summaryrefslogtreecommitdiffstats
path: root/UefiCpuPkg/Library/MpInitLib/MpLib.c
blob: a3e89495e100a412f38f51dfc5a0cb3f56e7bc91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
/** @file
  CPU MP Initialize Library common functions.

  Copyright (c) 2016 - 2021, Intel Corporation. All rights reserved.<BR>
  Copyright (c) 2020, AMD Inc. All rights reserved.<BR>

  SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "MpLib.h"
#include <Library/VmgExitLib.h>
#include <Register/Amd/Fam17Msr.h>
#include <Register/Amd/Ghcb.h>

EFI_GUID  mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;

/**
  The function will check if BSP Execute Disable is enabled.

  DxeIpl may have enabled Execute Disable for BSP, APs need to
  get the status and sync up the settings.
  If BSP's CR0.Paging is not set, BSP execute Disble feature is
  not working actually.

  @retval TRUE      BSP Execute Disable is enabled.
  @retval FALSE     BSP Execute Disable is not enabled.
**/
BOOLEAN
IsBspExecuteDisableEnabled (
  VOID
  )
{
  UINT32                      Eax;
  CPUID_EXTENDED_CPU_SIG_EDX  Edx;
  MSR_IA32_EFER_REGISTER      EferMsr;
  BOOLEAN                     Enabled;
  IA32_CR0                    Cr0;

  Enabled   = FALSE;
  Cr0.UintN = AsmReadCr0 ();
  if (Cr0.Bits.PG != 0) {
    //
    // If CR0 Paging bit is set
    //
    AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
    if (Eax >= CPUID_EXTENDED_CPU_SIG) {
      AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
      //
      // CPUID 0x80000001
      // Bit 20: Execute Disable Bit available.
      //
      if (Edx.Bits.NX != 0) {
        EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
        //
        // MSR 0xC0000080
        // Bit 11: Execute Disable Bit enable.
        //
        if (EferMsr.Bits.NXE != 0) {
          Enabled = TRUE;
        }
      }
    }
  }

  return Enabled;
}

/**
  Worker function for SwitchBSP().

  Worker function for SwitchBSP(), assigned to the AP which is intended
  to become BSP.

  @param[in] Buffer   Pointer to CPU MP Data
**/
VOID
EFIAPI
FutureBSPProc (
  IN  VOID  *Buffer
  )
{
  CPU_MP_DATA  *DataInHob;

  DataInHob = (CPU_MP_DATA *)Buffer;
  AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
}

/**
  Get the Application Processors state.

  @param[in]  CpuData    The pointer to CPU_AP_DATA of specified AP

  @return  The AP status
**/
CPU_STATE
GetApState (
  IN  CPU_AP_DATA  *CpuData
  )
{
  return CpuData->State;
}

/**
  Set the Application Processors state.

  @param[in]   CpuData    The pointer to CPU_AP_DATA of specified AP
  @param[in]   State      The AP status
**/
VOID
SetApState (
  IN  CPU_AP_DATA  *CpuData,
  IN  CPU_STATE    State
  )
{
  AcquireSpinLock (&CpuData->ApLock);
  CpuData->State = State;
  ReleaseSpinLock (&CpuData->ApLock);
}

/**
  Save BSP's local APIC timer setting.

  @param[in] CpuMpData          Pointer to CPU MP Data
**/
VOID
SaveLocalApicTimerSetting (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  //
  // Record the current local APIC timer setting of BSP
  //
  GetApicTimerState (
    &CpuMpData->DivideValue,
    &CpuMpData->PeriodicMode,
    &CpuMpData->Vector
    );
  CpuMpData->CurrentTimerCount   = GetApicTimerCurrentCount ();
  CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
}

/**
  Sync local APIC timer setting from BSP to AP.

  @param[in] CpuMpData          Pointer to CPU MP Data
**/
VOID
SyncLocalApicTimerSetting (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  //
  // Sync local APIC timer setting from BSP to AP
  //
  InitializeApicTimer (
    CpuMpData->DivideValue,
    CpuMpData->CurrentTimerCount,
    CpuMpData->PeriodicMode,
    CpuMpData->Vector
    );
  //
  // Disable AP's local APIC timer interrupt
  //
  DisableApicTimerInterrupt ();
}

/**
  Save the volatile registers required to be restored following INIT IPI.

  @param[out]  VolatileRegisters    Returns buffer saved the volatile resisters
**/
VOID
SaveVolatileRegisters (
  OUT CPU_VOLATILE_REGISTERS  *VolatileRegisters
  )
{
  CPUID_VERSION_INFO_EDX  VersionInfoEdx;

  VolatileRegisters->Cr0 = AsmReadCr0 ();
  VolatileRegisters->Cr3 = AsmReadCr3 ();
  VolatileRegisters->Cr4 = AsmReadCr4 ();

  AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
  if (VersionInfoEdx.Bits.DE != 0) {
    //
    // If processor supports Debugging Extensions feature
    // by CPUID.[EAX=01H]:EDX.BIT2
    //
    VolatileRegisters->Dr0 = AsmReadDr0 ();
    VolatileRegisters->Dr1 = AsmReadDr1 ();
    VolatileRegisters->Dr2 = AsmReadDr2 ();
    VolatileRegisters->Dr3 = AsmReadDr3 ();
    VolatileRegisters->Dr6 = AsmReadDr6 ();
    VolatileRegisters->Dr7 = AsmReadDr7 ();
  }

  AsmReadGdtr (&VolatileRegisters->Gdtr);
  AsmReadIdtr (&VolatileRegisters->Idtr);
  VolatileRegisters->Tr = AsmReadTr ();
}

/**
  Restore the volatile registers following INIT IPI.

  @param[in]  VolatileRegisters   Pointer to volatile resisters
  @param[in]  IsRestoreDr         TRUE:  Restore DRx if supported
                                  FALSE: Do not restore DRx
**/
VOID
RestoreVolatileRegisters (
  IN CPU_VOLATILE_REGISTERS  *VolatileRegisters,
  IN BOOLEAN                 IsRestoreDr
  )
{
  CPUID_VERSION_INFO_EDX  VersionInfoEdx;
  IA32_TSS_DESCRIPTOR     *Tss;

  AsmWriteCr3 (VolatileRegisters->Cr3);
  AsmWriteCr4 (VolatileRegisters->Cr4);
  AsmWriteCr0 (VolatileRegisters->Cr0);

  if (IsRestoreDr) {
    AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
    if (VersionInfoEdx.Bits.DE != 0) {
      //
      // If processor supports Debugging Extensions feature
      // by CPUID.[EAX=01H]:EDX.BIT2
      //
      AsmWriteDr0 (VolatileRegisters->Dr0);
      AsmWriteDr1 (VolatileRegisters->Dr1);
      AsmWriteDr2 (VolatileRegisters->Dr2);
      AsmWriteDr3 (VolatileRegisters->Dr3);
      AsmWriteDr6 (VolatileRegisters->Dr6);
      AsmWriteDr7 (VolatileRegisters->Dr7);
    }
  }

  AsmWriteGdtr (&VolatileRegisters->Gdtr);
  AsmWriteIdtr (&VolatileRegisters->Idtr);
  if ((VolatileRegisters->Tr != 0) &&
      (VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit))
  {
    Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
                                  VolatileRegisters->Tr);
    if (Tss->Bits.P == 1) {
      Tss->Bits.Type &= 0xD;  // 1101 - Clear busy bit just in case
      AsmWriteTr (VolatileRegisters->Tr);
    }
  }
}

/**
  Detect whether Mwait-monitor feature is supported.

  @retval TRUE    Mwait-monitor feature is supported.
  @retval FALSE   Mwait-monitor feature is not supported.
**/
BOOLEAN
IsMwaitSupport (
  VOID
  )
{
  CPUID_VERSION_INFO_ECX  VersionInfoEcx;

  AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
  return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
}

/**
  Get AP loop mode.

  @param[out] MonitorFilterSize  Returns the largest monitor-line size in bytes.

  @return The AP loop mode.
**/
UINT8
GetApLoopMode (
  OUT UINT32  *MonitorFilterSize
  )
{
  UINT8                    ApLoopMode;
  CPUID_MONITOR_MWAIT_EBX  MonitorMwaitEbx;

  ASSERT (MonitorFilterSize != NULL);

  ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
  ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
  if (ApLoopMode == ApInMwaitLoop) {
    if (!IsMwaitSupport ()) {
      //
      // If processor does not support MONITOR/MWAIT feature,
      // force AP in Hlt-loop mode
      //
      ApLoopMode = ApInHltLoop;
    }

    if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) &&
        !ConfidentialComputingGuestHas (CCAttrAmdSevSnp))
    {
      //
      // For SEV-ES (SEV-SNP is also considered SEV-ES), force AP in Hlt-loop
      // mode in order to use the GHCB protocol for starting APs
      //
      ApLoopMode = ApInHltLoop;
    }
  }

  if (ApLoopMode != ApInMwaitLoop) {
    *MonitorFilterSize = sizeof (UINT32);
  } else {
    //
    // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
    // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
    //
    AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
    *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
  }

  return ApLoopMode;
}

/**
  Sort the APIC ID of all processors.

