1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
|
/** @file
CPU DXE Module.
Copyright (c) 2008 - 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "CpuDxe.h"
//
// Global Variables
//
IA32_IDT_GATE_DESCRIPTOR gIdtTable[INTERRUPT_VECTOR_NUMBER] = { 0 };
EFI_CPU_INTERRUPT_HANDLER ExternalVectorTable[0x100];
BOOLEAN InterruptState = FALSE;
EFI_HANDLE mCpuHandle = NULL;
BOOLEAN mIsFlushingGCD;
UINT8 mDefaultMemoryType = MTRR_CACHE_WRITE_BACK;
UINT64 mValidMtrrAddressMask = MTRR_LIB_CACHE_VALID_ADDRESS;
UINT64 mValidMtrrBitsMask = MTRR_LIB_MSR_VALID_MASK;
FIXED_MTRR mFixedMtrrTable[] = {
{
MTRR_LIB_IA32_MTRR_FIX64K_00000,
0,
0x10000
},
{
MTRR_LIB_IA32_MTRR_FIX16K_80000,
0x80000,
0x4000
},
{
MTRR_LIB_IA32_MTRR_FIX16K_A0000,
0xA0000,
0x4000
},
{
MTRR_LIB_IA32_MTRR_FIX4K_C0000,
0xC0000,
0x1000
},
{
MTRR_LIB_IA32_MTRR_FIX4K_C8000,
0xC8000,
0x1000
},
{
MTRR_LIB_IA32_MTRR_FIX4K_D0000,
0xD0000,
0x1000
},
{
MTRR_LIB_IA32_MTRR_FIX4K_D8000,
0xD8000,
0x1000
},
{
MTRR_LIB_IA32_MTRR_FIX4K_E0000,
0xE0000,
0x1000
},
{
MTRR_LIB_IA32_MTRR_FIX4K_E8000,
0xE8000,
0x1000
},
{
MTRR_LIB_IA32_MTRR_FIX4K_F0000,
0xF0000,
0x1000
},
{
MTRR_LIB_IA32_MTRR_FIX4K_F8000,
0xF8000,
0x1000
},
};
EFI_CPU_ARCH_PROTOCOL gCpu = {
CpuFlushCpuDataCache,
CpuEnableInterrupt,
CpuDisableInterrupt,
CpuGetInterruptState,
CpuInit,
CpuRegisterInterruptHandler,
CpuGetTimerValue,
CpuSetMemoryAttributes,
1, // NumberOfTimers
4 // DmaBufferAlignment
};
//
// Error code flag indicating whether or not an error code will be
// pushed on the stack if an exception occurs.
//
// 1 means an error code will be pushed, otherwise 0
//
// bit 0 - exception 0
// bit 1 - exception 1
// etc.
//
UINT32 mErrorCodeFlag = 0x00027d00;
//
// Local function prototypes
//
/**
Set Interrupt Descriptor Table Handler Address.
@param Index The Index of the interrupt descriptor table handle.
@param Handler Handler address.
**/
VOID
SetInterruptDescriptorTableHandlerAddress (
IN UINTN Index,
IN VOID *Handler OPTIONAL
);
//
// CPU Arch Protocol Functions
//
/**
Common exception handler.
