summaryrefslogtreecommitdiffstats
path: root/UefiCpuPkg/CpuDxe/CpuPageTable.c
blob: 06ee1b8231716097759bff917f72f06aa954e1e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
/** @file
  Page table management support.

  Copyright (c) 2017 - 2019, Intel Corporation. All rights reserved.<BR>
  Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>

  SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include <Base.h>
#include <Uefi.h>
#include <Library/PeCoffGetEntryPointLib.h>
#include <Library/SerialPortLib.h>
#include <Library/SynchronizationLib.h>
#include <Library/PrintLib.h>
#include <Protocol/SmmBase2.h>
#include <Register/Intel/Cpuid.h>
#include <Register/Intel/Msr.h>

#include "CpuDxe.h"
#include "CpuPageTable.h"

///
/// Page Table Entry
///
#define IA32_PG_P                   BIT0
#define IA32_PG_RW                  BIT1
#define IA32_PG_U                   BIT2
#define IA32_PG_WT                  BIT3
#define IA32_PG_CD                  BIT4
#define IA32_PG_A                   BIT5
#define IA32_PG_D                   BIT6
#define IA32_PG_PS                  BIT7
#define IA32_PG_PAT_2M              BIT12
#define IA32_PG_PAT_4K              IA32_PG_PS
#define IA32_PG_PMNT                BIT62
#define IA32_PG_NX                  BIT63

#define PAGE_ATTRIBUTE_BITS         (IA32_PG_D | IA32_PG_A | IA32_PG_U | IA32_PG_RW | IA32_PG_P)
//
// Bits 1, 2, 5, 6 are reserved in the IA32 PAE PDPTE
// X64 PAE PDPTE does not have such restriction
//
#define IA32_PAE_PDPTE_ATTRIBUTE_BITS    (IA32_PG_P)

#define PAGE_PROGATE_BITS           (IA32_PG_NX | PAGE_ATTRIBUTE_BITS)

#define PAGING_4K_MASK  0xFFF
#define PAGING_2M_MASK  0x1FFFFF
#define PAGING_1G_MASK  0x3FFFFFFF

#define PAGING_PAE_INDEX_MASK  0x1FF

#define PAGING_4K_ADDRESS_MASK_64 0x000FFFFFFFFFF000ull
#define PAGING_2M_ADDRESS_MASK_64 0x000FFFFFFFE00000ull
#define PAGING_1G_ADDRESS_MASK_64 0x000FFFFFC0000000ull

#define MAX_PF_ENTRY_COUNT        10
#define MAX_DEBUG_MESSAGE_LENGTH  0x100
#define IA32_PF_EC_ID             BIT4

typedef enum {
  PageNone,
  Page4K,
  Page2M,
  Page1G,
} PAGE_ATTRIBUTE;

typedef struct {
  PAGE_ATTRIBUTE   Attribute;
  UINT64           Length;
  UINT64           AddressMask;
} PAGE_ATTRIBUTE_TABLE;

typedef enum {
  PageActionAssign,
  PageActionSet,
  PageActionClear,
} PAGE_ACTION;

PAGE_ATTRIBUTE_TABLE mPageAttributeTable[] = {
  {Page4K,  SIZE_4KB, PAGING_4K_ADDRESS_MASK_64},
  {Page2M,  SIZE_2MB, PAGING_2M_ADDRESS_MASK_64},
  {Page1G,  SIZE_1GB, PAGING_1G_ADDRESS_MASK_64},
};

PAGE_TABLE_POOL                   *mPageTablePool = NULL;
BOOLEAN                           mPageTablePoolLock = FALSE;
PAGE_TABLE_LIB_PAGING_CONTEXT     mPagingContext;
EFI_SMM_BASE2_PROTOCOL            *mSmmBase2 = NULL;

//
// Record the page fault exception count for one instruction execution.
//
UINTN                     *mPFEntryCount;
UINT64                    *(*mLastPFEntryPointer)[MAX_PF_ENTRY_COUNT];

/**
 Check if current execution environment is in SMM mode or not, via
 EFI_SMM_BASE2_PROTOCOL.

 This is necessary because of the fact that MdePkg\Library\SmmMemoryAllocationLib
 supports to free memory outside SMRAM. The library will call gBS->FreePool() or
 gBS->FreePages() and then SetMemorySpaceAttributes interface in turn to change
 memory paging attributes during free operation, if some memory related features
 are enabled (like Heap Guard).

 This means that SetMemorySpaceAttributes() has chance to run in SMM mode. This
 will cause incorrect result because SMM mode always loads its own page tables,
 which are usually different from DXE. This function can be used to detect such
 situation and help to avoid further misoperations.

  @retval TRUE    In SMM mode.
  @retval FALSE   Not in SMM mode.
**/
BOOLEAN
IsInSmm (
  VOID
  )
{
  BOOLEAN                 InSmm;

  InSmm = FALSE;
  if (mSmmBase2 == NULL) {
    gBS->LocateProtocol (&gEfiSmmBase2ProtocolGuid, NULL, (VOID **)&mSmmBase2);
  }

  if (mSmmBase2 != NULL) {
    mSmmBase2->InSmm (mSmmBase2, &InSmm);
  }

  //
  // mSmmBase2->InSmm() can only detect if the caller is running in SMRAM
  // or from SMM driver. It cannot tell if the caller is running in SMM mode.
  // Check page table base address to guarantee that because SMM mode willl
  // load its own page table.
  //
  return (InSmm &&
          mPagingContext.ContextData.X64.PageTableBase != (UINT64)AsmReadCr3());
}

/**
  Return current paging context.