  This function sorts the APIC ID of all processors so that processor number is
  assigned in the ascending order of APIC ID which eases MP debugging.

  @param[in] CpuMpData        Pointer to PEI CPU MP Data
**/
VOID
SortApicId (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  UINTN            Index1;
  UINTN            Index2;
  UINTN            Index3;
  UINT32           ApicId;
  CPU_INFO_IN_HOB  CpuInfo;
  UINT32           ApCount;
  CPU_INFO_IN_HOB  *CpuInfoInHob;
  volatile UINT32  *StartupApSignal;

  ApCount      = CpuMpData->CpuCount - 1;
  CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
  if (ApCount != 0) {
    for (Index1 = 0; Index1 < ApCount; Index1++) {
      Index3 = Index1;
      //
      // Sort key is the hardware default APIC ID
      //
      ApicId = CpuInfoInHob[Index1].ApicId;
      for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
        if (ApicId > CpuInfoInHob[Index2].ApicId) {
          Index3 = Index2;
          ApicId = CpuInfoInHob[Index2].ApicId;
        }
      }

      if (Index3 != Index1) {
        CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
        CopyMem (
          &CpuInfoInHob[Index3],
          &CpuInfoInHob[Index1],
          sizeof (CPU_INFO_IN_HOB)
          );
        CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));

        //
        // Also exchange the StartupApSignal.
        //
        StartupApSignal                            = CpuMpData->CpuData[Index3].StartupApSignal;
        CpuMpData->CpuData[Index3].StartupApSignal =
          CpuMpData->CpuData[Index1].StartupApSignal;
        CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
      }
    }

    //
    // Get the processor number for the BSP
    //
    ApicId = GetInitialApicId ();
    for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
      if (CpuInfoInHob[Index1].ApicId == ApicId) {
        CpuMpData->BspNumber = (UINT32)Index1;
        break;
      }
    }
  }
}

/**
  Enable x2APIC mode on APs.

  @param[in, out] Buffer  Pointer to private data buffer.
**/
VOID
EFIAPI
ApFuncEnableX2Apic (
  IN OUT VOID  *Buffer
  )
{
  SetApicMode (LOCAL_APIC_MODE_X2APIC);
}

/**
  Do sync on APs.

  @param[in, out] Buffer  Pointer to private data buffer.
**/
VOID
EFIAPI
ApInitializeSync (
  IN OUT VOID  *Buffer
  )
{
  CPU_MP_DATA  *CpuMpData;
  UINTN        ProcessorNumber;
  EFI_STATUS   Status;

  CpuMpData = (CPU_MP_DATA *)Buffer;
  Status    = GetProcessorNumber (CpuMpData, &ProcessorNumber);
  ASSERT_EFI_ERROR (Status);
  //
  // Load microcode on AP
  //
  MicrocodeDetect (CpuMpData, ProcessorNumber);
  //
  // Sync BSP's MTRR table to AP
  //
  MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
}

/**
  Find the current Processor number by APIC ID.

  @param[in]  CpuMpData         Pointer to PEI CPU MP Data
  @param[out] ProcessorNumber   Return the pocessor number found

  @retval EFI_SUCCESS          ProcessorNumber is found and returned.
  @retval EFI_NOT_FOUND        ProcessorNumber is not found.
**/
EFI_STATUS
GetProcessorNumber (
  IN CPU_MP_DATA  *CpuMpData,
  OUT UINTN       *ProcessorNumber
  )
{
  UINTN            TotalProcessorNumber;
  UINTN            Index;
  CPU_INFO_IN_HOB  *CpuInfoInHob;
  UINT32           CurrentApicId;

  CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;

  TotalProcessorNumber = CpuMpData->CpuCount;
  CurrentApicId        = GetApicId ();
  for (Index = 0; Index < TotalProcessorNumber; Index++) {
    if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
      *ProcessorNumber = Index;
      return EFI_SUCCESS;
    }
  }

  return EFI_NOT_FOUND;
}

/**
  This function will get CPU count in the system.

  @param[in] CpuMpData        Pointer to PEI CPU MP Data

  @return  CPU count detected
**/
UINTN
CollectProcessorCount (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  UINTN            Index;
  CPU_INFO_IN_HOB  *CpuInfoInHob;
  BOOLEAN          X2Apic;

  //
  // Send 1st broadcast IPI to APs to wakeup APs
  //
  CpuMpData->InitFlag = ApInitConfig;
  WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);
  CpuMpData->InitFlag = ApInitDone;
  //
  // When InitFlag == ApInitConfig, WakeUpAP () guarantees all APs are checked in.
  // FinishedCount is the number of check-in APs.
  //
  CpuMpData->CpuCount = CpuMpData->FinishedCount + 1;
  ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));

  //
  // Enable x2APIC mode if
  //  1. Number of CPU is greater than 255; or
  //  2. There are any logical processors reporting an Initial APIC ID of 255 or greater.
  //
  X2Apic = FALSE;
  if (CpuMpData->CpuCount > 255) {
    //
    // If there are more than 255 processor found, force to enable X2APIC
    //
    X2Apic = TRUE;
  } else {
    CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
    for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
      if (CpuInfoInHob[Index].InitialApicId >= 0xFF) {
        X2Apic = TRUE;
        break;
      }
    }
  }

  if (X2Apic) {
    DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
    //
    // Wakeup all APs to enable x2APIC mode
    //
    WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);
    //
    // Wait for all known APs finished
    //
    while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
      CpuPause ();
    }

    //
    // Enable x2APIC on BSP
    //
    SetApicMode (LOCAL_APIC_MODE_X2APIC);
    //
    // Set BSP/Aps state to IDLE
    //
    for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
      SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
    }
  }

  DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
  //
  // Sort BSP/Aps by CPU APIC ID in ascending order
  //
  SortApicId (CpuMpData);

  DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));

  return CpuMpData->CpuCount;
}

/**
  Initialize CPU AP Data when AP is wakeup at the first time.

  @param[in, out] CpuMpData        Pointer to PEI CPU MP Data
  @param[in]      ProcessorNumber  The handle number of processor
  @param[in]      BistData         Processor BIST data
  @param[in]      ApTopOfStack     Top of AP stack

**/
VOID
InitializeApData (
  IN OUT CPU_MP_DATA  *CpuMpData,
  IN     UINTN        ProcessorNumber,
  IN     UINT32       BistData,
  IN     UINT64       ApTopOfStack
  )
{
  CPU_INFO_IN_HOB                *CpuInfoInHob;
  MSR_IA32_PLATFORM_ID_REGISTER  PlatformIdMsr;

  CpuInfoInHob                                = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
  CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
  CpuInfoInHob[ProcessorNumber].ApicId        = GetApicId ();
  CpuInfoInHob[ProcessorNumber].Health        = BistData;
  CpuInfoInHob[ProcessorNumber].ApTopOfStack  = ApTopOfStack;

  CpuMpData->CpuData[ProcessorNumber].Waiting    = FALSE;
  CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;

  //
  // NOTE: PlatformId is not relevant on AMD platforms.
  //
  if (!StandardSignatureIsAuthenticAMD ()) {
    PlatformIdMsr.Uint64                           = AsmReadMsr64 (MSR_IA32_PLATFORM_ID);
    CpuMpData->CpuData[ProcessorNumber].PlatformId = (UINT8)PlatformIdMsr.Bits.PlatformId;
  }

  AsmCpuid (
    CPUID_VERSION_INFO,
    &CpuMpData->CpuData[ProcessorNumber].ProcessorSignature,
    NULL,
    NULL,
    NULL
    );

  InitializeSpinLock (&CpuMpData->CpuData[ProcessorNumber].ApLock);
  SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
}

/**
  This function will be called from AP reset code if BSP uses WakeUpAP.

  @param[in] ExchangeInfo     Pointer to the MP exchange info buffer
  @param[in] ApIndex          Number of current executing AP
**/
VOID
EFIAPI
ApWakeupFunction (
  IN MP_CPU_EXCHANGE_INFO  *ExchangeInfo,
  IN UINTN                 ApIndex
  )
{
  CPU_MP_DATA       *CpuMpData;
  UINTN             ProcessorNumber;
  EFI_AP_PROCEDURE  Procedure;
  VOID              *Parameter;
  UINT32            BistData;
  volatile UINT32   *ApStartupSignalBuffer;
  CPU_INFO_IN_HOB   *CpuInfoInHob;
  UINT64            ApTopOfStack;
  UINTN             CurrentApicMode;

  //
  // AP finished assembly code and begin to execute C code
  //
  CpuMpData = ExchangeInfo->CpuMpData;

  //
  // AP's local APIC settings will be lost after received INIT IPI
  // We need to re-initialize them at here
  //
  ProgramVirtualWireMode ();
  //
  // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
  //
  DisableLvtInterrupts ();
  SyncLocalApicTimerSetting (CpuMpData);