@param InterruptType Exception type
@param SystemContext EFI_SYSTEM_CONTEXT
**/
VOID
EFIAPI
CommonExceptionHandler (
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
#if defined (MDE_CPU_IA32)
DEBUG ((
EFI_D_ERROR,
"!!!! IA32 Exception Type - %08x !!!!\n",
InterruptType
));
if ((mErrorCodeFlag & (1 << InterruptType)) != 0) {
DEBUG ((
EFI_D_ERROR,
"ExceptionData - %08x\n",
SystemContext.SystemContextIa32->ExceptionData
));
}
DEBUG ((
EFI_D_ERROR,
"CS - %04x, EIP - %08x, EFL - %08x, SS - %04x\n",
SystemContext.SystemContextIa32->Cs,
SystemContext.SystemContextIa32->Eip,
SystemContext.SystemContextIa32->Eflags,
SystemContext.SystemContextIa32->Ss
));
DEBUG ((
EFI_D_ERROR,
"DS - %04x, ES - %04x, FS - %04x, GS - %04x\n",
SystemContext.SystemContextIa32->Ds,
SystemContext.SystemContextIa32->Es,
SystemContext.SystemContextIa32->Fs,
SystemContext.SystemContextIa32->Gs
));
DEBUG ((
EFI_D_ERROR,
"EAX - %08x, EBX - %08x, ECX - %08x, EDX - %08x\n",
SystemContext.SystemContextIa32->Eax,
SystemContext.SystemContextIa32->Ebx,
SystemContext.SystemContextIa32->Ecx,
SystemContext.SystemContextIa32->Edx
));
DEBUG ((
EFI_D_ERROR,
"ESP - %08x, EBP - %08x, ESI - %08x, EDI - %08x\n",
SystemContext.SystemContextIa32->Esp,
SystemContext.SystemContextIa32->Ebp,
SystemContext.SystemContextIa32->Esi,
SystemContext.SystemContextIa32->Edi
));
DEBUG ((
EFI_D_ERROR,
"GDT - %08x LIM - %04x, IDT - %08x LIM - %04x\n",
SystemContext.SystemContextIa32->Gdtr[0],
SystemContext.SystemContextIa32->Gdtr[1],
SystemContext.SystemContextIa32->Idtr[0],
SystemContext.SystemContextIa32->Idtr[1]
));
DEBUG ((
EFI_D_ERROR,
"LDT - %08x, TR - %08x\n",
SystemContext.SystemContextIa32->Ldtr,
SystemContext.SystemContextIa32->Tr
));
DEBUG ((
EFI_D_ERROR,
"CR0 - %08x, CR2 - %08x, CR3 - %08x, CR4 - %08x\n",
SystemContext.SystemContextIa32->Cr0,
SystemContext.SystemContextIa32->Cr2,
SystemContext.SystemContextIa32->Cr3,
SystemContext.SystemContextIa32->Cr4
));
DEBUG ((
EFI_D_ERROR,
"DR0 - %08x, DR1 - %08x, DR2 - %08x, DR3 - %08x\n",
SystemContext.SystemContextIa32->Dr0,
SystemContext.SystemContextIa32->Dr1,
SystemContext.SystemContextIa32->Dr2,
SystemContext.SystemContextIa32->Dr3
));
DEBUG ((
EFI_D_ERROR,
"DR6 - %08x, DR7 - %08x\n",
SystemContext.SystemContextIa32->Dr6,
SystemContext.SystemContextIa32->Dr7
));
#elif defined (MDE_CPU_X64)
DEBUG ((
EFI_D_ERROR,
"!!!! X64 Exception Type - %016lx !!!!\n",
(UINT64)InterruptType
));
if ((mErrorCodeFlag & (1 << InterruptType)) != 0) {
DEBUG ((
EFI_D_ERROR,
"ExceptionData - %016lx\n",
SystemContext.SystemContextX64->ExceptionData
));
}
DEBUG ((
EFI_D_ERROR,
"RIP - %016lx, RFL - %016lx\n",
SystemContext.SystemContextX64->Rip,
SystemContext.SystemContextX64->Rflags
));
DEBUG ((
EFI_D_ERROR,
"RAX - %016lx, RCX - %016lx, RDX - %016lx\n",
SystemContext.SystemContextX64->Rax,
SystemContext.SystemContextX64->Rcx,
SystemContext.SystemContextX64->Rdx
));
DEBUG ((
EFI_D_ERROR,
"RBX - %016lx, RSP - %016lx, RBP - %016lx\n",
SystemContext.SystemContextX64->Rbx,
SystemContext.SystemContextX64->Rsp,
SystemContext.SystemContextX64->Rbp
));
DEBUG ((
EFI_D_ERROR,
"RSI - %016lx, RDI - %016lx\n",
SystemContext.SystemContextX64->Rsi,
SystemContext.SystemContextX64->Rdi
));
DEBUG ((
EFI_D_ERROR,
"R8 - %016lx, R9 - %016lx, R10 - %016lx\n",
SystemContext.SystemContextX64->R8,