  @param[in,out]  PagingContext     The paging context.
**/
VOID
GetCurrentPagingContext (
  IN OUT PAGE_TABLE_LIB_PAGING_CONTEXT     *PagingContext
  )
{
  UINT32                          RegEax;
  CPUID_EXTENDED_CPU_SIG_EDX      RegEdx;
  MSR_IA32_EFER_REGISTER          MsrEfer;
  IA32_CR4                        Cr4;
  IA32_CR0                        Cr0;
  UINT32                          *Attributes;
  UINTN                           *PageTableBase;

  //
  // Don't retrieve current paging context from processor if in SMM mode.
  //
  if (!IsInSmm ()) {
    ZeroMem (&mPagingContext, sizeof(mPagingContext));
    if (sizeof(UINTN) == sizeof(UINT64)) {
      mPagingContext.MachineType = IMAGE_FILE_MACHINE_X64;
    } else {
      mPagingContext.MachineType = IMAGE_FILE_MACHINE_I386;
    }

    GetPagingDetails (&mPagingContext.ContextData, &PageTableBase, &Attributes);

    Cr0.UintN = AsmReadCr0 ();
    Cr4.UintN = AsmReadCr4 ();

    if (Cr0.Bits.PG != 0) {
      *PageTableBase = (AsmReadCr3 () & PAGING_4K_ADDRESS_MASK_64);
    } else {
      *PageTableBase = 0;
    }
    if (Cr0.Bits.WP  != 0) {
      *Attributes |= PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_WP_ENABLE;
    }
    if (Cr4.Bits.PSE != 0) {
      *Attributes |= PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_PSE;
    }
    if (Cr4.Bits.PAE != 0) {
      *Attributes |= PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_PAE;
    }
    if (Cr4.Bits.LA57 != 0) {
      *Attributes |= PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_5_LEVEL;
    }

    AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
    if (RegEax >= CPUID_EXTENDED_CPU_SIG) {
      AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx.Uint32);

      if (RegEdx.Bits.NX != 0) {
        // XD supported
        MsrEfer.Uint64 = AsmReadMsr64(MSR_CORE_IA32_EFER);
        if (MsrEfer.Bits.NXE != 0) {
          // XD activated
          *Attributes |= PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_XD_ACTIVATED;
        }
      }

      if (RegEdx.Bits.Page1GB != 0) {
        *Attributes |= PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_PAGE_1G_SUPPORT;
      }
    }
  }

  //
  // This can avoid getting SMM paging context if in SMM mode. We cannot assume
  // SMM mode shares the same paging context as DXE.
  //
  CopyMem (PagingContext, &mPagingContext, sizeof (mPagingContext));
}

/**
  Return length according to page attributes.

  @param[in]  PageAttributes   The page attribute of the page entry.

  @return The length of page entry.
**/
UINTN
PageAttributeToLength (
  IN PAGE_ATTRIBUTE  PageAttribute
  )
{
  UINTN  Index;
  for (Index = 0; Index < sizeof(mPageAttributeTable)/sizeof(mPageAttributeTable[0]); Index++) {
    if (PageAttribute == mPageAttributeTable[Index].Attribute) {
      return (UINTN)mPageAttributeTable[Index].Length;
    }
  }
  return 0;
}

/**
  Return address mask according to page attributes.

  @param[in]  PageAttributes   The page attribute of the page entry.

  @return The address mask of page entry.
**/
UINTN
PageAttributeToMask (
  IN PAGE_ATTRIBUTE  PageAttribute
  )
{
  UINTN  Index;
  for (Index = 0; Index < sizeof(mPageAttributeTable)/sizeof(mPageAttributeTable[0]); Index++) {
    if (PageAttribute == mPageAttributeTable[Index].Attribute) {
      return (UINTN)mPageAttributeTable[Index].AddressMask;
    }
  }
  return 0;
}

/**
  Return page table entry to match the address.

  @param[in]  PagingContext     The paging context.
  @param[in]  Address           The address to be checked.
  @param[out] PageAttributes    The page attribute of the page entry.

  @return The page entry.
**/
VOID *
GetPageTableEntry (
  IN  PAGE_TABLE_LIB_PAGING_CONTEXT     *PagingContext,
  IN  PHYSICAL_ADDRESS                  Address,
  OUT PAGE_ATTRIBUTE                    *PageAttribute
  )
{
  UINTN                 Index1;
  UINTN                 Index2;
  UINTN                 Index3;
  UINTN                 Index4;
  UINTN                 Index5;
  UINT64                *L1PageTable;
  UINT64                *L2PageTable;
  UINT64                *L3PageTable;
  UINT64                *L4PageTable;
  UINT64                *L5PageTable;
  UINT64                AddressEncMask;

  ASSERT (PagingContext != NULL);

  Index5 = ((UINTN)RShiftU64 (Address, 48)) & PAGING_PAE_INDEX_MASK;
  Index4 = ((UINTN)RShiftU64 (Address, 39)) & PAGING_PAE_INDEX_MASK;
  Index3 = ((UINTN)Address >> 30) & PAGING_PAE_INDEX_MASK;
  Index2 = ((UINTN)Address >> 21) & PAGING_PAE_INDEX_MASK;
  Index1 = ((UINTN)Address >> 12) & PAGING_PAE_INDEX_MASK;

  // Make sure AddressEncMask is contained to smallest supported address field.
  //
  AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;

  if (PagingContext->MachineType == IMAGE_FILE_MACHINE_X64) {
    if ((PagingContext->ContextData.X64.Attributes & PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_5_LEVEL) != 0) {
      L5PageTable = (UINT64 *)(UINTN)PagingContext->ContextData.X64.PageTableBase;
      if (L5PageTable[Index5] == 0) {
        *PageAttribute = PageNone;
        return NULL;
      }

      L4PageTable = (UINT64 *)(UINTN)(L5PageTable[Index5] & ~AddressEncMask & PAGING_4K_ADDRESS_MASK_64);
    } else {
      L4PageTable = (UINT64 *)(UINTN)PagingContext->ContextData.X64.PageTableBase;
    }
    if (L4PageTable[Index4] == 0) {
      *PageAttribute = PageNone;
      return NULL;
    }

    L3PageTable = (UINT64 *)(UINTN)(L4PageTable[Index4] & ~AddressEncMask & PAGING_4K_ADDRESS_MASK_64);
  } else {
    ASSERT((PagingContext->ContextData.Ia32.Attributes & PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_PAE) != 0);
    L3PageTable = (UINT64 *)(UINTN)PagingContext->ContextData.Ia32.PageTableBase;
  }
  if (L3PageTable[Index3] == 0) {
    *PageAttribute = PageNone;
    return NULL;
  }
  if ((L3PageTable[Index3] & IA32_PG_PS) != 0) {
    // 1G
    *PageAttribute = Page1G;
    return &L3PageTable[Index3];
  }

  L2PageTable = (UINT64 *)(UINTN)(L3PageTable[Index3] & ~AddressEncMask & PAGING_4K_ADDRESS_MASK_64);
  if (L2PageTable[Index2] == 0) {
    *PageAttribute = PageNone;
    return NULL;
  }
  if ((L2PageTable[Index2] & IA32_PG_PS) != 0) {
    // 2M
    *PageAttribute = Page2M;
    return &L2PageTable[Index2];
  }

  // 4k
  L1PageTable = (UINT64 *)(UINTN)(L2PageTable[Index2] & ~AddressEncMask & PAGING_4K_ADDRESS_MASK_64);
  if ((L1PageTable[Index1] == 0) && (Address != 0)) {
    *PageAttribute = PageNone;
    return NULL;
  }
  *PageAttribute = Page4K;
  return &L1PageTable[Index1];
}

/**
  Return memory attributes of page entry.

