summaryrefslogtreecommitdiffstats
path: root/StandaloneMmPkg/Core/Dispatcher.c
blob: 3788389f95ed6809dda8f32d34a2164d3589f468 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
/** @file
  MM Driver Dispatcher.

  Step #1 - When a FV protocol is added to the system every driver in the FV
            is added to the mDiscoveredList. The Before, and After Depex are
            pre-processed as drivers are added to the mDiscoveredList. If an Apriori
            file exists in the FV those drivers are addeded to the
            mScheduledQueue. The mFvHandleList is used to make sure a
            FV is only processed once.

  Step #2 - Dispatch. Remove driver from the mScheduledQueue and load and
            start it. After mScheduledQueue is drained check the
            mDiscoveredList to see if any item has a Depex that is ready to
            be placed on the mScheduledQueue.

  Step #3 - Adding to the mScheduledQueue requires that you process Before
            and After dependencies. This is done recursively as the call to add
            to the mScheduledQueue checks for Before and recursively adds
            all Befores. It then addes the item that was passed in and then
            processess the After dependecies by recursively calling the routine.

  Dispatcher Rules:
  The rules for the dispatcher are similar to the DXE dispatcher.

  The rules for DXE dispatcher are in chapter 10 of the DXE CIS. Figure 10-3
  is the state diagram for the DXE dispatcher

  Depex - Dependency Expresion.

  Copyright (c) 2014, Hewlett-Packard Development Company, L.P.
  Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
  Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.<BR>

  SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "StandaloneMmCore.h"

//
// MM Dispatcher Data structures
//
#define KNOWN_HANDLE_SIGNATURE  SIGNATURE_32('k','n','o','w')

typedef struct {
  UINTN           Signature;
  LIST_ENTRY      Link;         // mFvHandleList
  EFI_HANDLE      Handle;
} KNOWN_HANDLE;

//
// Function Prototypes
//

EFI_STATUS
MmCoreFfsFindMmDriver (
  IN  EFI_FIRMWARE_VOLUME_HEADER  *FwVolHeader
  );

/**
  Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
  must add any driver with a before dependency on InsertedDriverEntry first.
  You do this by recursively calling this routine. After all the Befores are
  processed you can add InsertedDriverEntry to the mScheduledQueue.
  Then you can add any driver with an After dependency on InsertedDriverEntry
  by recursively calling this routine.

  @param  InsertedDriverEntry   The driver to insert on the ScheduledLink Queue

**/
VOID
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
  IN  EFI_MM_DRIVER_ENTRY   *InsertedDriverEntry
  );

//
// The Driver List contains one copy of every driver that has been discovered.
// Items are never removed from the driver list. List of EFI_MM_DRIVER_ENTRY
//
LIST_ENTRY  mDiscoveredList = INITIALIZE_LIST_HEAD_VARIABLE (mDiscoveredList);

//
// Queue of drivers that are ready to dispatch. This queue is a subset of the
// mDiscoveredList.list of EFI_MM_DRIVER_ENTRY.
//
LIST_ENTRY  mScheduledQueue = INITIALIZE_LIST_HEAD_VARIABLE (mScheduledQueue);

//
// List of handles who's Fv's have been parsed and added to the mFwDriverList.
//
LIST_ENTRY  mFvHandleList = INITIALIZE_LIST_HEAD_VARIABLE (mFvHandleList);

//
// Flag for the MM Dispacher.  TRUE if dispatcher is execuing.
//
BOOLEAN  gDispatcherRunning = FALSE;

//
// Flag for the MM Dispacher.  TRUE if there is one or more MM drivers ready to be dispatched
//
BOOLEAN  gRequestDispatch = FALSE;

//
// The global variable is defined for Loading modules at fixed address feature to track the MM code
// memory range usage. It is a bit mapped array in which every bit indicates the correspoding
// memory page available or not.
//
GLOBAL_REMOVE_IF_UNREFERENCED    UINT64                *mMmCodeMemoryRangeUsageBitMap=NULL;

/**
  To check memory usage bit map array to figure out if the memory range in which the image will be loaded
  is available or not. If memory range is avaliable, the function will mark the correponding bits to 1
  which indicates the memory range is used. The function is only invoked when load modules at fixed address
  feature is enabled.