SystemContext.SystemContextX64->R9,
SystemContext.SystemContextX64->R10
));
DEBUG ((
EFI_D_ERROR,
"R11 - %016lx, R12 - %016lx, R13 - %016lx\n",
SystemContext.SystemContextX64->R11,
SystemContext.SystemContextX64->R12,
SystemContext.SystemContextX64->R13
));
DEBUG ((
EFI_D_ERROR,
"R14 - %016lx, R15 - %016lx\n",
SystemContext.SystemContextX64->R14,
SystemContext.SystemContextX64->R15
));
DEBUG ((
EFI_D_ERROR,
"CS - %04lx, DS - %04lx, ES - %04lx, FS - %04lx, GS - %04lx, SS - %04lx\n",
SystemContext.SystemContextX64->Cs,
SystemContext.SystemContextX64->Ds,
SystemContext.SystemContextX64->Es,
SystemContext.SystemContextX64->Fs,
SystemContext.SystemContextX64->Gs,
SystemContext.SystemContextX64->Ss
));
DEBUG ((
EFI_D_ERROR,
"GDT - %016lx; %04lx, IDT - %016lx; %04lx\n",
SystemContext.SystemContextX64->Gdtr[0],
SystemContext.SystemContextX64->Gdtr[1],
SystemContext.SystemContextX64->Idtr[0],
SystemContext.SystemContextX64->Idtr[1]
));
DEBUG ((
EFI_D_ERROR,
"LDT - %016lx, TR - %016lx\n",
SystemContext.SystemContextX64->Ldtr,
SystemContext.SystemContextX64->Tr
));
DEBUG ((
EFI_D_ERROR,
"CR0 - %016lx, CR2 - %016lx, CR3 - %016lx\n",
SystemContext.SystemContextX64->Cr0,
SystemContext.SystemContextX64->Cr2,
SystemContext.SystemContextX64->Cr3
));
DEBUG ((
EFI_D_ERROR,
"CR4 - %016lx, CR8 - %016lx\n",
SystemContext.SystemContextX64->Cr4,
SystemContext.SystemContextX64->Cr8
));
DEBUG ((
EFI_D_ERROR,
"DR0 - %016lx, DR1 - %016lx, DR2 - %016lx\n",
SystemContext.SystemContextX64->Dr0,
SystemContext.SystemContextX64->Dr1,
SystemContext.SystemContextX64->Dr2
));
DEBUG ((
EFI_D_ERROR,
"DR3 - %016lx, DR6 - %016lx, DR7 - %016lx\n",
SystemContext.SystemContextX64->Dr3,
SystemContext.SystemContextX64->Dr6,
SystemContext.SystemContextX64->Dr7
));
#else
#error CPU type not supported for exception information dump!
#endif
//
// Hang the system with CpuSleep so the processor will enter a lower power
// state.
//
while (TRUE) {
CpuSleep ();
};
}
/**
Flush CPU data cache. If the instruction cache is fully coherent
with all DMA operations then function can just return EFI_SUCCESS.
@param This Protocol instance structure
@param Start Physical address to start flushing from.
@param Length Number of bytes to flush. Round up to chipset
granularity.
@param FlushType Specifies the type of flush operation to perform.
@retval EFI_SUCCESS If cache was flushed
@retval EFI_UNSUPPORTED If flush type is not supported.
@retval EFI_DEVICE_ERROR If requested range could not be flushed.
**/
EFI_STATUS
EFIAPI
CpuFlushCpuDataCache (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_PHYSICAL_ADDRESS Start,
IN UINT64 Length,
IN EFI_CPU_FLUSH_TYPE FlushType
)
{
if (FlushType == EfiCpuFlushTypeWriteBackInvalidate) {
AsmWbinvd ();
return EFI_SUCCESS;
} else if (FlushType == EfiCpuFlushTypeInvalidate) {
AsmInvd ();
return EFI_SUCCESS;
} else {
return EFI_UNSUPPORTED;
}
}
/**
Enables CPU interrupts.
@param This Protocol instance structure
@retval EFI_SUCCESS If interrupts were enabled in the CPU
@retval EFI_DEVICE_ERROR If interrupts could not be enabled on the CPU.
**/
EFI_STATUS
EFIAPI
CpuEnableInterrupt (
IN EFI_CPU_ARCH_PROTOCOL *This
)
{
EnableInterrupts ();
InterruptState = TRUE;
return EFI_SUCCESS;
}
/**
Disables CPU interrupts.
@param This Protocol instance structure
@retval EFI_SUCCESS If interrupts were disabled in the CPU.