  @param[in]  PageEntry        The page entry.

  @return Memory attributes of page entry.
**/
UINT64
GetAttributesFromPageEntry (
  IN  UINT64                            *PageEntry
  )
{
  UINT64  Attributes;
  Attributes = 0;
  if ((*PageEntry & IA32_PG_P) == 0) {
    Attributes |= EFI_MEMORY_RP;
  }
  if ((*PageEntry & IA32_PG_RW) == 0) {
    Attributes |= EFI_MEMORY_RO;
  }
  if ((*PageEntry & IA32_PG_NX) != 0) {
    Attributes |= EFI_MEMORY_XP;
  }
  return Attributes;
}

/**
  Modify memory attributes of page entry.

  @param[in]  PagingContext    The paging context.
  @param[in]  PageEntry        The page entry.
  @param[in]  Attributes       The bit mask of attributes to modify for the memory region.
  @param[in]  PageAction       The page action.
  @param[out] IsModified       TRUE means page table modified. FALSE means page table not modified.
**/
VOID
ConvertPageEntryAttribute (
  IN  PAGE_TABLE_LIB_PAGING_CONTEXT     *PagingContext,
  IN  UINT64                            *PageEntry,
  IN  UINT64                            Attributes,
  IN  PAGE_ACTION                       PageAction,
  OUT BOOLEAN                           *IsModified
  )
{
  UINT64  CurrentPageEntry;
  UINT64  NewPageEntry;
  UINT32  *PageAttributes;

  CurrentPageEntry = *PageEntry;
  NewPageEntry = CurrentPageEntry;
  if ((Attributes & EFI_MEMORY_RP) != 0) {
    switch (PageAction) {
    case PageActionAssign:
    case PageActionSet:
      NewPageEntry &= ~(UINT64)IA32_PG_P;
      break;
    case PageActionClear:
      NewPageEntry |= IA32_PG_P;
      break;
    }
  } else {
    switch (PageAction) {
    case PageActionAssign:
      NewPageEntry |= IA32_PG_P;
      break;
    case PageActionSet:
    case PageActionClear:
      break;
    }
  }
  if ((Attributes & EFI_MEMORY_RO) != 0) {
    switch (PageAction) {
    case PageActionAssign:
    case PageActionSet:
      NewPageEntry &= ~(UINT64)IA32_PG_RW;
      break;
    case PageActionClear:
      NewPageEntry |= IA32_PG_RW;
      break;
    }
  } else {
    switch (PageAction) {
    case PageActionAssign:
      NewPageEntry |= IA32_PG_RW;
      break;
    case PageActionSet:
    case PageActionClear:
      break;
    }
  }

  GetPagingDetails (&PagingContext->ContextData, NULL, &PageAttributes);

  if ((*PageAttributes & PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_XD_ACTIVATED) != 0) {
    if ((Attributes & EFI_MEMORY_XP) != 0) {
      switch (PageAction) {
      case PageActionAssign:
      case PageActionSet:
        NewPageEntry |= IA32_PG_NX;
        break;
      case PageActionClear:
        NewPageEntry &= ~IA32_PG_NX;
        break;
      }
    } else {
      switch (PageAction) {
      case PageActionAssign:
        NewPageEntry &= ~IA32_PG_NX;
        break;
      case PageActionSet:
      case PageActionClear:
        break;
      }
    }
  }
  *PageEntry = NewPageEntry;
  if (CurrentPageEntry != NewPageEntry) {
    *IsModified = TRUE;
    DEBUG ((DEBUG_VERBOSE, "ConvertPageEntryAttribute 0x%lx", CurrentPageEntry));
    DEBUG ((DEBUG_VERBOSE, "->0x%lx\n", NewPageEntry));
  } else {
    *IsModified = FALSE;
  }
}

/**
  This function returns if there is need to split page entry.

  @param[in]  BaseAddress      The base address to be checked.
  @param[in]  Length           The length to be checked.
  @param[in]  PageEntry        The page entry to be checked.
  @param[in]  PageAttribute    The page attribute of the page entry.

  @retval SplitAttributes on if there is need to split page entry.
**/
PAGE_ATTRIBUTE
NeedSplitPage (
  IN  PHYSICAL_ADDRESS                  BaseAddress,
  IN  UINT64                            Length,
  IN  UINT64                            *PageEntry,
  IN  PAGE_ATTRIBUTE                    PageAttribute
  )
{
  UINT64                PageEntryLength;

  PageEntryLength = PageAttributeToLength (PageAttribute);

  if (((BaseAddress & (PageEntryLength - 1)) == 0) && (Length >= PageEntryLength)) {
    return PageNone;
  }

  if (((BaseAddress & PAGING_2M_MASK) != 0) || (Length < SIZE_2MB)) {
    return Page4K;
  }

  return Page2M;
}

/**
  This function splits one page entry to small page entries.

  @param[in]  PageEntry         The page entry to be splitted.
  @param[in]  PageAttribute     The page attribute of the page entry.
  @param[in]  SplitAttribute    How to split the page entry.
  @param[in]  AllocatePagesFunc If page split is needed, this function is used to allocate more pages.