  CurrentApicMode = GetApicMode ();
  while (TRUE) {
    if (CpuMpData->InitFlag == ApInitConfig) {
      ProcessorNumber = ApIndex;
      //
      // This is first time AP wakeup, get BIST information from AP stack
      //
      ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
      BistData     = *(UINT32 *)((UINTN)ApTopOfStack - sizeof (UINTN));
      //
      // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
      //   to initialize AP in InitConfig path.
      // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
      //
      RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
      InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
      ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
    } else {
      //
      // Execute AP function if AP is ready
      //
      GetProcessorNumber (CpuMpData, &ProcessorNumber);
      //
      // Clear AP start-up signal when AP waken up
      //
      ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
      InterlockedCompareExchange32 (
        (UINT32 *)ApStartupSignalBuffer,
        WAKEUP_AP_SIGNAL,
        0
        );

      if (CpuMpData->InitFlag == ApInitReconfig) {
        //
        // ApInitReconfig happens when:
        // 1. AP is re-enabled after it's disabled, in either PEI or DXE phase.
        // 2. AP is initialized in DXE phase.
        // In either case, use the volatile registers value derived from BSP.
        // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a
        //   different IDT shared by all APs.
        //
        RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
      } else {
        if (CpuMpData->ApLoopMode == ApInHltLoop) {
          //
          // Restore AP's volatile registers saved before AP is halted
          //
          RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
        } else {
          //
          // The CPU driver might not flush TLB for APs on spot after updating
          // page attributes. AP in mwait loop mode needs to take care of it when
          // woken up.
          //
          CpuFlushTlb ();
        }
      }

      if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
        Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
        Parameter = (VOID *)CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
        if (Procedure != NULL) {
          SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
          //
          // Enable source debugging on AP function
          //
          EnableDebugAgent ();
          //
          // Invoke AP function here
          //
          Procedure (Parameter);
          CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
          if (CpuMpData->SwitchBspFlag) {
            //
            // Re-get the processor number due to BSP/AP maybe exchange in AP function
            //
            GetProcessorNumber (CpuMpData, &ProcessorNumber);
            CpuMpData->CpuData[ProcessorNumber].ApFunction         = 0;
            CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
            ApStartupSignalBuffer                                  = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
            CpuInfoInHob[ProcessorNumber].ApTopOfStack             = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
          } else {
            if ((CpuInfoInHob[ProcessorNumber].ApicId != GetApicId ()) ||
                (CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()))
            {
              if (CurrentApicMode != GetApicMode ()) {
                //
                // If APIC mode change happened during AP function execution,
                // we do not support APIC ID value changed.
                //
                ASSERT (FALSE);
                CpuDeadLoop ();
              } else {
                //
                // Re-get the CPU APICID and Initial APICID if they are changed
                //
                CpuInfoInHob[ProcessorNumber].ApicId        = GetApicId ();
                CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
              }
            }
          }
        }

        SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
      }
    }

    if (CpuMpData->ApLoopMode == ApInHltLoop) {
      //
      // Save AP volatile registers
      //
      SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
    }

    //
    // AP finished executing C code
    //
    InterlockedIncrement ((UINT32 *)&CpuMpData->FinishedCount);

    if (CpuMpData->InitFlag == ApInitConfig) {
      //
      // Delay decrementing the APs executing count when SEV-ES is enabled
      // to allow the APs to issue an AP_RESET_HOLD before the BSP possibly
      // performs another INIT-SIPI-SIPI sequence.
      //
      if (!CpuMpData->UseSevEsAPMethod) {
        InterlockedDecrement ((UINT32 *)&CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
      }
    }

    //
    // Place AP is specified loop mode
    //
    if (CpuMpData->ApLoopMode == ApInHltLoop) {
      //
      // Place AP in HLT-loop
      //
      while (TRUE) {
        DisableInterrupts ();
        if (CpuMpData->UseSevEsAPMethod) {
          SevEsPlaceApHlt (CpuMpData);
        } else {
          CpuSleep ();
        }

        CpuPause ();
      }
    }

    while (TRUE) {
      DisableInterrupts ();
      if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
        //
        // Place AP in MWAIT-loop
        //
        AsmMonitor ((UINTN)ApStartupSignalBuffer, 0, 0);
        if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
          //
          // Check AP start-up signal again.
          // If AP start-up signal is not set, place AP into
          // the specified C-state
          //
          AsmMwait (CpuMpData->ApTargetCState << 4, 0);
        }
      } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
        //
        // Place AP in Run-loop
        //
        CpuPause ();
      } else {
        ASSERT (FALSE);
      }

      //
      // If AP start-up signal is written, AP is waken up
      // otherwise place AP in loop again
      //
      if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
        break;
      }
    }
  }
}

/**
  Wait for AP wakeup and write AP start-up signal till AP is waken up.

  @param[in] ApStartupSignalBuffer  Pointer to AP wakeup signal
**/
VOID
WaitApWakeup (
  IN volatile UINT32  *ApStartupSignalBuffer
  )
{
  //
  // If AP is waken up, StartupApSignal should be cleared.
  // Otherwise, write StartupApSignal again till AP waken up.
  //
  while (InterlockedCompareExchange32 (
           (UINT32 *)ApStartupSignalBuffer,
           WAKEUP_AP_SIGNAL,
           WAKEUP_AP_SIGNAL
           ) != 0)
  {
    CpuPause ();
  }
}

/**
  Calculate the size of the reset vector.

  @param[in]  AddressMap   The pointer to Address Map structure.
  @param[out] SizeBelow1Mb Return the size of below 1MB memory for AP reset area.
  @param[out] SizeAbove1Mb Return the size of abvoe 1MB memory for AP reset area.
**/
STATIC
VOID
GetApResetVectorSize (
  IN  MP_ASSEMBLY_ADDRESS_MAP  *AddressMap,
  OUT UINTN                    *SizeBelow1Mb OPTIONAL,
  OUT UINTN                    *SizeAbove1Mb OPTIONAL
  )
{
  if (SizeBelow1Mb != NULL) {
    *SizeBelow1Mb = AddressMap->ModeTransitionOffset + sizeof (MP_CPU_EXCHANGE_INFO);
  }

  if (SizeAbove1Mb != NULL) {
    *SizeAbove1Mb = AddressMap->RendezvousFunnelSize - AddressMap->ModeTransitionOffset;
  }
}

/**
  This function will fill the exchange info structure.

  @param[in] CpuMpData          Pointer to CPU MP Data

**/
VOID
FillExchangeInfoData (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  volatile MP_CPU_EXCHANGE_INFO  *ExchangeInfo;
  UINTN                          Size;
  IA32_SEGMENT_DESCRIPTOR        *Selector;
  IA32_CR4                       Cr4;

  ExchangeInfo              = CpuMpData->MpCpuExchangeInfo;
  ExchangeInfo->StackStart  = CpuMpData->Buffer;
  ExchangeInfo->StackSize   = CpuMpData->CpuApStackSize;
  ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
  ExchangeInfo->ModeOffset  = CpuMpData->AddressMap.ModeEntryOffset;

  ExchangeInfo->CodeSegment = AsmReadCs ();
  ExchangeInfo->DataSegment = AsmReadDs ();

  ExchangeInfo->Cr3 = AsmReadCr3 ();

  ExchangeInfo->CFunction       = (UINTN)ApWakeupFunction;
  ExchangeInfo->ApIndex         = 0;
  ExchangeInfo->NumApsExecuting = 0;
  ExchangeInfo->InitFlag        = (UINTN)CpuMpData->InitFlag;
  ExchangeInfo->CpuInfo         = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
  ExchangeInfo->CpuMpData       = CpuMpData;

  ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();

  ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;

  //
  // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]
  //  to determin whether 5-Level Paging is enabled.
  // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows
  // current system setting.
  // Using latter way is simpler because it also eliminates the needs to
  //  check whether platform wants to enable it.
  //
  Cr4.UintN                        = AsmReadCr4 ();
  ExchangeInfo->Enable5LevelPaging = (BOOLEAN)(Cr4.Bits.LA57 == 1);
  DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));

  ExchangeInfo->SevEsIsEnabled  = CpuMpData->SevEsIsEnabled;
  ExchangeInfo->SevSnpIsEnabled = CpuMpData->SevSnpIsEnabled;
  ExchangeInfo->GhcbBase        = (UINTN)CpuMpData->GhcbBase;

  //
  // Populate SEV-ES specific exchange data.
  //
  if (ExchangeInfo->SevSnpIsEnabled) {
    FillExchangeInfoDataSevEs (ExchangeInfo);
  }

  //
  // Get the BSP's data of GDT and IDT
  //
  AsmReadGdtr ((IA32_DESCRIPTOR *)&ExchangeInfo->GdtrProfile);
  AsmReadIdtr ((IA32_DESCRIPTOR *)&ExchangeInfo->IdtrProfile);

  //
  // Find a 32-bit code segment
  //
  Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
  Size     = ExchangeInfo->GdtrProfile.Limit + 1;
  while (Size > 0) {
    if ((Selector->Bits.L == 0) && (Selector->Bits.Type >= 8)) {
      ExchangeInfo->ModeTransitionSegment =
        (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
      break;
    }

    Selector += 1;
    Size     -= sizeof (IA32_SEGMENT_DESCRIPTOR);
  }

  //
  // Copy all 32-bit code and 64-bit code into memory with type of
  // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
  //
  GetApResetVectorSize (&CpuMpData->AddressMap, NULL, &Size);
  CopyMem (
    (VOID *)CpuMpData->WakeupBufferHigh,
    CpuMpData->AddressMap.RendezvousFunnelAddress +
    CpuMpData->AddressMap.ModeTransitionOffset,
    Size
    );

  ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;

  ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
                                 (UINT32)ExchangeInfo->ModeOffset -
                                 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
  ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
}

/**
  Helper function that waits until the finished AP count reaches the specified
  limit, or the specified timeout elapses (whichever comes first).