  @param  ImageBase                The base addres the image will be loaded at.
  @param  ImageSize                The size of the image

  @retval EFI_SUCCESS              The memory range the image will be loaded in is available
  @retval EFI_NOT_FOUND            The memory range the image will be loaded in is not available
**/
EFI_STATUS
CheckAndMarkFixLoadingMemoryUsageBitMap (
  IN  EFI_PHYSICAL_ADDRESS          ImageBase,
  IN  UINTN                         ImageSize
  )
{
  UINT32                             MmCodePageNumber;
  UINT64                             MmCodeSize;
  EFI_PHYSICAL_ADDRESS               MmCodeBase;
  UINTN                              BaseOffsetPageNumber;
  UINTN                              TopOffsetPageNumber;
  UINTN                              Index;

  //
  // Build tool will calculate the smm code size and then patch the PcdLoadFixAddressMmCodePageNumber
  //
  MmCodePageNumber = 0;
  MmCodeSize = EFI_PAGES_TO_SIZE (MmCodePageNumber);
  MmCodeBase = gLoadModuleAtFixAddressMmramBase;

  //
  // If the memory usage bit map is not initialized,  do it. Every bit in the array
  // indicate the status of the corresponding memory page, available or not
  //
  if (mMmCodeMemoryRangeUsageBitMap == NULL) {
    mMmCodeMemoryRangeUsageBitMap = AllocateZeroPool (((MmCodePageNumber / 64) + 1) * sizeof (UINT64));
  }

  //
  // If the Dxe code memory range is not allocated or the bit map array allocation failed, return EFI_NOT_FOUND
  //
  if (mMmCodeMemoryRangeUsageBitMap == NULL) {
    return EFI_NOT_FOUND;
  }

  //
  // see if the memory range for loading the image is in the MM code range.
  //
  if (MmCodeBase + MmCodeSize <  ImageBase + ImageSize || MmCodeBase >  ImageBase) {
    return EFI_NOT_FOUND;
  }

  //
  // Test if the memory is avalaible or not.
  //
  BaseOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES ((UINT32)(ImageBase - MmCodeBase));
  TopOffsetPageNumber  = (UINTN)EFI_SIZE_TO_PAGES ((UINT32)(ImageBase + ImageSize - MmCodeBase));
  for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
    if ((mMmCodeMemoryRangeUsageBitMap[Index / 64] & LShiftU64 (1, (Index % 64))) != 0) {
      //
      // This page is already used.
      //
      return EFI_NOT_FOUND;
    }
  }

  //
  // Being here means the memory range is available.  So mark the bits for the memory range
  //
  for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
    mMmCodeMemoryRangeUsageBitMap[Index / 64] |= LShiftU64 (1, (Index % 64));
  }
  return  EFI_SUCCESS;
}

/**
  Get the fixed loading address from image header assigned by build tool. This function only be called
  when Loading module at Fixed address feature enabled.

  @param  ImageContext              Pointer to the image context structure that describes the PE/COFF
                                    image that needs to be examined by this function.
  @retval EFI_SUCCESS               An fixed loading address is assigned to this image by build tools .
  @retval EFI_NOT_FOUND             The image has no assigned fixed loadding address.

