;
    }

    if (mMatchLen > mRemainder) {
      mMatchLen = mRemainder;
    }

    if ((mMatchLen > LastMatchLen) || (LastMatchLen < THRESHOLD)) {
      //
      // Not enough benefits are gained by outputting a pointer,
      // so just output the original character
      //
      CompressOutput (mText[mPos - 1], 0);
    } else {
      //
      // Outputting a pointer is beneficial enough, do it.
      //

      CompressOutput (
        LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),
        (mPos - LastMatchPos - 2) & (WNDSIZ - 1)
        );
      LastMatchLen--;
      while (LastMatchLen > 0) {
        if (!GetNextMatch ()) {
          Status = EFI_OUT_OF_RESOURCES;
        }

        LastMatchLen--;
      }

      if (mMatchLen > mRemainder) {
        mMatchLen = mRemainder;
      }
    }
  }

  HufEncodeEnd ();
  FreeMemory ();
  return (Status);
}

/**
  The compression routine.

  @param[in]       SrcBuffer     The buffer containing the source data.
  @param[in]       SrcSize       Number of bytes in SrcBuffer.
  @param[in]       DstBuffer     The buffer to put the compressed image in.
  @param[in, out]  DstSize       On input the size (in bytes) of DstBuffer, on
                                 return the number of bytes placed in DstBuffer.

  @retval EFI_SUCCESS           The compression was successful.
  @retval EFI_BUFFER_TOO_SMALL  The buffer was too small.  DstSize is required.
**/
EFI_STATUS
Compress (
  IN      VOID    *SrcBuffer,
  IN      UINT64  SrcSize,
  IN      VOID    *DstBuffer,
  IN OUT  UINT64  *DstSize
  )
{
  EFI_STATUS  Status;

  //
  // Initializations
  //
  mBufSiz     = 0;
  mBuf        = NULL;
  mText       = NULL;
  mLevel      = NULL;
  mChildCount = NULL;
  mPosition   = NULL;
  mParent     = NULL;
  mPrev       = NULL;
  mNext       = NULL;

  mSrc           = SrcBuffer;
  mSrcUpperLimit = mSrc + SrcSize;
  mDst           = DstBuffer;
  mDstUpperLimit = mDst +*DstSize;

  PutDword (0L);
  PutDword (0L);

  MakeCrcTable ();

  mOrigSize = mCompSize = 0;
  mCrc      = INIT_CRC;

  //
  // Compress it
  //
  Status = Encode ();
  if (EFI_ERROR (Status)) {
    return EFI_OUT_OF_RESOURCES;
  }

  //
  // Null terminate the compressed data
  //
  if (mDst < mDstUpperLimit) {
    *mDst++ = 0;
  }

  //
  // Fill in compressed size and original size
  //
  mDst = DstBuffer;
  PutDword (mCompSize + 1);
  PutDword (mOrigSize);

  //
  // Return
  //
  if (mCompSize + 1 + 8 > *DstSize) {
    *DstSize = mCompSize + 1 + 8;
    return EFI_BUFFER_TOO_SMALL;
  } else {
    *DstSize = mCompSize + 1 + 8;
    return EFI_SUCCESS;
  }
}