  @param[in] CpuMpData        Pointer to CPU MP Data.
  @param[in] FinishedApLimit  The number of finished APs to wait for.
  @param[in] TimeLimit        The number of microseconds to wait for.
**/
VOID
TimedWaitForApFinish (
  IN CPU_MP_DATA  *CpuMpData,
  IN UINT32       FinishedApLimit,
  IN UINT32       TimeLimit
  );

/**
  Get available system memory below 1MB by specified size.

  @param[in]  CpuMpData  The pointer to CPU MP Data structure.
**/
VOID
BackupAndPrepareWakeupBuffer (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  CopyMem (
    (VOID *)CpuMpData->BackupBuffer,
    (VOID *)CpuMpData->WakeupBuffer,
    CpuMpData->BackupBufferSize
    );
  CopyMem (
    (VOID *)CpuMpData->WakeupBuffer,
    (VOID *)CpuMpData->AddressMap.RendezvousFunnelAddress,
    CpuMpData->BackupBufferSize - sizeof (MP_CPU_EXCHANGE_INFO)
    );
}

/**
  Restore wakeup buffer data.

  @param[in]  CpuMpData  The pointer to CPU MP Data structure.
**/
VOID
RestoreWakeupBuffer (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  CopyMem (
    (VOID *)CpuMpData->WakeupBuffer,
    (VOID *)CpuMpData->BackupBuffer,
    CpuMpData->BackupBufferSize
    );
}

/**
  Allocate reset vector buffer.

  @param[in, out]  CpuMpData  The pointer to CPU MP Data structure.
**/
VOID
AllocateResetVector (
  IN OUT CPU_MP_DATA  *CpuMpData
  )
{
  UINTN  ApResetVectorSizeBelow1Mb;
  UINTN  ApResetVectorSizeAbove1Mb;
  UINTN  ApResetStackSize;

  if (CpuMpData->WakeupBuffer == (UINTN)-1) {
    GetApResetVectorSize (&CpuMpData->AddressMap, &ApResetVectorSizeBelow1Mb, &ApResetVectorSizeAbove1Mb);

    CpuMpData->WakeupBuffer      = GetWakeupBuffer (ApResetVectorSizeBelow1Mb);
    CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *)(UINTN)
                                   (CpuMpData->WakeupBuffer + ApResetVectorSizeBelow1Mb - sizeof (MP_CPU_EXCHANGE_INFO));
    CpuMpData->WakeupBufferHigh = AllocateCodeBuffer (ApResetVectorSizeAbove1Mb);
    //
    // The AP reset stack is only used by SEV-ES guests. Do not allocate it
    // if SEV-ES is not enabled. An SEV-SNP guest is also considered
    // an SEV-ES guest, but uses a different method of AP startup, eliminating
    // the need for the allocation.
    //
    if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) &&
        !ConfidentialComputingGuestHas (CCAttrAmdSevSnp))
    {
      //
      // Stack location is based on ProcessorNumber, so use the total number
      // of processors for calculating the total stack area.
      //
      ApResetStackSize = (AP_RESET_STACK_SIZE *
                          PcdGet32 (PcdCpuMaxLogicalProcessorNumber));

      //
      // Invoke GetWakeupBuffer a second time to allocate the stack area
      // below 1MB. The returned buffer will be page aligned and sized and
      // below the previously allocated buffer.
      //
      CpuMpData->SevEsAPResetStackStart = GetWakeupBuffer (ApResetStackSize);

      //
      // Check to be sure that the "allocate below" behavior hasn't changed.
      // This will also catch a failed allocation, as "-1" is returned on
      // failure.
      //
      if (CpuMpData->SevEsAPResetStackStart >= CpuMpData->WakeupBuffer) {
        DEBUG ((
          DEBUG_ERROR,
          "SEV-ES AP reset stack is not below wakeup buffer\n"
          ));

        ASSERT (FALSE);
        CpuDeadLoop ();
      }
    }
  }

  BackupAndPrepareWakeupBuffer (CpuMpData);
}

/**
  Free AP reset vector buffer.

  @param[in]  CpuMpData  The pointer to CPU MP Data structure.
**/
VOID
FreeResetVector (
  IN CPU_MP_DATA  *CpuMpData
  )
{
  //
  // If SEV-ES is enabled, the reset area is needed for AP parking and
  // and AP startup in the OS, so the reset area is reserved. Do not
  // perform the restore as this will overwrite memory which has data
  // needed by SEV-ES.
  //
  if (!CpuMpData->UseSevEsAPMethod) {
    RestoreWakeupBuffer (CpuMpData);
  }
}

/**
  This function will be called by BSP to wakeup AP.

  @param[in] CpuMpData          Pointer to CPU MP Data
  @param[in] Broadcast          TRUE:  Send broadcast IPI to all APs
                                FALSE: Send IPI to AP by ApicId
  @param[in] ProcessorNumber    The handle number of specified processor
  @param[in] Procedure          The function to be invoked by AP
  @param[in] ProcedureArgument  The argument to be passed into AP function
  @param[in] WakeUpDisabledAps  Whether need to wake up disabled APs in broadcast mode.
**/
VOID
WakeUpAP (
  IN CPU_MP_DATA       *CpuMpData,
  IN BOOLEAN           Broadcast,
  IN UINTN             ProcessorNumber,
  IN EFI_AP_PROCEDURE  Procedure               OPTIONAL,
  IN VOID              *ProcedureArgument      OPTIONAL,
  IN BOOLEAN           WakeUpDisabledAps
  )
{
  volatile MP_CPU_EXCHANGE_INFO  *ExchangeInfo;
  UINTN                          Index;
  CPU_AP_DATA                    *CpuData;
  BOOLEAN                        ResetVectorRequired;
  CPU_INFO_IN_HOB                *CpuInfoInHob;

  CpuMpData->FinishedCount = 0;
  ResetVectorRequired      = FALSE;

  if (CpuMpData->WakeUpByInitSipiSipi ||
      (CpuMpData->InitFlag   != ApInitDone))
  {
    ResetVectorRequired = TRUE;
    AllocateResetVector (CpuMpData);
    AllocateSevEsAPMemory (CpuMpData);
    FillExchangeInfoData (CpuMpData);
    SaveLocalApicTimerSetting (CpuMpData);
  }

  if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
    //
    // Get AP target C-state each time when waking up AP,
    // for it maybe updated by platform again
    //
    CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
  }

  ExchangeInfo = CpuMpData->MpCpuExchangeInfo;

  if (Broadcast) {
    for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
      if (Index != CpuMpData->BspNumber) {
        CpuData = &CpuMpData->CpuData[Index];
        //
        // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but
        // the AP procedure will be skipped for disabled AP because AP state
        // is not CpuStateReady.
        //
        if ((GetApState (CpuData) == CpuStateDisabled) && !WakeUpDisabledAps) {
          continue;
        }

        CpuData->ApFunction         = (UINTN)Procedure;
        CpuData->ApFunctionArgument = (UINTN)ProcedureArgument;
        SetApState (CpuData, CpuStateReady);
        if (CpuMpData->InitFlag != ApInitConfig) {
          *(UINT32 *)CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
        }
      }
    }

    if (ResetVectorRequired) {
      //
      // For SEV-ES and SEV-SNP, the initial AP boot address will be defined by
      // PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address
      // from the original INIT-SIPI-SIPI.
      //
      if (CpuMpData->SevEsIsEnabled) {
        SetSevEsJumpTable (ExchangeInfo->BufferStart);
      }

      //
      // Wakeup all APs
      //   Must use the INIT-SIPI-SIPI method for initial configuration in
      //   order to obtain the APIC ID.
      //
      if (CpuMpData->SevSnpIsEnabled && (CpuMpData->InitFlag != ApInitConfig)) {
        SevSnpCreateAP (CpuMpData, -1);
      } else {
        SendInitSipiSipiAllExcludingSelf ((UINT32)ExchangeInfo->BufferStart);
      }
    }