**/
EFI_STATUS
GetPeCoffImageFixLoadingAssignedAddress(
  IN OUT PE_COFF_LOADER_IMAGE_CONTEXT  *ImageContext
  )
{
  UINTN                              SectionHeaderOffset;
  EFI_STATUS                         Status;
  EFI_IMAGE_SECTION_HEADER           SectionHeader;
  EFI_IMAGE_OPTIONAL_HEADER_UNION    *ImgHdr;
  EFI_PHYSICAL_ADDRESS               FixLoadingAddress;
  UINT16                             Index;
  UINTN                              Size;
  UINT16                             NumberOfSections;
  UINT64                             ValueInSectionHeader;

  FixLoadingAddress = 0;
  Status = EFI_NOT_FOUND;

  //
  // Get PeHeader pointer
  //
  ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((CHAR8* )ImageContext->Handle + ImageContext->PeCoffHeaderOffset);
  SectionHeaderOffset = ImageContext->PeCoffHeaderOffset + sizeof (UINT32) + sizeof (EFI_IMAGE_FILE_HEADER) +
    ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader;
  NumberOfSections = ImgHdr->Pe32.FileHeader.NumberOfSections;

  //
  // Get base address from the first section header that doesn't point to code section.
  //
  for (Index = 0; Index < NumberOfSections; Index++) {
    //
    // Read section header from file
    //
    Size = sizeof (EFI_IMAGE_SECTION_HEADER);
    Status = ImageContext->ImageRead (
                             ImageContext->Handle,
                             SectionHeaderOffset,
                             &Size,
                             &SectionHeader
                             );
    if (EFI_ERROR (Status)) {
      return Status;
    }

    Status = EFI_NOT_FOUND;

    if ((SectionHeader.Characteristics & EFI_IMAGE_SCN_CNT_CODE) == 0) {
      //
      // Build tool will save the address in PointerToRelocations & PointerToLineNumbers fields
      // in the first section header that doesn't point to code section in image header. So there
      // is an assumption that when the feature is enabled, if a module with a loading address
      // assigned by tools, the PointerToRelocations & PointerToLineNumbers fields should not be
      // Zero, or else, these 2 fields should be set to Zero
      //
      ValueInSectionHeader = ReadUnaligned64 ((UINT64*)&SectionHeader.PointerToRelocations);
      if (ValueInSectionHeader != 0) {
        //
        // Found first section header that doesn't point to code section in which build tool saves the
        // offset to SMRAM base as image base in PointerToRelocations & PointerToLineNumbers fields
        //
        FixLoadingAddress = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressMmramBase + (INT64)ValueInSectionHeader);
        //
        // Check if the memory range is available.
        //
        Status = CheckAndMarkFixLoadingMemoryUsageBitMap (FixLoadingAddress, (UINTN)(ImageContext->ImageSize + ImageContext->SectionAlignment));
        if (!EFI_ERROR(Status)) {
          //
          // The assigned address is valid. Return the specified loading address
          //
          ImageContext->ImageAddress = FixLoadingAddress;
        }
      }
      break;
    }
    SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER);
  }
  DEBUG ((DEBUG_INFO|DEBUG_LOAD, "LOADING MODULE FIXED INFO: Loading module at fixed address %x, Status = %r\n",
          FixLoadingAddress, Status));
  return Status;
}
/**
  Loads an EFI image into SMRAM.

  @param  DriverEntry             EFI_MM_DRIVER_ENTRY instance

  @return EFI_STATUS

**/
EFI_STATUS
EFIAPI
MmLoadImage (
  IN OUT EFI_MM_DRIVER_ENTRY  *DriverEntry
  )
{
  UINTN                          PageCount;
  EFI_STATUS                     Status;
  EFI_PHYSICAL_ADDRESS           DstBuffer;
  PE_COFF_LOADER_IMAGE_CONTEXT   ImageContext;

  DEBUG ((DEBUG_INFO, "MmLoadImage - %g\n", &DriverEntry->FileName));

  Status               = EFI_SUCCESS;

  //
  // Initialize ImageContext
  //
  ImageContext.Handle = DriverEntry->Pe32Data;
  ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;

  //
  // Get information about the image being loaded
  //
  Status = PeCoffLoaderGetImageInfo (&ImageContext);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  PageCount = (UINTN)EFI_SIZE_TO_PAGES ((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
  DstBuffer = (UINTN)(-1);