@retval EFI_DEVICE_ERROR If interrupts could not be disabled on the CPU.
**/
EFI_STATUS
EFIAPI
CpuDisableInterrupt (
IN EFI_CPU_ARCH_PROTOCOL *This
)
{
DisableInterrupts ();
InterruptState = FALSE;
return EFI_SUCCESS;
}
/**
Return the state of interrupts.
@param This Protocol instance structure
@param State Pointer to the CPU's current interrupt state
@retval EFI_SUCCESS If interrupts were disabled in the CPU.
@retval EFI_INVALID_PARAMETER State is NULL.
**/
EFI_STATUS
EFIAPI
CpuGetInterruptState (
IN EFI_CPU_ARCH_PROTOCOL *This,
OUT BOOLEAN *State
)
{
if (State == NULL) {
return EFI_INVALID_PARAMETER;
}
*State = InterruptState;
return EFI_SUCCESS;
}
/**
Generates an INIT to the CPU.
@param This Protocol instance structure
@param InitType Type of CPU INIT to perform
@retval EFI_SUCCESS If CPU INIT occurred. This value should never be
seen.
@retval EFI_DEVICE_ERROR If CPU INIT failed.
@retval EFI_UNSUPPORTED Requested type of CPU INIT not supported.
**/
EFI_STATUS
EFIAPI
CpuInit (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_CPU_INIT_TYPE InitType
)
{
return EFI_UNSUPPORTED;
}
/**
Registers a function to be called from the CPU interrupt handler.
@param This Protocol instance structure
@param InterruptType Defines which interrupt to hook. IA-32
valid range is 0x00 through 0xFF
@param InterruptHandler A pointer to a function of type
EFI_CPU_INTERRUPT_HANDLER that is called
when a processor interrupt occurs. A null
pointer is an error condition.
@retval EFI_SUCCESS If handler installed or uninstalled.
@retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler
for InterruptType was previously installed.
@retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for
InterruptType was not previously installed.
@retval EFI_UNSUPPORTED The interrupt specified by InterruptType
is not supported.
**/
EFI_STATUS
EFIAPI
CpuRegisterInterruptHandler (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
)
{
if (InterruptType < 0 || InterruptType > 0xff) {
return EFI_UNSUPPORTED;
}
if (InterruptHandler == NULL && ExternalVectorTable[InterruptType] == NULL) {
return EFI_INVALID_PARAMETER;
}
if (InterruptHandler != NULL && ExternalVectorTable[InterruptType] != NULL) {
return EFI_ALREADY_STARTED;
}
SetInterruptDescriptorTableHandlerAddress ((UINTN)InterruptType, NULL);
ExternalVectorTable[InterruptType] = InterruptHandler;
return EFI_SUCCESS;
}
/**
Returns a timer value from one of the CPU's internal timers. There is no
inherent time interval between ticks but is a function of the CPU frequency.
@param This - Protocol instance structure.
@param TimerIndex - Specifies which CPU timer is requested.
@param TimerValue - Pointer to the returned timer value.
@param TimerPeriod - A pointer to the amount of time that passes
in femtoseconds (10-15) for each increment
of TimerValue. If TimerValue does not
increment at a predictable rate, then 0 is
returned. The amount of time that has
passed between two calls to GetTimerValue()
can be calculated with the formula
(TimerValue2 - TimerValue1) * TimerPeriod.
This parameter is optional and may be NULL.
@retval EFI_SUCCESS - If the CPU timer count was returned.
@retval EFI_UNSUPPORTED - If the CPU does not have any readable timers.
@retval EFI_DEVICE_ERROR - If an error occurred while reading the timer.
@retval EFI_INVALID_PARAMETER - TimerIndex is not valid or TimerValue is NULL.
**/
EFI_STATUS
EFIAPI
CpuGetTimerValue (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN UINT32 TimerIndex,
OUT UINT64 *TimerValue,
OUT UINT64 *TimerPeriod OPTIONAL
)
{
if (TimerValue == NULL) {
return EFI_INVALID_PARAMETER;
}
if (TimerIndex != 0) {
return EFI_INVALID_PARAMETER;
}
*TimerValue = AsmReadTsc ();
if (TimerPeriod != NULL) {
//
// BugBug: Hard coded. Don't know how to do this generically
//
*TimerPeriod = 1000000000;
}
return EFI_SUCCESS;
}
/**
Set memory cacheability attributes for given range of memeory.