    if (CpuMpData->InitFlag == ApInitConfig) {
      if (PcdGet32 (PcdCpuBootLogicalProcessorNumber) > 0) {
        //
        // The AP enumeration algorithm below is suitable only when the
        // platform can tell us the *exact* boot CPU count in advance.
        //
        // The wait below finishes only when the detected AP count reaches
        // (PcdCpuBootLogicalProcessorNumber - 1), regardless of how long that
        // takes. If at least one AP fails to check in (meaning a platform
        // hardware bug), the detection hangs forever, by design. If the actual
        // boot CPU count in the system is higher than
        // PcdCpuBootLogicalProcessorNumber (meaning a platform
        // misconfiguration), then some APs may complete initialization after
        // the wait finishes, and cause undefined behavior.
        //
        TimedWaitForApFinish (
          CpuMpData,
          PcdGet32 (PcdCpuBootLogicalProcessorNumber) - 1,
          MAX_UINT32 // approx. 71 minutes
          );
      } else {
        //
        // The AP enumeration algorithm below is suitable for two use cases.
        //
        // (1) The check-in time for an individual AP is bounded, and APs run
        //     through their initialization routines strongly concurrently. In
        //     particular, the number of concurrently running APs
        //     ("NumApsExecuting") is never expected to fall to zero
        //     *temporarily* -- it is expected to fall to zero only when all
        //     APs have checked-in.
        //
        //     In this case, the platform is supposed to set
        //     PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long
        //     enough for one AP to start initialization). The timeout will be
        //     reached soon, and remaining APs are collected by watching
        //     NumApsExecuting fall to zero. If NumApsExecuting falls to zero
        //     mid-process, while some APs have not completed initialization,
        //     the behavior is undefined.
        //
        // (2) The check-in time for an individual AP is unbounded, and/or APs
        //     may complete their initializations widely spread out. In
        //     particular, some APs may finish initialization before some APs
        //     even start.
        //
        //     In this case, the platform is supposed to set
        //     PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP
        //     enumeration will always take that long (except when the boot CPU
        //     count happens to be maximal, that is,
        //     PcdCpuMaxLogicalProcessorNumber). All APs are expected to
        //     check-in before the timeout, and NumApsExecuting is assumed zero
        //     at timeout. APs that miss the time-out may cause undefined
        //     behavior.
        //
        TimedWaitForApFinish (
          CpuMpData,
          PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
          PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
          );

        while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
          CpuPause ();
        }
      }
    } else {
      //
      // Wait all APs waken up if this is not the 1st broadcast of SIPI
      //
      for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
        CpuData = &CpuMpData->CpuData[Index];
        if (Index != CpuMpData->BspNumber) {
          WaitApWakeup (CpuData->StartupApSignal);
        }
      }
    }
  } else {
    CpuData                     = &CpuMpData->CpuData[ProcessorNumber];
    CpuData->ApFunction         = (UINTN)Procedure;
    CpuData->ApFunctionArgument = (UINTN)ProcedureArgument;
    SetApState (CpuData, CpuStateReady);
    //
    // Wakeup specified AP
    //
    ASSERT (CpuMpData->InitFlag != ApInitConfig);
    *(UINT32 *)CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
    if (ResetVectorRequired) {
      CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;

      //
      // For SEV-ES and SEV-SNP, the initial AP boot address will be defined by
      // PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address
      // from the original INIT-SIPI-SIPI.
      //
      if (CpuMpData->SevEsIsEnabled) {
        SetSevEsJumpTable (ExchangeInfo->BufferStart);
      }

      if (CpuMpData->SevSnpIsEnabled && (CpuMpData->InitFlag != ApInitConfig)) {
        SevSnpCreateAP (CpuMpData, (INTN)ProcessorNumber);
      } else {
        SendInitSipiSipi (
          CpuInfoInHob[ProcessorNumber].ApicId,
          (UINT32)ExchangeInfo->BufferStart
          );
      }
    }

    //
    // Wait specified AP waken up
    //
    WaitApWakeup (CpuData->StartupApSignal);
  }

  if (ResetVectorRequired) {
    FreeResetVector (CpuMpData);
  }

  //
  // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
  // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
  // S3SmmInitDone Ppi.
  //
  CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
}

/**
  Calculate timeout value and return the current performance counter value.

  Calculate the number of performance counter ticks required for a timeout.
  If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
  as infinity.

  @param[in]  TimeoutInMicroseconds   Timeout value in microseconds.
  @param[out] CurrentTime             Returns the current value of the performance counter.

  @return Expected time stamp counter for timeout.
          If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
          as infinity.

**/
UINT64
CalculateTimeout (
  IN  UINTN   TimeoutInMicroseconds,
  OUT UINT64  *CurrentTime
  )
{
  UINT64  TimeoutInSeconds;
  UINT64  TimestampCounterFreq;

  //
  // Read the current value of the performance counter
  //
  *CurrentTime = GetPerformanceCounter ();

  //
  // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
  // as infinity.
  //
  if (TimeoutInMicroseconds == 0) {
    return 0;
  }

  //
  // GetPerformanceCounterProperties () returns the timestamp counter's frequency
  // in Hz.
  //
  TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);

  //
  // Check the potential overflow before calculate the number of ticks for the timeout value.
  //
  if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
    //
    // Convert microseconds into seconds if direct multiplication overflows
    //
    TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
    //
    // Assertion if the final tick count exceeds MAX_UINT64
    //
    ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
    return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
  } else {
    //
    // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
    // it by 1,000,000, to get the number of ticks for the timeout value.
    //
    return DivU64x32 (
             MultU64x64 (
               TimestampCounterFreq,
               TimeoutInMicroseconds
               ),
             1000000
             );
  }
}

/**
  Checks whether timeout expires.

  Check whether the number of elapsed performance counter ticks required for
  a timeout condition has been reached.
  If Timeout is zero, which means infinity, return value is always FALSE.

  @param[in, out]  PreviousTime   On input,  the value of the performance counter
                                  when it was last read.
                                  On output, the current value of the performance
                                  counter
  @param[in]       TotalTime      The total amount of elapsed time in performance
                                  counter ticks.
  @param[in]       Timeout        The number of performance counter ticks required
                                  to reach a timeout condition.

  @retval TRUE                    A timeout condition has been reached.
  @retval FALSE                   A timeout condition has not been reached.

**/
BOOLEAN
CheckTimeout (
  IN OUT UINT64  *PreviousTime,
  IN     UINT64  *TotalTime,
  IN     UINT64  Timeout
  )
{
  UINT64  Start;
  UINT64  End;
  UINT64  CurrentTime;
  INT64   Delta;
  INT64   Cycle;

  if (Timeout == 0) {
    return FALSE;
  }

  GetPerformanceCounterProperties (&Start, &End);
  Cycle = End - Start;
  if (Cycle < 0) {
    Cycle = -Cycle;
  }

  Cycle++;
  CurrentTime = GetPerformanceCounter ();
  Delta       = (INT64)(CurrentTime - *PreviousTime);
  if (Start > End) {
    Delta = -Delta;
  }

  if (Delta < 0) {
    Delta += Cycle;
  }

  *TotalTime   += Delta;
  *PreviousTime = CurrentTime;
  if (*TotalTime > Timeout) {
    return TRUE;
  }

  return FALSE;
}

/**
  Helper function that waits until the finished AP count reaches the specified
  limit, or the specified timeout elapses (whichever comes first).

  @param[in] CpuMpData        Pointer to CPU MP Data.
  @param[in] FinishedApLimit  The number of finished APs to wait for.
  @param[in] TimeLimit        The number of microseconds to wait for.
**/
VOID
TimedWaitForApFinish (
  IN CPU_MP_DATA  *CpuMpData,
  IN UINT32       FinishedApLimit,
  IN UINT32       TimeLimit
  )
{
  //
  // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
  // "infinity", so check for (TimeLimit == 0) explicitly.
  //
  if (TimeLimit == 0) {
    return;
  }

  CpuMpData->TotalTime    = 0;
  CpuMpData->ExpectedTime = CalculateTimeout (
                              TimeLimit,
                              &CpuMpData->CurrentTime
                              );
  while (CpuMpData->FinishedCount < FinishedApLimit &&
         !CheckTimeout (
            &CpuMpData->CurrentTime,
            &CpuMpData->TotalTime,
            CpuMpData->ExpectedTime
            ))
  {
    CpuPause ();
  }

  if (CpuMpData->FinishedCount >= FinishedApLimit) {
    DEBUG ((
      DEBUG_VERBOSE,
      "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
      __FUNCTION__,
      FinishedApLimit,
      DivU64x64Remainder (
        MultU64x32 (CpuMpData->TotalTime, 1000000),
        GetPerformanceCounterProperties (NULL, NULL),
        NULL
        )
      ));
  }
}

/**
  Reset an AP to Idle state.

  Any task being executed by the AP will be aborted and the AP
  will be waiting for a new task in Wait-For-SIPI state.

  @param[in] ProcessorNumber  The handle number of processor.
**/
VOID
ResetProcessorToIdleState (
  IN UINTN  ProcessorNumber
  )
{
  CPU_MP_DATA  *CpuMpData;

  CpuMpData = GetCpuMpData ();

  CpuMpData->InitFlag = ApInitReconfig;
  WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);
  while (CpuMpData->FinishedCount < 1) {
    CpuPause ();
  }

  CpuMpData->InitFlag = ApInitDone;

  SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
}

/**
  Searches for the next waiting AP.

  Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().

  @param[out]  NextProcessorNumber  Pointer to the processor number of the next waiting AP.

  @retval EFI_SUCCESS          The next waiting AP has been found.
  @retval EFI_NOT_FOUND        No waiting AP exists.

**/
EFI_STATUS
GetNextWaitingProcessorNumber (
  OUT UINTN  *NextProcessorNumber
  )
{
  UINTN        ProcessorNumber;
  CPU_MP_DATA  *CpuMpData;

  CpuMpData = GetCpuMpData ();

  for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
    if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
      *NextProcessorNumber = ProcessorNumber;
      return EFI_SUCCESS;
    }
  }

  return EFI_NOT_FOUND;
}

/** Checks status of specified AP.

  This function checks whether the specified AP has finished the task assigned
  by StartupThisAP(), and whether timeout expires.