  Status = MmAllocatePages (
             AllocateMaxAddress,
             EfiRuntimeServicesCode,
             PageCount,
             &DstBuffer
             );
  if (EFI_ERROR (Status)) {
    return Status;
  }

  ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;

  //
  // Align buffer on section boundry
  //
  ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
  ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)(ImageContext.SectionAlignment - 1));

  //
  // Load the image to our new buffer
  //
  Status = PeCoffLoaderLoadImage (&ImageContext);
  if (EFI_ERROR (Status)) {
    MmFreePages (DstBuffer, PageCount);
    return Status;
  }

  //
  // Relocate the image in our new buffer
  //
  Status = PeCoffLoaderRelocateImage (&ImageContext);
  if (EFI_ERROR (Status)) {
    MmFreePages (DstBuffer, PageCount);
    return Status;
  }

  //
  // Flush the instruction cache so the image data are written before we execute it
  //
  InvalidateInstructionCacheRange ((VOID *)(UINTN) ImageContext.ImageAddress, (UINTN) ImageContext.ImageSize);

  //
  // Save Image EntryPoint in DriverEntry
  //
  DriverEntry->ImageEntryPoint  = ImageContext.EntryPoint;
  DriverEntry->ImageBuffer      = DstBuffer;
  DriverEntry->NumberOfPage     = PageCount;

  if (mEfiSystemTable != NULL) {
    Status = mEfiSystemTable->BootServices->AllocatePool (
                                              EfiBootServicesData,
                                              sizeof (EFI_LOADED_IMAGE_PROTOCOL),
                                              (VOID **)&DriverEntry->LoadedImage
                                              );
    if (EFI_ERROR (Status)) {
      MmFreePages (DstBuffer, PageCount);
      return Status;
    }

    ZeroMem (DriverEntry->LoadedImage, sizeof (EFI_LOADED_IMAGE_PROTOCOL));
    //
    // Fill in the remaining fields of the Loaded Image Protocol instance.
    // Note: ImageBase is an SMRAM address that can not be accessed outside of SMRAM if SMRAM window is closed.
    //
    DriverEntry->LoadedImage->Revision      = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
    DriverEntry->LoadedImage->ParentHandle  = NULL;
    DriverEntry->LoadedImage->SystemTable   = mEfiSystemTable;
    DriverEntry->LoadedImage->DeviceHandle  = NULL;
    DriverEntry->LoadedImage->FilePath      = NULL;

    DriverEntry->LoadedImage->ImageBase     = (VOID *)(UINTN)DriverEntry->ImageBuffer;
    DriverEntry->LoadedImage->ImageSize     = ImageContext.ImageSize;
    DriverEntry->LoadedImage->ImageCodeType = EfiRuntimeServicesCode;
    DriverEntry->LoadedImage->ImageDataType = EfiRuntimeServicesData;

    //
    // Create a new image handle in the UEFI handle database for the MM Driver
    //
    DriverEntry->ImageHandle = NULL;
    Status = mEfiSystemTable->BootServices->InstallMultipleProtocolInterfaces (
                                              &DriverEntry->ImageHandle,
                                              &gEfiLoadedImageProtocolGuid,
                                              DriverEntry->LoadedImage,
                                              NULL
                                              );
  }

  //
  // Print the load address and the PDB file name if it is available
  //
  DEBUG_CODE_BEGIN ();

  UINTN Index;
  UINTN StartIndex;
  CHAR8 EfiFileName[256];

  DEBUG ((DEBUG_INFO | DEBUG_LOAD,
          "Loading MM driver at 0x%11p EntryPoint=0x%11p ",
          (VOID *)(UINTN) ImageContext.ImageAddress,
          FUNCTION_ENTRY_POINT (ImageContext.EntryPoint)));

  //
  // Print Module Name by Pdb file path.
  // Windows and Unix style file path are all trimmed correctly.
  //
  if (ImageContext.PdbPointer != NULL) {
    StartIndex = 0;
    for (Index = 0; ImageContext.PdbPointer[Index] != 0; Index++) {
      if ((ImageContext.PdbPointer[Index] == '\\') || (ImageContext.PdbPointer[Index] == '/')) {
        StartIndex = Index + 1;
      }
    }