@param This Protocol instance structure
@param BaseAddress Specifies the start address of the
memory range
@param Length Specifies the length of the memory range
@param Attributes The memory cacheability for the memory range
@retval EFI_SUCCESS If the cacheability of that memory range is
set successfully
@retval EFI_UNSUPPORTED If the desired operation cannot be done
@retval EFI_INVALID_PARAMETER The input parameter is not correct,
such as Length = 0
**/
EFI_STATUS
EFIAPI
CpuSetMemoryAttributes (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
{
RETURN_STATUS Status;
MTRR_MEMORY_CACHE_TYPE CacheType;
if (!IsMtrrSupported ()) {
return EFI_UNSUPPORTED;
}
DEBUG((EFI_D_ERROR, "CpuAp: SetMemorySpaceAttributes(BA=%08x, Len=%08x, Attr=%08x)\n", BaseAddress, Length, Attributes));
//
// If this function is called because GCD SetMemorySpaceAttributes () is called
// by RefreshGcdMemoryAttributes (), then we are just synchronzing GCD memory
// map with MTRR values. So there is no need to modify MTRRs, just return immediately
// to avoid unnecessary computing.
//
if (mIsFlushingGCD) {
DEBUG((EFI_D_ERROR, " Flushing GCD\n"));
return EFI_SUCCESS;
}
switch (Attributes) {
case EFI_MEMORY_UC:
CacheType = CacheUncacheable;
break;
case EFI_MEMORY_WC:
CacheType = CacheWriteCombining;
break;
case EFI_MEMORY_WT:
CacheType = CacheWriteThrough;
break;
case EFI_MEMORY_WP:
CacheType = CacheWriteProtected;
break;
case EFI_MEMORY_WB:
CacheType = CacheWriteBack;
break;
default:
return EFI_UNSUPPORTED;
}
//
// call MTRR libary function
//
DEBUG((EFI_D_ERROR, " MtrrSetMemoryAttribute()\n"));
Status = MtrrSetMemoryAttribute(
BaseAddress,
Length,
CacheType
);
MtrrDebugPrintAllMtrrs ();
return (EFI_STATUS) Status;
}
/**
Initializes the valid bits mask and valid address mask for MTRRs.
This function initializes the valid bits mask and valid address mask for MTRRs.
**/
VOID
InitializeMtrrMask (
VOID
)
{
UINT32 RegEax;
UINT8 PhysicalAddressBits;
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
PhysicalAddressBits = (UINT8) RegEax;
mValidMtrrBitsMask = LShiftU64 (1, PhysicalAddressBits) - 1;
mValidMtrrAddressMask = mValidMtrrBitsMask & 0xfffffffffffff000ULL;
} else {
mValidMtrrBitsMask = MTRR_LIB_MSR_VALID_MASK;
mValidMtrrAddressMask = MTRR_LIB_CACHE_VALID_ADDRESS;
}
}
/**
Gets GCD Mem Space type from MTRR Type.
This function gets GCD Mem Space type from MTRR Type.
@param MtrrAttributes MTRR memory type
@return GCD Mem Space type
**/
UINT64
GetMemorySpaceAttributeFromMtrrType (
IN UINT8 MtrrAttributes
)
{
switch (MtrrAttributes) {
case MTRR_CACHE_UNCACHEABLE:
return EFI_MEMORY_UC;
case MTRR_CACHE_WRITE_COMBINING:
return EFI_MEMORY_WC;
case MTRR_CACHE_WRITE_THROUGH:
return EFI_MEMORY_WT;
case MTRR_CACHE_WRITE_PROTECTED:
return EFI_MEMORY_WP;
case MTRR_CACHE_WRITE_BACK:
return EFI_MEMORY_WB;
default:
return 0;
}
}
/**
Searches memory descriptors covered by given memory range.
This function searches into the Gcd Memory Space for descriptors
(from StartIndex to EndIndex) that contains the memory range
specified by BaseAddress and Length.
@param MemorySpaceMap Gcd Memory Space Map as array.
@param NumberOfDescriptors Number of descriptors in map.