  @param[in]  ProcessorNumber       The handle number of processor.

  @retval EFI_SUCCESS           Specified AP has finished task assigned by StartupThisAPs().
  @retval EFI_TIMEOUT           The timeout expires.
  @retval EFI_NOT_READY         Specified AP has not finished task and timeout has not expired.
**/
EFI_STATUS
CheckThisAP (
  IN UINTN  ProcessorNumber
  )
{
  CPU_MP_DATA  *CpuMpData;
  CPU_AP_DATA  *CpuData;

  CpuMpData = GetCpuMpData ();
  CpuData   = &CpuMpData->CpuData[ProcessorNumber];

  //
  //  Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
  //  Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
  //  value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
  //
  //
  // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
  //
  if (GetApState (CpuData) == CpuStateFinished) {
    if (CpuData->Finished != NULL) {
      *(CpuData->Finished) = TRUE;
    }

    SetApState (CpuData, CpuStateIdle);
    return EFI_SUCCESS;
  } else {
    //
    // If timeout expires for StartupThisAP(), report timeout.
    //
    if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
      if (CpuData->Finished != NULL) {
        *(CpuData->Finished) = FALSE;
      }

      //
      // Reset failed AP to idle state
      //
      ResetProcessorToIdleState (ProcessorNumber);

      return EFI_TIMEOUT;
    }
  }

  return EFI_NOT_READY;
}

/**
  Checks status of all APs.

  This function checks whether all APs have finished task assigned by StartupAllAPs(),
  and whether timeout expires.

  @retval EFI_SUCCESS           All APs have finished task assigned by StartupAllAPs().
  @retval EFI_TIMEOUT           The timeout expires.
  @retval EFI_NOT_READY         APs have not finished task and timeout has not expired.
**/
EFI_STATUS
CheckAllAPs (
  VOID
  )
{
  UINTN        ProcessorNumber;
  UINTN        NextProcessorNumber;
  UINTN        ListIndex;
  EFI_STATUS   Status;
  CPU_MP_DATA  *CpuMpData;
  CPU_AP_DATA  *CpuData;

  CpuMpData = GetCpuMpData ();

  NextProcessorNumber = 0;

  //
  // Go through all APs that are responsible for the StartupAllAPs().
  //
  for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
    if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
      continue;
    }

    CpuData = &CpuMpData->CpuData[ProcessorNumber];
    //
    // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
    // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
    // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
    //
    if (GetApState (CpuData) == CpuStateFinished) {
      CpuMpData->RunningCount--;
      CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
      SetApState (CpuData, CpuStateIdle);

      //
      // If in Single Thread mode, then search for the next waiting AP for execution.
      //
      if (CpuMpData->SingleThread) {
        Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);

        if (!EFI_ERROR (Status)) {
          WakeUpAP (
            CpuMpData,
            FALSE,
            (UINT32)NextProcessorNumber,
            CpuMpData->Procedure,
            CpuMpData->ProcArguments,
            TRUE
            );
        }
      }
    }
  }

  //
  // If all APs finish, return EFI_SUCCESS.
  //
  if (CpuMpData->RunningCount == 0) {
    return EFI_SUCCESS;
  }

  //
  // If timeout expires, report timeout.
  //
  if (CheckTimeout (
        &CpuMpData->CurrentTime,
        &CpuMpData->TotalTime,
        CpuMpData->ExpectedTime
        )
      )
  {
    //
    // If FailedCpuList is not NULL, record all failed APs in it.
    //
    if (CpuMpData->FailedCpuList != NULL) {
      *CpuMpData->FailedCpuList =
        AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));
      ASSERT (*CpuMpData->FailedCpuList != NULL);
    }

    ListIndex = 0;

    for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
      //
      // Check whether this processor is responsible for StartupAllAPs().
      //
      if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
        //
        // Reset failed APs to idle state
        //
        ResetProcessorToIdleState (ProcessorNumber);
        CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
        if (CpuMpData->FailedCpuList != NULL) {
          (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
        }
      }
    }

    if (CpuMpData->FailedCpuList != NULL) {
      (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
    }

    return EFI_TIMEOUT;
  }

  return EFI_NOT_READY;
}

/**
  MP Initialize Library initialization.

  This service will allocate AP reset vector and wakeup all APs to do APs
  initialization.

  This service must be invoked before all other MP Initialize Library
  service are invoked.

  @retval  EFI_SUCCESS           MP initialization succeeds.
  @retval  Others                MP initialization fails.

**/
EFI_STATUS
EFIAPI
MpInitLibInitialize (
  VOID
  )
{
  CPU_MP_DATA              *OldCpuMpData;
  CPU_INFO_IN_HOB          *CpuInfoInHob;
  UINT32                   MaxLogicalProcessorNumber;
  UINT32                   ApStackSize;
  MP_ASSEMBLY_ADDRESS_MAP  AddressMap;
  CPU_VOLATILE_REGISTERS   VolatileRegisters;
  UINTN                    BufferSize;
  UINT32                   MonitorFilterSize;
  VOID                     *MpBuffer;
  UINTN                    Buffer;
  CPU_MP_DATA              *CpuMpData;
  UINT8                    ApLoopMode;
  UINT8                    *MonitorBuffer;
  UINTN                    Index;
  UINTN                    ApResetVectorSizeBelow1Mb;
  UINTN                    BackupBufferAddr;
  UINTN                    ApIdtBase;

  OldCpuMpData = GetCpuMpDataFromGuidedHob ();
  if (OldCpuMpData == NULL) {
    MaxLogicalProcessorNumber = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
  } else {
    MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
  }

  ASSERT (MaxLogicalProcessorNumber != 0);

  AsmGetAddressMap (&AddressMap);
  GetApResetVectorSize (&AddressMap, &ApResetVectorSizeBelow1Mb, NULL);
  ApStackSize       = PcdGet32 (PcdCpuApStackSize);
  ApLoopMode        = GetApLoopMode (&MonitorFilterSize);

  //
  // Save BSP's Control registers for APs.
  //
  SaveVolatileRegisters (&VolatileRegisters);

  BufferSize  = ApStackSize * MaxLogicalProcessorNumber;
  BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
  BufferSize += ApResetVectorSizeBelow1Mb;
  BufferSize  = ALIGN_VALUE (BufferSize, 8);
  BufferSize += VolatileRegisters.Idtr.Limit + 1;
  BufferSize += sizeof (CPU_MP_DATA);
  BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
  MpBuffer    = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
  ASSERT (MpBuffer != NULL);
  ZeroMem (MpBuffer, BufferSize);
  Buffer = (UINTN)MpBuffer;

  //
  //  The layout of the Buffer is as below:
  //
  //    +--------------------+ <-- Buffer
  //        AP Stacks (N)
  //    +--------------------+ <-- MonitorBuffer
  //    AP Monitor Filters (N)
  //    +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
  //         Backup Buffer
  //    +--------------------+
  //           Padding
  //    +--------------------+ <-- ApIdtBase (8-byte boundary)
  //           AP IDT          All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.
  //    +--------------------+ <-- CpuMpData
  //         CPU_MP_DATA
  //    +--------------------+ <-- CpuMpData->CpuData
  //        CPU_AP_DATA (N)
  //    +--------------------+ <-- CpuMpData->CpuInfoInHob
  //      CPU_INFO_IN_HOB (N)
  //    +--------------------+
  //
  MonitorBuffer               = (UINT8 *)(Buffer + ApStackSize * MaxLogicalProcessorNumber);
  BackupBufferAddr            = (UINTN)MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
  ApIdtBase                   = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSizeBelow1Mb, 8);
  CpuMpData                   = (CPU_MP_DATA *)(ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
  CpuMpData->Buffer           = Buffer;
  CpuMpData->CpuApStackSize   = ApStackSize;
  CpuMpData->BackupBuffer     = BackupBufferAddr;
  CpuMpData->BackupBufferSize = ApResetVectorSizeBelow1Mb;
  CpuMpData->WakeupBuffer     = (UINTN)-1;
  CpuMpData->CpuCount         = 1;
  CpuMpData->BspNumber        = 0;
  CpuMpData->WaitEvent        = NULL;
  CpuMpData->SwitchBspFlag    = FALSE;
  CpuMpData->CpuData          = (CPU_AP_DATA *)(CpuMpData + 1);
  CpuMpData->CpuInfoInHob     = (UINT64)(UINTN)(CpuMpData->CpuData + MaxLogicalProcessorNumber);
  InitializeSpinLock (&CpuMpData->MpLock);
  CpuMpData->SevEsIsEnabled   = ConfidentialComputingGuestHas (CCAttrAmdSevEs);
  CpuMpData->SevSnpIsEnabled  = ConfidentialComputingGuestHas (CCAttrAmdSevSnp);
  CpuMpData->SevEsAPBuffer    = (UINTN)-1;
  CpuMpData->GhcbBase         = PcdGet64 (PcdGhcbBase);
  CpuMpData->UseSevEsAPMethod = CpuMpData->SevEsIsEnabled && !CpuMpData->SevSnpIsEnabled;

  if (CpuMpData->SevSnpIsEnabled) {
    ASSERT ((PcdGet64 (PcdGhcbHypervisorFeatures) & GHCB_HV_FEATURES_SNP_AP_CREATE) == GHCB_HV_FEATURES_SNP_AP_CREATE);
  }