    //
    // Copy the PDB file name to our temporary string, and replace .pdb with .efi
    // The PDB file name is limited in the range of 0~255.
    // If the length is bigger than 255, trim the redudant characters to avoid overflow in array boundary.
    //
    for (Index = 0; Index < sizeof (EfiFileName) - 4; Index++) {
      EfiFileName[Index] = ImageContext.PdbPointer[Index + StartIndex];
      if (EfiFileName[Index] == 0) {
        EfiFileName[Index] = '.';
      }
      if (EfiFileName[Index] == '.') {
        EfiFileName[Index + 1] = 'e';
        EfiFileName[Index + 2] = 'f';
        EfiFileName[Index + 3] = 'i';
        EfiFileName[Index + 4] = 0;
        break;
      }
    }

    if (Index == sizeof (EfiFileName) - 4) {
      EfiFileName[Index] = 0;
    }
    DEBUG ((DEBUG_INFO | DEBUG_LOAD, "%a", EfiFileName));
  }
  DEBUG ((DEBUG_INFO | DEBUG_LOAD, "\n"));

  DEBUG_CODE_END ();

  return Status;
}

/**
  Preprocess dependency expression and update DriverEntry to reflect the
  state of  Before and After dependencies. If DriverEntry->Before
  or DriverEntry->After is set it will never be cleared.

  @param  DriverEntry           DriverEntry element to update .

  @retval EFI_SUCCESS           It always works.

**/
EFI_STATUS
MmPreProcessDepex (
  IN EFI_MM_DRIVER_ENTRY  *DriverEntry
  )
{
  UINT8  *Iterator;

  Iterator = DriverEntry->Depex;
  DriverEntry->Dependent = TRUE;

  if (*Iterator == EFI_DEP_BEFORE) {
    DriverEntry->Before = TRUE;
  } else if (*Iterator == EFI_DEP_AFTER) {
    DriverEntry->After = TRUE;
  }

  if (DriverEntry->Before || DriverEntry->After) {
    CopyMem (&DriverEntry->BeforeAfterGuid, Iterator + 1, sizeof (EFI_GUID));
  }

  return EFI_SUCCESS;
}

/**
  Read Depex and pre-process the Depex for Before and After. If Section Extraction
  protocol returns an error via ReadSection defer the reading of the Depex.

  @param  DriverEntry           Driver to work on.

  @retval EFI_SUCCESS           Depex read and preprossesed
  @retval EFI_PROTOCOL_ERROR    The section extraction protocol returned an error
                                and  Depex reading needs to be retried.
  @retval Error                 DEPEX not found.

**/
EFI_STATUS
MmGetDepexSectionAndPreProccess (
  IN EFI_MM_DRIVER_ENTRY  *DriverEntry
  )
{
  EFI_STATUS                     Status;

  //
  // Data already read
  //
  if (DriverEntry->Depex == NULL) {
    Status = EFI_NOT_FOUND;
  } else {
    Status = EFI_SUCCESS;
  }
  if (EFI_ERROR (Status)) {
    if (Status == EFI_PROTOCOL_ERROR) {
      //
      // The section extraction protocol failed so set protocol error flag
      //
      DriverEntry->DepexProtocolError = TRUE;
    } else {
      //
      // If no Depex assume depend on all architectural protocols
      //
      DriverEntry->Depex = NULL;
      DriverEntry->Dependent = TRUE;
      DriverEntry->DepexProtocolError = FALSE;
    }
  } else {
    //
    // Set Before and After state information based on Depex
    // Driver will be put in Dependent state
    //
    MmPreProcessDepex (DriverEntry);
    DriverEntry->DepexProtocolError = FALSE;
  }

  return Status;
}

/**
  This is the main Dispatcher for MM and it exits when there are no more
  drivers to run. Drain the mScheduledQueue and load and start a PE
  image for each driver. Search the mDiscoveredList to see if any driver can
  be placed on the mScheduledQueue. If no drivers are placed on the
  mScheduledQueue exit the function.