  @retval RETURN_SUCCESS            The page entry is splitted.
  @retval RETURN_UNSUPPORTED        The page entry does not support to be splitted.
  @retval RETURN_OUT_OF_RESOURCES   No resource to split page entry.
**/
RETURN_STATUS
SplitPage (
  IN  UINT64                            *PageEntry,
  IN  PAGE_ATTRIBUTE                    PageAttribute,
  IN  PAGE_ATTRIBUTE                    SplitAttribute,
  IN  PAGE_TABLE_LIB_ALLOCATE_PAGES     AllocatePagesFunc
  )
{
  UINT64   BaseAddress;
  UINT64   *NewPageEntry;
  UINTN    Index;
  UINT64   AddressEncMask;

  ASSERT (PageAttribute == Page2M || PageAttribute == Page1G);

  ASSERT (AllocatePagesFunc != NULL);

  // Make sure AddressEncMask is contained to smallest supported address field.
  //
  AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;

  if (PageAttribute == Page2M) {
    //
    // Split 2M to 4K
    //
    ASSERT (SplitAttribute == Page4K);
    if (SplitAttribute == Page4K) {
      NewPageEntry = AllocatePagesFunc (1);
      DEBUG ((DEBUG_VERBOSE, "Split - 0x%x\n", NewPageEntry));
      if (NewPageEntry == NULL) {
        return RETURN_OUT_OF_RESOURCES;
      }
      BaseAddress = *PageEntry & ~AddressEncMask & PAGING_2M_ADDRESS_MASK_64;
      for (Index = 0; Index < SIZE_4KB / sizeof(UINT64); Index++) {
        NewPageEntry[Index] = (BaseAddress + SIZE_4KB * Index) | AddressEncMask | ((*PageEntry) & PAGE_PROGATE_BITS);
      }
      (*PageEntry) = (UINT64)(UINTN)NewPageEntry | AddressEncMask | ((*PageEntry) & PAGE_ATTRIBUTE_BITS);
      return RETURN_SUCCESS;
    } else {
      return RETURN_UNSUPPORTED;
    }
  } else if (PageAttribute == Page1G) {
    //
    // Split 1G to 2M
    // No need support 1G->4K directly, we should use 1G->2M, then 2M->4K to get more compact page table.
    //
    ASSERT (SplitAttribute == Page2M || SplitAttribute == Page4K);
    if ((SplitAttribute == Page2M || SplitAttribute == Page4K)) {
      NewPageEntry = AllocatePagesFunc (1);
      DEBUG ((DEBUG_VERBOSE, "Split - 0x%x\n", NewPageEntry));
      if (NewPageEntry == NULL) {
        return RETURN_OUT_OF_RESOURCES;
      }
      BaseAddress = *PageEntry & ~AddressEncMask  & PAGING_1G_ADDRESS_MASK_64;
      for (Index = 0; Index < SIZE_4KB / sizeof(UINT64); Index++) {
        NewPageEntry[Index] = (BaseAddress + SIZE_2MB * Index) | AddressEncMask | IA32_PG_PS | ((*PageEntry) & PAGE_PROGATE_BITS);
      }
      (*PageEntry) = (UINT64)(UINTN)NewPageEntry | AddressEncMask | ((*PageEntry) & PAGE_ATTRIBUTE_BITS);
      return RETURN_SUCCESS;
    } else {
      return RETURN_UNSUPPORTED;
    }
  } else {
    return RETURN_UNSUPPORTED;
  }
}

/**
 Check the WP status in CR0 register. This bit is used to lock or unlock write
 access to pages marked as read-only.

  @retval TRUE    Write protection is enabled.
  @retval FALSE   Write protection is disabled.
**/
BOOLEAN
IsReadOnlyPageWriteProtected (
  VOID
  )
{
  IA32_CR0  Cr0;
  //
  // To avoid unforseen consequences, don't touch paging settings in SMM mode
  // in this driver.
  //
  if (!IsInSmm ()) {
    Cr0.UintN = AsmReadCr0 ();
    return (BOOLEAN) (Cr0.Bits.WP != 0);
  }
  return FALSE;
}

/**
 Disable Write Protect on pages marked as read-only.
**/
VOID
DisableReadOnlyPageWriteProtect (
  VOID
  )
{
  IA32_CR0  Cr0;
  //
  // To avoid unforseen consequences, don't touch paging settings in SMM mode
  // in this driver.
  //
  if (!IsInSmm ()) {
    Cr0.UintN = AsmReadCr0 ();
    Cr0.Bits.WP = 0;
    AsmWriteCr0 (Cr0.UintN);
  }
}

/**
 Enable Write Protect on pages marked as read-only.
**/
VOID
EnableReadOnlyPageWriteProtect (
  VOID
  )
{
  IA32_CR0  Cr0;
  //
  // To avoid unforseen consequences, don't touch paging settings in SMM mode
  // in this driver.
  //
  if (!IsInSmm ()) {
    Cr0.UintN = AsmReadCr0 ();
    Cr0.Bits.WP = 1;
    AsmWriteCr0 (Cr0.UintN);
  }
}

/**
  This function modifies the page attributes for the memory region specified by BaseAddress and
  Length from their current attributes to the attributes specified by Attributes.

  Caller should make sure BaseAddress and Length is at page boundary.

  @param[in]  PagingContext     The paging context. NULL means get page table from current CPU context.
  @param[in]  BaseAddress       The physical address that is the start address of a memory region.
  @param[in]  Length            The size in bytes of the memory region.
  @param[in]  Attributes        The bit mask of attributes to modify for the memory region.
  @param[in]  PageAction        The page action.
  @param[in]  AllocatePagesFunc If page split is needed, this function is used to allocate more pages.
                                NULL mean page split is unsupported.
  @param[out] IsSplitted        TRUE means page table splitted. FALSE means page table not splitted.
  @param[out] IsModified        TRUE means page table modified. FALSE means page table not modified.