  //
  // Make sure no memory usage outside of the allocated buffer.
  //
  ASSERT (
    (CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
    Buffer + BufferSize
    );

  //
  // Duplicate BSP's IDT to APs.
  // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
  //
  CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
  VolatileRegisters.Idtr.Base = ApIdtBase;
  //
  // Don't pass BSP's TR to APs to avoid AP init failure.
  //
  VolatileRegisters.Tr = 0;
  CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
  //
  // Set BSP basic information
  //
  InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
  //
  // Save assembly code information
  //
  CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
  //
  // Finally set AP loop mode
  //
  CpuMpData->ApLoopMode = ApLoopMode;
  DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));

  CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);

  //
  // Set up APs wakeup signal buffer
  //
  for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
    CpuMpData->CpuData[Index].StartupApSignal =
      (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
  }

  //
  // Enable the local APIC for Virtual Wire Mode.
  //
  ProgramVirtualWireMode ();

  if (OldCpuMpData == NULL) {
    if (MaxLogicalProcessorNumber > 1) {
      //
      // Wakeup all APs and calculate the processor count in system
      //
      CollectProcessorCount (CpuMpData);
    }
  } else {
    //
    // APs have been wakeup before, just get the CPU Information
    // from HOB
    //
    OldCpuMpData->NewCpuMpData = CpuMpData;
    CpuMpData->CpuCount        = OldCpuMpData->CpuCount;
    CpuMpData->BspNumber       = OldCpuMpData->BspNumber;
    CpuMpData->CpuInfoInHob    = OldCpuMpData->CpuInfoInHob;
    CpuInfoInHob               = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
    for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
      InitializeSpinLock (&CpuMpData->CpuData[Index].ApLock);
      CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0) ? TRUE : FALSE;
      CpuMpData->CpuData[Index].ApFunction = 0;
    }
  }

  if (!GetMicrocodePatchInfoFromHob (
         &CpuMpData->MicrocodePatchAddress,
         &CpuMpData->MicrocodePatchRegionSize
         ))
  {
    //
    // The microcode patch information cache HOB does not exist, which means
    // the microcode patches data has not been loaded into memory yet
    //
    ShadowMicrocodeUpdatePatch (CpuMpData);
  }

  //
  // Detect and apply Microcode on BSP
  //
  MicrocodeDetect (CpuMpData, CpuMpData->BspNumber);
  //
  // Store BSP's MTRR setting
  //
  MtrrGetAllMtrrs (&CpuMpData->MtrrTable);

  //
  // Wakeup APs to do some AP initialize sync (Microcode & MTRR)
  //
  if (CpuMpData->CpuCount > 1) {
    if (OldCpuMpData != NULL) {
      //
      // Only needs to use this flag for DXE phase to update the wake up
      // buffer. Wakeup buffer allocated in PEI phase is no longer valid
      // in DXE.
      //
      CpuMpData->InitFlag = ApInitReconfig;
    }

    WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);
    //
    // Wait for all APs finished initialization
    //
    while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
      CpuPause ();
    }

    if (OldCpuMpData != NULL) {
      CpuMpData->InitFlag = ApInitDone;
    }

    for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
      SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
    }
  }

  //
  // Dump the microcode revision for each core.
  //
  DEBUG_CODE_BEGIN ();
  UINT32  ThreadId;
  UINT32  ExpectedMicrocodeRevision;

  CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
  for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
    GetProcessorLocationByApicId (CpuInfoInHob[Index].InitialApicId, NULL, NULL, &ThreadId);
    if (ThreadId == 0) {
      //
      // MicrocodeDetect() loads microcode in first thread of each core, so,
      // CpuMpData->CpuData[Index].MicrocodeEntryAddr is initialized only for first thread of each core.
      //
      ExpectedMicrocodeRevision = 0;
      if (CpuMpData->CpuData[Index].MicrocodeEntryAddr != 0) {
        ExpectedMicrocodeRevision = ((CPU_MICROCODE_HEADER *)(UINTN)CpuMpData->CpuData[Index].MicrocodeEntryAddr)->UpdateRevision;
      }

      DEBUG ((
        DEBUG_INFO,
        "CPU[%04d]: Microcode revision = %08x, expected = %08x\n",
        Index,
        CpuMpData->CpuData[Index].MicrocodeRevision,
        ExpectedMicrocodeRevision
        ));
    }
  }

  DEBUG_CODE_END ();
  //
  // Initialize global data for MP support
  //
  InitMpGlobalData (CpuMpData);

  return EFI_SUCCESS;
}

/**
  Gets detailed MP-related information on the requested processor at the
  instant this call is made. This service may only be called from the BSP.

  @param[in]  ProcessorNumber       The handle number of processor.
  @param[out] ProcessorInfoBuffer   A pointer to the buffer where information for
                                    the requested processor is deposited.
  @param[out]  HealthData            Return processor health data.

  @retval EFI_SUCCESS             Processor information was returned.
  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
  @retval EFI_INVALID_PARAMETER   ProcessorInfoBuffer is NULL.
  @retval EFI_NOT_FOUND           The processor with the handle specified by
                                  ProcessorNumber does not exist in the platform.
  @retval EFI_NOT_READY           MP Initialize Library is not initialized.

**/
EFI_STATUS
EFIAPI
MpInitLibGetProcessorInfo (
  IN  UINTN                      ProcessorNumber,
  OUT EFI_PROCESSOR_INFORMATION  *ProcessorInfoBuffer,
  OUT EFI_HEALTH_FLAGS           *HealthData  OPTIONAL
  )
{
  CPU_MP_DATA      *CpuMpData;
  UINTN            CallerNumber;
  CPU_INFO_IN_HOB  *CpuInfoInHob;
  UINTN            OriginalProcessorNumber;

  CpuMpData    = GetCpuMpData ();
  CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;

  //
  // Lower 24 bits contains the actual processor number.
  //
  OriginalProcessorNumber = ProcessorNumber;
  ProcessorNumber        &= BIT24 - 1;

  //
  // Check whether caller processor is BSP
  //
  MpInitLibWhoAmI (&CallerNumber);
  if (CallerNumber != CpuMpData->BspNumber) {
    return EFI_DEVICE_ERROR;
  }

  if (ProcessorInfoBuffer == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  if (ProcessorNumber >= CpuMpData->CpuCount) {
    return EFI_NOT_FOUND;
  }

  ProcessorInfoBuffer->ProcessorId = (UINT64)CpuInfoInHob[ProcessorNumber].ApicId;
  ProcessorInfoBuffer->StatusFlag  = 0;
  if (ProcessorNumber == CpuMpData->BspNumber) {
    ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
  }

  if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
    ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
  }

  if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
    ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
  } else {
    ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
  }

  //
  // Get processor location information
  //
  GetProcessorLocationByApicId (
    CpuInfoInHob[ProcessorNumber].ApicId,
    &ProcessorInfoBuffer->Location.Package,
    &ProcessorInfoBuffer->Location.Core,
    &ProcessorInfoBuffer->Location.Thread
    );

  if ((OriginalProcessorNumber & CPU_V2_EXTENDED_TOPOLOGY) != 0) {
    GetProcessorLocation2ByApicId (
      CpuInfoInHob[ProcessorNumber].ApicId,
      &ProcessorInfoBuffer->ExtendedInformation.Location2.Package,
      &ProcessorInfoBuffer->ExtendedInformation.Location2.Die,
      &ProcessorInfoBuffer->ExtendedInformation.Location2.Tile,
      &ProcessorInfoBuffer->ExtendedInformation.Location2.Module,
      &ProcessorInfoBuffer->ExtendedInformation.Location2.Core,
      &ProcessorInfoBuffer->ExtendedInformation.Location2.Thread
      );
  }

  if (HealthData != NULL) {
    HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
  }

  return EFI_SUCCESS;
}

/**
  Worker function to switch the requested AP to be the BSP from that point onward.

  @param[in] ProcessorNumber   The handle number of AP that is to become the new BSP.
  @param[in] EnableOldBSP      If TRUE, then the old BSP will be listed as an
                               enabled AP. Otherwise, it will be disabled.

  @retval EFI_SUCCESS          BSP successfully switched.
  @retval others               Failed to switch BSP.