  @retval EFI_SUCCESS           All of the MM Drivers that could be dispatched
                                have been run and the MM Entry Point has been
                                registered.
  @retval EFI_NOT_READY         The MM Driver that registered the MM Entry Point
                                was just dispatched.
  @retval EFI_NOT_FOUND         There are no MM Drivers available to be dispatched.
  @retval EFI_ALREADY_STARTED   The MM Dispatcher is already running

**/
EFI_STATUS
MmDispatcher (
  VOID
  )
{
  EFI_STATUS            Status;
  LIST_ENTRY            *Link;
  EFI_MM_DRIVER_ENTRY  *DriverEntry;
  BOOLEAN               ReadyToRun;

  DEBUG ((DEBUG_INFO, "MmDispatcher\n"));

  if (!gRequestDispatch) {
    DEBUG ((DEBUG_INFO, "  !gRequestDispatch\n"));
    return EFI_NOT_FOUND;
  }

  if (gDispatcherRunning) {
    DEBUG ((DEBUG_INFO, "  gDispatcherRunning\n"));
    //
    // If the dispatcher is running don't let it be restarted.
    //
    return EFI_ALREADY_STARTED;
  }

  gDispatcherRunning = TRUE;

  do {
    //
    // Drain the Scheduled Queue
    //
    DEBUG ((DEBUG_INFO, "  Drain the Scheduled Queue\n"));
    while (!IsListEmpty (&mScheduledQueue)) {
      DriverEntry = CR (
                      mScheduledQueue.ForwardLink,
                      EFI_MM_DRIVER_ENTRY,
                      ScheduledLink,
                      EFI_MM_DRIVER_ENTRY_SIGNATURE
                      );
      DEBUG ((DEBUG_INFO, "  DriverEntry (Scheduled) - %g\n", &DriverEntry->FileName));

      //
      // Load the MM Driver image into memory. If the Driver was transitioned from
      // Untrused to Scheduled it would have already been loaded so we may need to
      // skip the LoadImage
      //
      if (DriverEntry->ImageHandle == NULL) {
        Status = MmLoadImage (DriverEntry);

        //
        // Update the driver state to reflect that it's been loaded
        //
        if (EFI_ERROR (Status)) {
          //
          // The MM Driver could not be loaded, and do not attempt to load or start it again.
          // Take driver from Scheduled to Initialized.
          //
          DriverEntry->Initialized  = TRUE;
          DriverEntry->Scheduled = FALSE;
          RemoveEntryList (&DriverEntry->ScheduledLink);

          //
          // If it's an error don't try the StartImage
          //
          continue;
        }
      }

      DriverEntry->Scheduled    = FALSE;
      DriverEntry->Initialized  = TRUE;
      RemoveEntryList (&DriverEntry->ScheduledLink);

      //
      // For each MM driver, pass NULL as ImageHandle
      //
      if (mEfiSystemTable == NULL) {
        DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Standalone Mode)\n", DriverEntry->ImageEntryPoint));
        Status = ((MM_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint) (DriverEntry->ImageHandle, &gMmCoreMmst);
      } else {
        DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Tradition Mode)\n", DriverEntry->ImageEntryPoint));
        Status = ((EFI_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint) (
                                                               DriverEntry->ImageHandle,
                                                               mEfiSystemTable
                                                               );
      }
      if (EFI_ERROR(Status)) {
        DEBUG ((DEBUG_INFO, "StartImage Status - %r\n", Status));
        MmFreePages(DriverEntry->ImageBuffer, DriverEntry->NumberOfPage);
      }
    }