  @retval RETURN_SUCCESS           The attributes were modified for the memory region.
  @retval RETURN_ACCESS_DENIED     The attributes for the memory resource range specified by
                                   BaseAddress and Length cannot be modified.
  @retval RETURN_INVALID_PARAMETER Length is zero.
                                   Attributes specified an illegal combination of attributes that
                                   cannot be set together.
  @retval RETURN_OUT_OF_RESOURCES  There are not enough system resources to modify the attributes of
                                   the memory resource range.
  @retval RETURN_UNSUPPORTED       The processor does not support one or more bytes of the memory
                                   resource range specified by BaseAddress and Length.
                                   The bit mask of attributes is not support for the memory resource
                                   range specified by BaseAddress and Length.
**/
RETURN_STATUS
ConvertMemoryPageAttributes (
  IN  PAGE_TABLE_LIB_PAGING_CONTEXT     *PagingContext OPTIONAL,
  IN  PHYSICAL_ADDRESS                  BaseAddress,
  IN  UINT64                            Length,
  IN  UINT64                            Attributes,
  IN  PAGE_ACTION                       PageAction,
  IN  PAGE_TABLE_LIB_ALLOCATE_PAGES     AllocatePagesFunc OPTIONAL,
  OUT BOOLEAN                           *IsSplitted,  OPTIONAL
  OUT BOOLEAN                           *IsModified   OPTIONAL
  )
{
  PAGE_TABLE_LIB_PAGING_CONTEXT     CurrentPagingContext;
  UINT64                            *PageEntry;
  PAGE_ATTRIBUTE                    PageAttribute;
  UINTN                             PageEntryLength;
  PAGE_ATTRIBUTE                    SplitAttribute;
  RETURN_STATUS                     Status;
  BOOLEAN                           IsEntryModified;
  BOOLEAN                           IsWpEnabled;

  if ((BaseAddress & (SIZE_4KB - 1)) != 0) {
    DEBUG ((DEBUG_ERROR, "BaseAddress(0x%lx) is not aligned!\n", BaseAddress));
    return EFI_UNSUPPORTED;
  }
  if ((Length & (SIZE_4KB - 1)) != 0) {
    DEBUG ((DEBUG_ERROR, "Length(0x%lx) is not aligned!\n", Length));
    return EFI_UNSUPPORTED;
  }
  if (Length == 0) {
    DEBUG ((DEBUG_ERROR, "Length is 0!\n"));
    return RETURN_INVALID_PARAMETER;
  }

  if ((Attributes & ~EFI_MEMORY_ATTRIBUTE_MASK) != 0) {
    DEBUG ((DEBUG_ERROR, "Attributes(0x%lx) has unsupported bit\n", Attributes));
    return EFI_UNSUPPORTED;
  }

  if (PagingContext == NULL) {
    GetCurrentPagingContext (&CurrentPagingContext);
  } else {
    CopyMem (&CurrentPagingContext, PagingContext, sizeof(CurrentPagingContext));
  }
  switch(CurrentPagingContext.MachineType) {
  case IMAGE_FILE_MACHINE_I386:
    if (CurrentPagingContext.ContextData.Ia32.PageTableBase == 0) {
      if (Attributes == 0) {
        return EFI_SUCCESS;
      } else {
        DEBUG ((DEBUG_ERROR, "PageTable is 0!\n"));
        return EFI_UNSUPPORTED;
      }
    }
    if ((CurrentPagingContext.ContextData.Ia32.Attributes & PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_PAE) == 0) {
      DEBUG ((DEBUG_ERROR, "Non-PAE Paging!\n"));
      return EFI_UNSUPPORTED;
    }
    if ((BaseAddress + Length) > BASE_4GB) {
      DEBUG ((DEBUG_ERROR, "Beyond 4GB memory in 32-bit mode!\n"));
      return EFI_UNSUPPORTED;
    }
    break;
  case IMAGE_FILE_MACHINE_X64:
    ASSERT (CurrentPagingContext.ContextData.X64.PageTableBase != 0);
    break;
  default:
    ASSERT(FALSE);
    return EFI_UNSUPPORTED;
    break;
  }

//  DEBUG ((DEBUG_ERROR, "ConvertMemoryPageAttributes(%x) - %016lx, %016lx, %02lx\n", IsSet, BaseAddress, Length, Attributes));

  if (IsSplitted != NULL) {
    *IsSplitted = FALSE;
  }
  if (IsModified != NULL) {
    *IsModified = FALSE;
  }
  if (AllocatePagesFunc == NULL) {
    AllocatePagesFunc = AllocatePageTableMemory;
  }

  //
  // Make sure that the page table is changeable.
  //
  IsWpEnabled = IsReadOnlyPageWriteProtected ();
  if (IsWpEnabled) {
    DisableReadOnlyPageWriteProtect ();
  }

  //
  // Below logic is to check 2M/4K page to make sure we do not waste memory.
  //
  Status = EFI_SUCCESS;
  while (Length != 0) {
    PageEntry = GetPageTableEntry (&CurrentPagingContext, BaseAddress, &PageAttribute);
    if (PageEntry == NULL) {
      Status = RETURN_UNSUPPORTED;
      goto Done;
    }
    PageEntryLength = PageAttributeToLength (PageAttribute);
    SplitAttribute = NeedSplitPage (BaseAddress, Length, PageEntry, PageAttribute);
    if (SplitAttribute == PageNone) {
      ConvertPageEntryAttribute (&CurrentPagingContext, PageEntry, Attributes, PageAction, &IsEntryModified);
      if (IsEntryModified) {
        if (IsModified != NULL) {
          *IsModified = TRUE;
        }
      }
      //
      // Convert success, move to next
      //
      BaseAddress += PageEntryLength;
      Length -= PageEntryLength;
    } else {
      if (AllocatePagesFunc == NULL) {
        Status = RETURN_UNSUPPORTED;
        goto Done;
      }
      Status = SplitPage (PageEntry, PageAttribute, SplitAttribute, AllocatePagesFunc);
      if (RETURN_ERROR (Status)) {
        Status = RETURN_UNSUPPORTED;
        goto Done;
      }
      if (IsSplitted != NULL) {
        *IsSplitted = TRUE;
      }
      if (IsModified != NULL) {
        *IsModified = TRUE;
      }
      //
      // Just split current page
      // Convert success in next around
      //
    }
  }

Done:
  //
  // Restore page table write protection, if any.
  //
  if (IsWpEnabled) {
    EnableReadOnlyPageWriteProtect ();
  }
  return Status;
}

/**
  This function assigns the page attributes for the memory region specified by BaseAddress and
  Length from their current attributes to the attributes specified by Attributes.

  Caller should make sure BaseAddress and Length is at page boundary.

  Caller need guarantee the TPL <= TPL_NOTIFY, if there is split page request.