@param BaseAddress BaseAddress for the requested range.
@param Length Length for the requested range.
@param StartIndex Start index into the Gcd Memory Space Map.
@param EndIndex End index into the Gcd Memory Space Map.
@retval EFI_SUCCESS Search successfully.
@retval EFI_NOT_FOUND The requested descriptors does not exist.
**/
EFI_STATUS
SearchGcdMemorySpaces (
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
IN UINTN NumberOfDescriptors,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
OUT UINTN *StartIndex,
OUT UINTN *EndIndex
)
{
UINTN Index;
*StartIndex = 0;
*EndIndex = 0;
for (Index = 0; Index < NumberOfDescriptors; Index++) {
if (BaseAddress >= MemorySpaceMap[Index].BaseAddress &&
BaseAddress < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
*StartIndex = Index;
}
if (BaseAddress + Length - 1 >= MemorySpaceMap[Index].BaseAddress &&
BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
*EndIndex = Index;
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
/**
Sets the attributes for a specified range in Gcd Memory Space Map.
This function sets the attributes for a specified range in
Gcd Memory Space Map.
@param MemorySpaceMap Gcd Memory Space Map as array
@param NumberOfDescriptors Number of descriptors in map
@param BaseAddress BaseAddress for the range
@param Length Length for the range
@param Attributes Attributes to set
@retval EFI_SUCCESS Memory attributes set successfully
@retval EFI_NOT_FOUND The specified range does not exist in Gcd Memory Space
**/
EFI_STATUS
SetGcdMemorySpaceAttributes (
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
IN UINTN NumberOfDescriptors,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
{
EFI_STATUS Status;
UINTN Index;
UINTN StartIndex;
UINTN EndIndex;
EFI_PHYSICAL_ADDRESS RegionStart;
UINT64 RegionLength;
//
// Get all memory descriptors covered by the memory range
//
Status = SearchGcdMemorySpaces (
MemorySpaceMap,
NumberOfDescriptors,
BaseAddress,
Length,
&StartIndex,
&EndIndex
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Go through all related descriptors and set attributes accordingly
//
for (Index = StartIndex; Index <= EndIndex; Index++) {
if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
continue;
}
//
// Calculate the start and end address of the overlapping range
//
if (BaseAddress >= MemorySpaceMap[Index].BaseAddress) {
RegionStart = BaseAddress;
} else {
RegionStart = MemorySpaceMap[Index].BaseAddress;
}
if (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
RegionLength = BaseAddress + Length - RegionStart;
} else {
RegionLength = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - RegionStart;
}
//
// Set memory attributes according to MTRR attribute and the original attribute of descriptor
//
gDS->SetMemorySpaceAttributes (
RegionStart,
RegionLength,
(MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) | (MemorySpaceMap[Index].Capabilities & Attributes)
);
}
return EFI_SUCCESS;
}
/**
Refreshes the GCD Memory Space attributes according to MTRRs.
This function refreshes the GCD Memory Space attributes according to MTRRs.
**/
VOID
RefreshGcdMemoryAttributes (
VOID
)
{
EFI_STATUS Status;
UINTN Index;
UINTN SubIndex;
UINT64 RegValue;
EFI_PHYSICAL_ADDRESS BaseAddress;
UINT64 Length;
UINT64 Attributes;
UINT64 CurrentAttributes;
UINT8 MtrrType;
UINTN NumberOfDescriptors;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
UINT64 DefaultAttributes;
VARIABLE_MTRR VariableMtrr[MTRR_NUMBER_OF_VARIABLE_MTRR];
MTRR_FIXED_SETTINGS MtrrFixedSettings;
UINT32 FirmwareVariableMtrrCount;
if (!IsMtrrSupported ()) {
return;
}
FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount ();
ASSERT (FirmwareVariableMtrrCount <= MTRR_NUMBER_OF_VARIABLE_MTRR);
// mIsFlushingGCD = TRUE;
mIsFlushingGCD = FALSE;
MemorySpaceMap = NULL;
//
// Initialize the valid bits mask and valid address mask for MTRRs
//
InitializeMtrrMask ();
//
// Get the memory attribute of variable MTRRs
//
MtrrGetMemoryAttributeInVariableMtrr (
mValidMtrrBitsMask,
mValidMtrrAddressMask,
VariableMtrr
);
//
// Get the memory space map from GCD
//
Status = gDS->GetMemorySpaceMap (
&NumberOfDescriptors,
&MemorySpaceMap
);
ASSERT_EFI_ERROR (Status);
DefaultAttributes = GetMemorySpaceAttributeFromMtrrType (mDefaultMemoryType);
//
// Set default attributes to all spaces.