    //
    // Search DriverList for items to place on Scheduled Queue
    //
    DEBUG ((DEBUG_INFO, "  Search DriverList for items to place on Scheduled Queue\n"));
    ReadyToRun = FALSE;
    for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
      DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
      DEBUG ((DEBUG_INFO, "  DriverEntry (Discovered) - %g\n", &DriverEntry->FileName));

      if (DriverEntry->DepexProtocolError) {
        //
        // If Section Extraction Protocol did not let the Depex be read before retry the read
        //
        Status = MmGetDepexSectionAndPreProccess (DriverEntry);
      }

      if (DriverEntry->Dependent) {
        if (MmIsSchedulable (DriverEntry)) {
          MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
          ReadyToRun = TRUE;
        }
      }
    }
  } while (ReadyToRun);

  //
  // If there is no more MM driver to dispatch, stop the dispatch request
  //
  DEBUG ((DEBUG_INFO, "  no more MM driver to dispatch, stop the dispatch request\n"));
  gRequestDispatch = FALSE;
  for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
    DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
    DEBUG ((DEBUG_INFO, "  DriverEntry (Discovered) - %g\n", &DriverEntry->FileName));

    if (!DriverEntry->Initialized) {
      //
      // We have MM driver pending to dispatch
      //
      gRequestDispatch = TRUE;
      break;
    }
  }

  gDispatcherRunning = FALSE;

  return EFI_SUCCESS;
}

/**
  Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
  must add any driver with a before dependency on InsertedDriverEntry first.
  You do this by recursively calling this routine. After all the Befores are
  processed you can add InsertedDriverEntry to the mScheduledQueue.
  Then you can add any driver with an After dependency on InsertedDriverEntry
  by recursively calling this routine.

  @param  InsertedDriverEntry   The driver to insert on the ScheduledLink Queue

**/
VOID
MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
  IN  EFI_MM_DRIVER_ENTRY   *InsertedDriverEntry
  )
{
  LIST_ENTRY            *Link;
  EFI_MM_DRIVER_ENTRY *DriverEntry;

  //
  // Process Before Dependency
  //
  for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
    DriverEntry = CR(Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
    if (DriverEntry->Before && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
      DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
      DEBUG ((DEBUG_DISPATCH, "  BEFORE FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
      if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
        //
        // Recursively process BEFORE
        //
        DEBUG ((DEBUG_DISPATCH, "TRUE\n  END\n  RESULT = TRUE\n"));
        MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
      } else {
        DEBUG ((DEBUG_DISPATCH, "FALSE\n  END\n  RESULT = FALSE\n"));
      }
    }
  }

  //
  // Convert driver from Dependent to Scheduled state
  //

  InsertedDriverEntry->Dependent = FALSE;
  InsertedDriverEntry->Scheduled = TRUE;
  InsertTailList (&mScheduledQueue, &InsertedDriverEntry->ScheduledLink);


  //
  // Process After Dependency
  //
  for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
    DriverEntry = CR(Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
    if (DriverEntry->After && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
      DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
      DEBUG ((DEBUG_DISPATCH, "  AFTER FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
      if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
        //
        // Recursively process AFTER
        //
        DEBUG ((DEBUG_DISPATCH, "TRUE\n  END\n  RESULT = TRUE\n"));
        MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
      } else {
        DEBUG ((DEBUG_DISPATCH, "FALSE\n  END\n  RESULT = FALSE\n"));
      }
    }
  }
}

/**
  Return TRUE if the Fv has been processed, FALSE if not.

  @param  FvHandle              The handle of a FV that's being tested

  @retval TRUE                  Fv protocol on FvHandle has been processed
  @retval FALSE                 Fv protocol on FvHandle has not yet been
                                processed

**/
BOOLEAN
FvHasBeenProcessed (
  IN EFI_HANDLE  FvHandle
  )
{
  LIST_ENTRY    *Link;
  KNOWN_HANDLE  *KnownHandle;

  for (Link = mFvHandleList.ForwardLink; Link != &mFvHandleList; Link = Link->ForwardLink) {
    KnownHandle = CR (Link, KNOWN_HANDLE, Link, KNOWN_HANDLE_SIGNATURE);
    if (KnownHandle->Handle == FvHandle) {
      return TRUE;
    }
  }
  return FALSE;
}

/**
  Remember that Fv protocol on FvHandle has had it's drivers placed on the
  mDiscoveredList. This fucntion adds entries on the mFvHandleList. Items are
  never removed/freed from the mFvHandleList.