  @param[in]  PagingContext     The paging context. NULL means get page table from current CPU context.
  @param[in]  BaseAddress       The physical address that is the start address of a memory region.
  @param[in]  Length            The size in bytes of the memory region.
  @param[in]  Attributes        The bit mask of attributes to set for the memory region.
  @param[in]  AllocatePagesFunc If page split is needed, this function is used to allocate more pages.
                                NULL mean page split is unsupported.

  @retval RETURN_SUCCESS           The attributes were cleared for the memory region.
  @retval RETURN_ACCESS_DENIED     The attributes for the memory resource range specified by
                                   BaseAddress and Length cannot be modified.
  @retval RETURN_INVALID_PARAMETER Length is zero.
                                   Attributes specified an illegal combination of attributes that
                                   cannot be set together.
  @retval RETURN_OUT_OF_RESOURCES  There are not enough system resources to modify the attributes of
                                   the memory resource range.
  @retval RETURN_UNSUPPORTED       The processor does not support one or more bytes of the memory
                                   resource range specified by BaseAddress and Length.
                                   The bit mask of attributes is not support for the memory resource
                                   range specified by BaseAddress and Length.
**/
RETURN_STATUS
EFIAPI
AssignMemoryPageAttributes (
  IN  PAGE_TABLE_LIB_PAGING_CONTEXT     *PagingContext OPTIONAL,
  IN  PHYSICAL_ADDRESS                  BaseAddress,
  IN  UINT64                            Length,
  IN  UINT64                            Attributes,
  IN  PAGE_TABLE_LIB_ALLOCATE_PAGES     AllocatePagesFunc OPTIONAL
  )
{
  RETURN_STATUS  Status;
  BOOLEAN        IsModified;
  BOOLEAN        IsSplitted;

//  DEBUG((DEBUG_INFO, "AssignMemoryPageAttributes: 0x%lx - 0x%lx (0x%lx)\n", BaseAddress, Length, Attributes));
  Status = ConvertMemoryPageAttributes (PagingContext, BaseAddress, Length, Attributes, PageActionAssign, AllocatePagesFunc, &IsSplitted, &IsModified);
  if (!EFI_ERROR(Status)) {
    if ((PagingContext == NULL) && IsModified) {
      //
      // Flush TLB as last step.
      //
      // Note: Since APs will always init CR3 register in HLT loop mode or do
      // TLB flush in MWAIT loop mode, there's no need to flush TLB for them
      // here.
      //
      CpuFlushTlb();
    }
  }

  return Status;
}

/**
 Check if Execute Disable feature is enabled or not.
**/
BOOLEAN
IsExecuteDisableEnabled (
  VOID
  )
{
  MSR_CORE_IA32_EFER_REGISTER    MsrEfer;

  MsrEfer.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
  return (MsrEfer.Bits.NXE == 1);
}

/**
  Update GCD memory space attributes according to current page table setup.
**/
VOID
RefreshGcdMemoryAttributesFromPaging (
  VOID
  )
{
  EFI_STATUS                          Status;
  UINTN                               NumberOfDescriptors;
  EFI_GCD_MEMORY_SPACE_DESCRIPTOR     *MemorySpaceMap;
  PAGE_TABLE_LIB_PAGING_CONTEXT       PagingContext;
  PAGE_ATTRIBUTE                      PageAttribute;
  UINT64                              *PageEntry;
  UINT64                              PageLength;
  UINT64                              MemorySpaceLength;
  UINT64                              Length;
  UINT64                              BaseAddress;
  UINT64                              PageStartAddress;
  UINT64                              Attributes;
  UINT64                              Capabilities;
  UINT64                              NewAttributes;
  UINTN                               Index;

  //
  // Assuming that memory space map returned is sorted already; otherwise sort
  // them in the order of lowest address to highest address.
  //
  Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
  ASSERT_EFI_ERROR (Status);

  GetCurrentPagingContext (&PagingContext);

  Attributes      = 0;
  NewAttributes   = 0;
  BaseAddress     = 0;
  PageLength      = 0;

  if (IsExecuteDisableEnabled ()) {
    Capabilities = EFI_MEMORY_RO | EFI_MEMORY_RP | EFI_MEMORY_XP;
  } else {
    Capabilities = EFI_MEMORY_RO | EFI_MEMORY_RP;
  }

  for (Index = 0; Index < NumberOfDescriptors; Index++) {
    if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
      continue;
    }

    //
    // Sync the actual paging related capabilities back to GCD service first.
    // As a side effect (good one), this can also help to avoid unnecessary
    // memory map entries due to the different capabilities of the same type
    // memory, such as multiple RT_CODE and RT_DATA entries in memory map,
    // which could cause boot failure of some old Linux distro (before v4.3).
    //
    Status = gDS->SetMemorySpaceCapabilities (
                    MemorySpaceMap[Index].BaseAddress,
                    MemorySpaceMap[Index].Length,
                    MemorySpaceMap[Index].Capabilities | Capabilities
                    );
    if (EFI_ERROR (Status)) {
      //
      // If we cannot update the capabilities, we cannot update its
      // attributes either. So just simply skip current block of memory.
      //
      DEBUG ((
        DEBUG_WARN,
        "Failed to update capability: [%lu] %016lx - %016lx (%016lx -> %016lx)\r\n",
        (UINT64)Index, MemorySpaceMap[Index].BaseAddress,
        MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - 1,
        MemorySpaceMap[Index].Capabilities,
        MemorySpaceMap[Index].Capabilities | Capabilities
        ));
      continue;
    }

    if (MemorySpaceMap[Index].BaseAddress >= (BaseAddress + PageLength)) {
      //
      // Current memory space starts at a new page. Resetting PageLength will
      // trigger a retrieval of page attributes at new address.
      //
      PageLength = 0;
    } else {
      //
      // In case current memory space is not adjacent to last one
      //
      PageLength -= (MemorySpaceMap[Index].BaseAddress - BaseAddress);
    }

    //
    // Sync actual page attributes to GCD
    //
    BaseAddress       = MemorySpaceMap[Index].BaseAddress;
    MemorySpaceLength = MemorySpaceMap[Index].Length;
    while (MemorySpaceLength > 0) {
      if (PageLength == 0) {
        PageEntry = GetPageTableEntry (&PagingContext, BaseAddress, &PageAttribute);
        if (PageEntry == NULL) {
          break;
        }