//
for (Index = 0; Index < NumberOfDescriptors; Index++) {
if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
continue;
}
gDS->SetMemorySpaceAttributes (
MemorySpaceMap[Index].BaseAddress,
MemorySpaceMap[Index].Length,
(MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) |
(MemorySpaceMap[Index].Capabilities & DefaultAttributes)
);
}
//
// Go for variable MTRRs with WB attribute
//
for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
if (VariableMtrr[Index].Valid &&
VariableMtrr[Index].Type == MTRR_CACHE_WRITE_BACK) {
SetGcdMemorySpaceAttributes (
MemorySpaceMap,
NumberOfDescriptors,
VariableMtrr[Index].BaseAddress,
VariableMtrr[Index].Length,
EFI_MEMORY_WB
);
}
}
//
// Go for variable MTRRs with Non-WB attribute
//
for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
if (VariableMtrr[Index].Valid &&
VariableMtrr[Index].Type != MTRR_CACHE_WRITE_BACK) {
Attributes = GetMemorySpaceAttributeFromMtrrType ((UINT8) VariableMtrr[Index].Type);
SetGcdMemorySpaceAttributes (
MemorySpaceMap,
NumberOfDescriptors,
VariableMtrr[Index].BaseAddress,
VariableMtrr[Index].Length,
Attributes
);
}
}
//
// Go for fixed MTRRs
//
Attributes = 0;
BaseAddress = 0;
Length = 0;
MtrrGetFixedMtrr (&MtrrFixedSettings);
for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) {
RegValue = MtrrFixedSettings.Mtrr[Index];
//
// Check for continuous fixed MTRR sections
//
for (SubIndex = 0; SubIndex < 8; SubIndex++) {
MtrrType = (UINT8) RShiftU64 (RegValue, SubIndex * 8);
CurrentAttributes = GetMemorySpaceAttributeFromMtrrType (MtrrType);
if (Length == 0) {
//
// A new MTRR attribute begins
//
Attributes = CurrentAttributes;
} else {
//
// If fixed MTRR attribute changed, then set memory attribute for previous atrribute
//
if (CurrentAttributes != Attributes) {
SetGcdMemorySpaceAttributes (
MemorySpaceMap,
NumberOfDescriptors,
BaseAddress,
Length,
Attributes
);
BaseAddress = mFixedMtrrTable[Index].BaseAddress + mFixedMtrrTable[Index].Length * SubIndex;
Length = 0;
Attributes = CurrentAttributes;
}
}
Length += mFixedMtrrTable[Index].Length;
}
}
//
// Handle the last fixed MTRR region
//
SetGcdMemorySpaceAttributes (
MemorySpaceMap,
NumberOfDescriptors,
BaseAddress,
Length,
Attributes
);
//
// Free memory space map allocated by GCD service GetMemorySpaceMap ()
//
if (MemorySpaceMap != NULL) {
FreePool (MemorySpaceMap);
}
mIsFlushingGCD = FALSE;
}
/**
Set Interrupt Descriptor Table Handler Address.
@param Index The Index of the interrupt descriptor table handle.
@param Handler Handler address.
**/
VOID
SetInterruptDescriptorTableHandlerAddress (
IN UINTN Index,
IN VOID *Handler OPTIONAL
)
{
UINTN UintnHandler;
if (Handler != NULL) {
UintnHandler = (UINTN) Handler;
} else {
UintnHandler = ((UINTN) AsmIdtVector00) + (8 * Index);
}
gIdtTable[Index].Bits.OffsetLow = (UINT16)UintnHandler;
gIdtTable[Index].Bits.Reserved_0 = 0;
gIdtTable[Index].Bits.GateType = IA32_IDT_GATE_TYPE_INTERRUPT_32;
gIdtTable[Index].Bits.OffsetHigh = (UINT16)(UintnHandler >> 16);
#if defined (MDE_CPU_X64)
gIdtTable[Index].Bits.OffsetUpper = (UINT32)(UintnHandler >> 32);
gIdtTable[Index].Bits.Reserved_1 = 0;
#endif
}
/**
Initialize Interrupt Descriptor Table for interrupt handling.