  @param  FvHandle              The handle of a FV that has been processed

**/
VOID
FvIsBeingProcesssed (
  IN EFI_HANDLE  FvHandle
  )
{
  KNOWN_HANDLE  *KnownHandle;

  DEBUG ((DEBUG_INFO, "FvIsBeingProcesssed - 0x%08x\n", FvHandle));

  KnownHandle = AllocatePool (sizeof (KNOWN_HANDLE));
  ASSERT (KnownHandle != NULL);

  KnownHandle->Signature = KNOWN_HANDLE_SIGNATURE;
  KnownHandle->Handle = FvHandle;
  InsertTailList (&mFvHandleList, &KnownHandle->Link);
}

/**
  Add an entry to the mDiscoveredList. Allocate memory to store the DriverEntry,
  and initilize any state variables. Read the Depex from the FV and store it
  in DriverEntry. Pre-process the Depex to set the Before and After state.
  The Discovered list is never free'ed and contains booleans that represent the
  other possible MM driver states.

  @param  Fv                    Fv protocol, needed to read Depex info out of
                                FLASH.
  @param  FvHandle              Handle for Fv, needed in the
                                EFI_MM_DRIVER_ENTRY so that the PE image can be
                                read out of the FV at a later time.
  @param  DriverName            Name of driver to add to mDiscoveredList.

  @retval EFI_SUCCESS           If driver was added to the mDiscoveredList.
  @retval EFI_ALREADY_STARTED   The driver has already been started. Only one
                                DriverName may be active in the system at any one
                                time.

**/
EFI_STATUS
MmAddToDriverList (
  IN EFI_HANDLE   FvHandle,
  IN VOID         *Pe32Data,
  IN UINTN        Pe32DataSize,
  IN VOID         *Depex,
  IN UINTN        DepexSize,
  IN EFI_GUID     *DriverName
  )
{
  EFI_MM_DRIVER_ENTRY  *DriverEntry;

  DEBUG ((DEBUG_INFO, "MmAddToDriverList - %g (0x%08x)\n", DriverName, Pe32Data));

  //
  // Create the Driver Entry for the list. ZeroPool initializes lots of variables to
  // NULL or FALSE.
  //
  DriverEntry = AllocateZeroPool (sizeof (EFI_MM_DRIVER_ENTRY));
  ASSERT (DriverEntry != NULL);

  DriverEntry->Signature        = EFI_MM_DRIVER_ENTRY_SIGNATURE;
  CopyGuid (&DriverEntry->FileName, DriverName);
  DriverEntry->FvHandle         = FvHandle;
  DriverEntry->Pe32Data         = Pe32Data;
  DriverEntry->Pe32DataSize     = Pe32DataSize;
  DriverEntry->Depex            = Depex;
  DriverEntry->DepexSize        = DepexSize;

  MmGetDepexSectionAndPreProccess (DriverEntry);

  InsertTailList (&mDiscoveredList, &DriverEntry->Link);
  gRequestDispatch = TRUE;

  return EFI_SUCCESS;
}

/**
  Traverse the discovered list for any drivers that were discovered but not loaded
  because the dependency experessions evaluated to false.

**/
VOID
MmDisplayDiscoveredNotDispatched (
  VOID
  )
{
  LIST_ENTRY                   *Link;
  EFI_MM_DRIVER_ENTRY         *DriverEntry;

  for (Link = mDiscoveredList.ForwardLink;Link !=&mDiscoveredList; Link = Link->ForwardLink) {
    DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
    if (DriverEntry->Dependent) {
      DEBUG ((DEBUG_LOAD, "MM Driver %g was discovered but not loaded!!\n", &DriverEntry->FileName));
    }
  }
}