        //
        // Note current memory space might start in the middle of a page
        //
        PageStartAddress  = (*PageEntry) & (UINT64)PageAttributeToMask(PageAttribute);
        PageLength        = PageAttributeToLength (PageAttribute) - (BaseAddress - PageStartAddress);
        Attributes        = GetAttributesFromPageEntry (PageEntry);
      }

      Length = MIN (PageLength, MemorySpaceLength);
      if (Attributes != (MemorySpaceMap[Index].Attributes &
                         EFI_MEMORY_ATTRIBUTE_MASK)) {
        NewAttributes = (MemorySpaceMap[Index].Attributes &
                         ~EFI_MEMORY_ATTRIBUTE_MASK) | Attributes;
        Status = gDS->SetMemorySpaceAttributes (
                        BaseAddress,
                        Length,
                        NewAttributes
                        );
        ASSERT_EFI_ERROR (Status);
        DEBUG ((
          DEBUG_VERBOSE,
          "Updated memory space attribute: [%lu] %016lx - %016lx (%016lx -> %016lx)\r\n",
          (UINT64)Index, BaseAddress, BaseAddress + Length - 1,
          MemorySpaceMap[Index].Attributes,
          NewAttributes
          ));
      }

      PageLength        -= Length;
      MemorySpaceLength -= Length;
      BaseAddress       += Length;
    }
  }

  FreePool (MemorySpaceMap);
}

/**
  Initialize a buffer pool for page table use only.

  To reduce the potential split operation on page table, the pages reserved for
  page table should be allocated in the times of PAGE_TABLE_POOL_UNIT_PAGES and
  at the boundary of PAGE_TABLE_POOL_ALIGNMENT. So the page pool is always
  initialized with number of pages greater than or equal to the given PoolPages.

  Once the pages in the pool are used up, this method should be called again to
  reserve at least another PAGE_TABLE_POOL_UNIT_PAGES. Usually this won't happen
  often in practice.

  @param[in] PoolPages      The least page number of the pool to be created.

  @retval TRUE    The pool is initialized successfully.
  @retval FALSE   The memory is out of resource.
**/
BOOLEAN
InitializePageTablePool (
  IN  UINTN                           PoolPages
  )
{
  VOID                      *Buffer;
  BOOLEAN                   IsModified;

  //
  // Do not allow re-entrance.
  //
  if (mPageTablePoolLock) {
    return FALSE;
  }

  mPageTablePoolLock = TRUE;
  IsModified = FALSE;

  //
  // Always reserve at least PAGE_TABLE_POOL_UNIT_PAGES, including one page for
  // header.
  //
  PoolPages += 1;   // Add one page for header.
  PoolPages = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) *
              PAGE_TABLE_POOL_UNIT_PAGES;
  Buffer = AllocateAlignedPages (PoolPages, PAGE_TABLE_POOL_ALIGNMENT);
  if (Buffer == NULL) {
    DEBUG ((DEBUG_ERROR, "ERROR: Out of aligned pages\r\n"));
    goto Done;
  }

  DEBUG ((
    DEBUG_INFO,
    "Paging: added %lu pages to page table pool\r\n",
    (UINT64)PoolPages
    ));

  //
  // Link all pools into a list for easier track later.
  //
  if (mPageTablePool == NULL) {
    mPageTablePool = Buffer;
    mPageTablePool->NextPool = mPageTablePool;
  } else {
    ((PAGE_TABLE_POOL *)Buffer)->NextPool = mPageTablePool->NextPool;
    mPageTablePool->NextPool = Buffer;
    mPageTablePool = Buffer;
  }

  //
  // Reserve one page for pool header.
  //
  mPageTablePool->FreePages  = PoolPages - 1;
  mPageTablePool->Offset = EFI_PAGES_TO_SIZE (1);

  //
  // Mark the whole pool pages as read-only.
  //
  ConvertMemoryPageAttributes (
    NULL,
    (PHYSICAL_ADDRESS)(UINTN)Buffer,
    EFI_PAGES_TO_SIZE (PoolPages),
    EFI_MEMORY_RO,
    PageActionSet,
    AllocatePageTableMemory,
    NULL,
    &IsModified
    );
  ASSERT (IsModified == TRUE);

Done:
  mPageTablePoolLock = FALSE;
  return IsModified;
}

/**
  This API provides a way to allocate memory for page table.

  This API can be called more than once to allocate memory for page tables.

  Allocates the number of 4KB pages and returns a pointer to the allocated
  buffer. The buffer returned is aligned on a 4KB boundary.

  If Pages is 0, then NULL is returned.
  If there is not enough memory remaining to satisfy the request, then NULL is
  returned.

  @param  Pages                 The number of 4 KB pages to allocate.

  @return A pointer to the allocated buffer or NULL if allocation fails.

**/
VOID *
EFIAPI
AllocatePageTableMemory (
  IN UINTN           Pages
  )
{
  VOID                            *Buffer;

  if (Pages == 0) {
    return NULL;
  }

  //
  // Renew the pool if necessary.
  //
  if (mPageTablePool == NULL ||
      Pages > mPageTablePool->FreePages) {
    if (!InitializePageTablePool (Pages)) {
      return NULL;
    }
  }

  Buffer = (UINT8 *)mPageTablePool + mPageTablePool->Offset;

  mPageTablePool->Offset     += EFI_PAGES_TO_SIZE (Pages);
  mPageTablePool->FreePages  -= Pages;

  return Buffer;
}

/**
  Special handler for #DB exception, which will restore the page attributes
  (not-present). It should work with #PF handler which will set pages to
  'present'.

  @param ExceptionType  Exception type.
  @param SystemContext  Pointer to EFI_SYSTEM_CONTEXT.