**/
VOID
InitInterruptDescriptorTable (
VOID
)
{
EFI_STATUS Status;
IA32_DESCRIPTOR OldIdtPtr;
IA32_IDT_GATE_DESCRIPTOR *OldIdt;
UINTN OldIdtSize;
VOID *IdtPtrAlignmentBuffer;
IA32_DESCRIPTOR *IdtPtr;
UINTN Index;
UINT16 CurrentCs;
VOID *IntHandler;
SetMem (ExternalVectorTable, sizeof(ExternalVectorTable), 0);
//
// Get original IDT address and size.
//
AsmReadIdtr ((IA32_DESCRIPTOR *) &OldIdtPtr);
if ((OldIdtPtr.Base != 0) && ((OldIdtPtr.Limit & 7) == 7)) {
OldIdt = (IA32_IDT_GATE_DESCRIPTOR*) OldIdtPtr.Base;
OldIdtSize = (OldIdtPtr.Limit + 1) / sizeof (IA32_IDT_GATE_DESCRIPTOR);
} else {
OldIdt = NULL;
OldIdtSize = 0;
}
//
// Intialize IDT
//
CurrentCs = AsmReadCs();
for (Index = 0; Index < INTERRUPT_VECTOR_NUMBER; Index ++) {
//
// If the old IDT had a handler for this interrupt, then
// preserve it.
//
if (Index < OldIdtSize) {
IntHandler =
(VOID*) (
OldIdt[Index].Bits.OffsetLow +
(OldIdt[Index].Bits.OffsetHigh << 16)
#if defined (MDE_CPU_X64)
+ (((UINTN) OldIdt[Index].Bits.OffsetUpper) << 32)
#endif
);
} else {
IntHandler = NULL;
}
gIdtTable[Index].Bits.Selector = CurrentCs;
gIdtTable[Index].Bits.Reserved_0 = 0;
gIdtTable[Index].Bits.GateType = IA32_IDT_GATE_TYPE_INTERRUPT_32;
SetInterruptDescriptorTableHandlerAddress (Index, IntHandler);
}
//
// Load IDT Pointer
//
IdtPtrAlignmentBuffer = AllocatePool (sizeof (*IdtPtr) + 16);
IdtPtr = ALIGN_POINTER (IdtPtrAlignmentBuffer, 16);
IdtPtr->Base = (UINT32)(((UINTN)(VOID*) gIdtTable) & (BASE_4GB-1));
IdtPtr->Limit = (UINT16) (sizeof (gIdtTable) - 1);
AsmWriteIdtr (IdtPtr);
FreePool (IdtPtrAlignmentBuffer);
//
// Initialize Exception Handlers
//
for (Index = 0; Index < 32; Index++) {
Status = CpuRegisterInterruptHandler (&gCpu, Index, CommonExceptionHandler);
ASSERT_EFI_ERROR (Status);
}
//
// Set the pointer to the array of C based exception handling routines.
//
InitializeExternalVectorTablePtr (ExternalVectorTable);
}
/**
Initialize the state information for the CPU Architectural Protocol.
@param ImageHandle Image handle this driver.
@param SystemTable Pointer to the System Table.
@retval EFI_SUCCESS Thread can be successfully created
@retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
@retval EFI_DEVICE_ERROR Cannot create the thread
**/
EFI_STATUS
EFIAPI
InitializeCpu (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
//
// Make sure interrupts are disabled
//
DisableInterrupts ();
//
// Init GDT for DXE
//
InitGlobalDescriptorTable ();
//
// Setup IDT pointer, IDT and interrupt entry points
//
InitInterruptDescriptorTable ();
//
// Install CPU Architectural Protocol
//
Status = gBS->InstallMultipleProtocolInterfaces (
&mCpuHandle,
&gEfiCpuArchProtocolGuid, &gCpu,
NULL
);
ASSERT_EFI_ERROR (Status);
//
// Refresh GCD memory space map according to MTRR value.
//
RefreshGcdMemoryAttributes ();
return Status;
}
|