**/
VOID
EFIAPI
DebugExceptionHandler (
  IN EFI_EXCEPTION_TYPE   ExceptionType,
  IN EFI_SYSTEM_CONTEXT   SystemContext
  )
{
  UINTN     CpuIndex;
  UINTN     PFEntry;
  BOOLEAN   IsWpEnabled;

  MpInitLibWhoAmI (&CpuIndex);

  //
  // Clear last PF entries
  //
  IsWpEnabled = IsReadOnlyPageWriteProtected ();
  if (IsWpEnabled) {
    DisableReadOnlyPageWriteProtect ();
  }

  for (PFEntry = 0; PFEntry < mPFEntryCount[CpuIndex]; PFEntry++) {
    if (mLastPFEntryPointer[CpuIndex][PFEntry] != NULL) {
      *mLastPFEntryPointer[CpuIndex][PFEntry] &= ~(UINT64)IA32_PG_P;
    }
  }

  if (IsWpEnabled) {
    EnableReadOnlyPageWriteProtect ();
  }

  //
  // Reset page fault exception count for next page fault.
  //
  mPFEntryCount[CpuIndex] = 0;

  //
  // Flush TLB
  //
  CpuFlushTlb ();

  //
  // Clear TF in EFLAGS
  //
  if (mPagingContext.MachineType == IMAGE_FILE_MACHINE_I386) {
    SystemContext.SystemContextIa32->Eflags &= (UINT32)~BIT8;
  } else {
    SystemContext.SystemContextX64->Rflags &= (UINT64)~BIT8;
  }
}

/**
  Special handler for #PF exception, which will set the pages which caused
  #PF to be 'present'. The attribute of those pages should be restored in
  the subsequent #DB handler.

  @param ExceptionType  Exception type.
  @param SystemContext  Pointer to EFI_SYSTEM_CONTEXT.

**/
VOID
EFIAPI
PageFaultExceptionHandler (
  IN EFI_EXCEPTION_TYPE   ExceptionType,
  IN EFI_SYSTEM_CONTEXT   SystemContext
  )
{
  EFI_STATUS                      Status;
  UINT64                          PFAddress;
  PAGE_TABLE_LIB_PAGING_CONTEXT   PagingContext;
  PAGE_ATTRIBUTE                  PageAttribute;
  UINT64                          Attributes;
  UINT64                          *PageEntry;
  UINTN                           Index;
  UINTN                           CpuIndex;
  UINTN                           PageNumber;
  BOOLEAN                         NonStopMode;

  PFAddress = AsmReadCr2 () & ~EFI_PAGE_MASK;
  if (PFAddress < BASE_4KB) {
    NonStopMode = NULL_DETECTION_NONSTOP_MODE ? TRUE : FALSE;
  } else {
    NonStopMode = HEAP_GUARD_NONSTOP_MODE ? TRUE : FALSE;
  }

  if (NonStopMode) {
    MpInitLibWhoAmI (&CpuIndex);
    GetCurrentPagingContext (&PagingContext);
    //
    // Memory operation cross page boundary, like "rep mov" instruction, will
    // cause infinite loop between this and Debug Trap handler. We have to make
    // sure that current page and the page followed are both in PRESENT state.
    //
    PageNumber = 2;
    while (PageNumber > 0) {
      PageEntry = GetPageTableEntry (&PagingContext, PFAddress, &PageAttribute);
      ASSERT(PageEntry != NULL);

      if (PageEntry != NULL) {
        Attributes = GetAttributesFromPageEntry (PageEntry);
        if ((Attributes & EFI_MEMORY_RP) != 0) {
          Attributes &= ~EFI_MEMORY_RP;
          Status = AssignMemoryPageAttributes (&PagingContext, PFAddress,
                                               EFI_PAGE_SIZE, Attributes, NULL);
          if (!EFI_ERROR(Status)) {
            Index = mPFEntryCount[CpuIndex];
            //
            // Re-retrieve page entry because above calling might update page
            // table due to table split.
            //
            PageEntry = GetPageTableEntry (&PagingContext, PFAddress, &PageAttribute);
            mLastPFEntryPointer[CpuIndex][Index++] = PageEntry;
            mPFEntryCount[CpuIndex] = Index;
          }
        }
      }

      PFAddress += EFI_PAGE_SIZE;
      --PageNumber;
    }
  }

  //
  // Initialize the serial port before dumping.
  //
  SerialPortInitialize ();
  //
  // Display ExceptionType, CPU information and Image information
  //
  DumpCpuContext (ExceptionType, SystemContext);
  if (NonStopMode) {
    //
    // Set TF in EFLAGS
    //
    if (mPagingContext.MachineType == IMAGE_FILE_MACHINE_I386) {
      SystemContext.SystemContextIa32->Eflags |= (UINT32)BIT8;
    } else {
      SystemContext.SystemContextX64->Rflags |= (UINT64)BIT8;
    }
  } else {
    CpuDeadLoop ();
  }
}

/**
  Initialize the Page Table lib.
**/
VOID
InitializePageTableLib (
  VOID
  )
{
  PAGE_TABLE_LIB_PAGING_CONTEXT     CurrentPagingContext;
  UINT32                            *Attributes;
  UINTN                             *PageTableBase;

  GetCurrentPagingContext (&CurrentPagingContext);

  GetPagingDetails (&CurrentPagingContext.ContextData, &PageTableBase, &Attributes);

  //
  // Reserve memory of page tables for future uses, if paging is enabled.
  //
  if ((*PageTableBase != 0) &&
      (*Attributes & PAGE_TABLE_LIB_PAGING_CONTEXT_IA32_X64_ATTRIBUTES_PAE) != 0) {
    DisableReadOnlyPageWriteProtect ();
    InitializePageTablePool (1);
    EnableReadOnlyPageWriteProtect ();
  }

  if (HEAP_GUARD_NONSTOP_MODE || NULL_DETECTION_NONSTOP_MODE) {
    mPFEntryCount = (UINTN *)AllocateZeroPool (sizeof (UINTN) * mNumberOfProcessors);
    ASSERT (mPFEntryCount != NULL);

    mLastPFEntryPointer = (UINT64 *(*)[MAX_PF_ENTRY_COUNT])
                          AllocateZeroPool (sizeof (mLastPFEntryPointer[0]) * mNumberOfProcessors);
    ASSERT (mLastPFEntryPointer != NULL);
  }

  DEBUG ((DEBUG_INFO, "CurrentPagingContext:\n"));
  DEBUG ((DEBUG_INFO, "  MachineType   - 0x%x\n", CurrentPagingContext.MachineType));
  DEBUG ((DEBUG_INFO, "  PageTableBase - 0x%Lx\n", (UINT64)*PageTableBase));
  DEBUG ((DEBUG_INFO, "  Attributes    - 0x%x\n", *Attributes));

  return ;
}