**/
EFI_STATUS
SwitchBSPWorker (
  IN UINTN    ProcessorNumber,
  IN BOOLEAN  EnableOldBSP
  )
{
  CPU_MP_DATA                  *CpuMpData;
  UINTN                        CallerNumber;
  CPU_STATE                    State;
  MSR_IA32_APIC_BASE_REGISTER  ApicBaseMsr;
  BOOLEAN                      OldInterruptState;
  BOOLEAN                      OldTimerInterruptState;

  //
  // Save and Disable Local APIC timer interrupt
  //
  OldTimerInterruptState = GetApicTimerInterruptState ();
  DisableApicTimerInterrupt ();
  //
  // Before send both BSP and AP to a procedure to exchange their roles,
  // interrupt must be disabled. This is because during the exchange role
  // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
  // be corrupted, since interrupt return address will be pushed to stack
  // by hardware.
  //
  OldInterruptState = SaveAndDisableInterrupts ();

  //
  // Mask LINT0 & LINT1 for the old BSP
  //
  DisableLvtInterrupts ();

  CpuMpData = GetCpuMpData ();

  //
  // Check whether caller processor is BSP
  //
  MpInitLibWhoAmI (&CallerNumber);
  if (CallerNumber != CpuMpData->BspNumber) {
    return EFI_DEVICE_ERROR;
  }

  if (ProcessorNumber >= CpuMpData->CpuCount) {
    return EFI_NOT_FOUND;
  }

  //
  // Check whether specified AP is disabled
  //
  State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
  if (State == CpuStateDisabled) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Check whether ProcessorNumber specifies the current BSP
  //
  if (ProcessorNumber == CpuMpData->BspNumber) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Check whether specified AP is busy
  //
  if (State == CpuStateBusy) {
    return EFI_NOT_READY;
  }

  CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
  CpuMpData->APInfo.State  = CPU_SWITCH_STATE_IDLE;
  CpuMpData->SwitchBspFlag = TRUE;
  CpuMpData->NewBspNumber  = ProcessorNumber;

  //
  // Clear the BSP bit of MSR_IA32_APIC_BASE
  //
  ApicBaseMsr.Uint64   = AsmReadMsr64 (MSR_IA32_APIC_BASE);
  ApicBaseMsr.Bits.BSP = 0;
  AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);

  //
  // Need to wakeUp AP (future BSP).
  //
  WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);

  AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);

  //
  // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
  //
  ApicBaseMsr.Uint64   = AsmReadMsr64 (MSR_IA32_APIC_BASE);
  ApicBaseMsr.Bits.BSP = 1;
  AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
  ProgramVirtualWireMode ();

  //
  // Wait for old BSP finished AP task
  //
  while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
    CpuPause ();
  }

  CpuMpData->SwitchBspFlag = FALSE;
  //
  // Set old BSP enable state
  //
  if (!EnableOldBSP) {
    SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
  } else {
    SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
  }

  //
  // Save new BSP number
  //
  CpuMpData->BspNumber = (UINT32)ProcessorNumber;

  //
  // Restore interrupt state.
  //
  SetInterruptState (OldInterruptState);

  if (OldTimerInterruptState) {
    EnableApicTimerInterrupt ();
  }

  return EFI_SUCCESS;
}

/**
  Worker function to let the caller enable or disable an AP from this point onward.
  This service may only be called from the BSP.

  @param[in] ProcessorNumber   The handle number of AP.
  @param[in] EnableAP          Specifies the new state for the processor for
                               enabled, FALSE for disabled.
  @param[in] HealthFlag        If not NULL, a pointer to a value that specifies
                               the new health status of the AP.

  @retval EFI_SUCCESS          The specified AP was enabled or disabled successfully.
  @retval others               Failed to Enable/Disable AP.

**/
EFI_STATUS
EnableDisableApWorker (
  IN  UINTN    ProcessorNumber,
  IN  BOOLEAN  EnableAP,
  IN  UINT32   *HealthFlag OPTIONAL
  )
{
  CPU_MP_DATA  *CpuMpData;
  UINTN        CallerNumber;

  CpuMpData = GetCpuMpData ();

  //
  // Check whether caller processor is BSP
  //
  MpInitLibWhoAmI (&CallerNumber);
  if (CallerNumber != CpuMpData->BspNumber) {
    return EFI_DEVICE_ERROR;
  }

  if (ProcessorNumber == CpuMpData->BspNumber) {
    return EFI_INVALID_PARAMETER;
  }

  if (ProcessorNumber >= CpuMpData->CpuCount) {
    return EFI_NOT_FOUND;
  }

  if (!EnableAP) {
    SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
  } else {
    ResetProcessorToIdleState (ProcessorNumber);
  }

  if (HealthFlag != NULL) {
    CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
      (BOOLEAN)((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
  }

  return EFI_SUCCESS;
}

/**
  This return the handle number for the calling processor.  This service may be
  called from the BSP and APs.

  @param[out] ProcessorNumber  Pointer to the handle number of AP.
                               The range is from 0 to the total number of
                               logical processors minus 1. The total number of
                               logical processors can be retrieved by
                               MpInitLibGetNumberOfProcessors().

  @retval EFI_SUCCESS             The current processor handle number was returned
                                  in ProcessorNumber.
  @retval EFI_INVALID_PARAMETER   ProcessorNumber is NULL.
  @retval EFI_NOT_READY           MP Initialize Library is not initialized.

**/
EFI_STATUS
EFIAPI
MpInitLibWhoAmI (
  OUT UINTN  *ProcessorNumber
  )
{
  CPU_MP_DATA  *CpuMpData;

  if (ProcessorNumber == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  CpuMpData = GetCpuMpData ();

  return GetProcessorNumber (CpuMpData, ProcessorNumber);
}

/**
  Retrieves the number of logical processor in the platform and the number of
  those logical processors that are enabled on this boot. This service may only
  be called from the BSP.

  @param[out] NumberOfProcessors          Pointer to the total number of logical
                                          processors in the system, including the BSP
                                          and disabled APs.
  @param[out] NumberOfEnabledProcessors   Pointer to the number of enabled logical
                                          processors that exist in system, including
                                          the BSP.

  @retval EFI_SUCCESS             The number of logical processors and enabled
                                  logical processors was retrieved.
  @retval EFI_DEVICE_ERROR        The calling processor is an AP.
  @retval EFI_INVALID_PARAMETER   NumberOfProcessors is NULL and NumberOfEnabledProcessors
                                  is NULL.
  @retval EFI_NOT_READY           MP Initialize Library is not initialized.

**/
EFI_STATUS
EFIAPI
MpInitLibGetNumberOfProcessors (
  OUT UINTN  *NumberOfProcessors        OPTIONAL,
  OUT UINTN  *NumberOfEnabledProcessors OPTIONAL
  )
{
  CPU_MP_DATA  *CpuMpData;
  UINTN        CallerNumber;
  UINTN        ProcessorNumber;
  UINTN        EnabledProcessorNumber;
  UINTN        Index;

  CpuMpData = GetCpuMpData ();

  if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Check whether caller processor is BSP
  //
  MpInitLibWhoAmI (&CallerNumber);
  if (CallerNumber != CpuMpData->BspNumber) {
    return EFI_DEVICE_ERROR;
  }

  ProcessorNumber        = CpuMpData->CpuCount;
  EnabledProcessorNumber = 0;
  for (Index = 0; Index < ProcessorNumber; Index++) {
    if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
      EnabledProcessorNumber++;
    }
  }

  if (NumberOfProcessors != NULL) {
    *NumberOfProcessors = ProcessorNumber;
  }

  if (NumberOfEnabledProcessors != NULL) {
    *NumberOfEnabledProcessors = EnabledProcessorNumber;
  }

  return EFI_SUCCESS;
}

/**
  Worker function to execute a caller provided function on all enabled APs.

  @param[in]  Procedure               A pointer to the function to be run on
                                      enabled APs of the system.
  @param[in]  SingleThread            If TRUE, then all the enabled APs execute
                                      the function specified by Procedure one by
                                      one, in ascending order of processor handle
                                      number.  If FALSE, then all the enabled APs
                                      execute the function specified by Procedure
                                      simultaneously.
  @param[in]  ExcludeBsp              Whether let BSP also trig this task.
  @param[in]  WaitEvent               The event created by the caller with CreateEvent()
                                      service.
  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
                                      APs to return from Procedure, either for
                                      blocking or non-blocking mode.
  @param[in]  ProcedureArgument       The parameter passed into Procedure for
                                      all APs.
  @param[out] FailedCpuList           If all APs finish successfully, then its
                                      content is set to NULL. If not all APs
                                      finish before timeout expires, then its
                                      content is set to address of the buffer
                                      holding handle numbers of the failed APs.

  @retval EFI_SUCCESS             In blocking mode, all APs have finished before
                                  the timeout expired.
  @retval EFI_SUCCESS             In non-blocking mode, function has been dispatched
                                  to all enabled APs.
  @retval others                  Failed to Startup all APs.

**/
EFI_STATUS
StartupAllCPUsWorker (
  IN  EFI_AP_PROCEDURE  Procedure,
  IN  BOOLEAN           SingleThread,
  IN  BOOLEAN           ExcludeBsp,
  IN  EFI_EVENT         WaitEvent               OPTIONAL,
  IN  UINTN             TimeoutInMicroseconds,
  IN  VOID              *ProcedureArgument      OPTIONAL,
  OUT UINTN             **FailedCpuList         OPTIONAL
  )
{
  EFI_STATUS   Status;
  CPU_MP_DATA  *CpuMpData;
  UINTN        ProcessorCount;
  UINTN        ProcessorNumber;
  UINTN        CallerNumber;
  CPU_AP_DATA  *CpuData;
  BOOLEAN      HasEnabledAp;
  CPU_STATE    ApState;

  CpuMpData = GetCpuMpData ();

  if (FailedCpuList != NULL) {
    *FailedCpuList = NULL;
  }

  if ((CpuMpData->CpuCount == 1) && ExcludeBsp) {
    return EFI_NOT_STARTED;
  }

  if (Procedure == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Check whether caller processor is BSP
  //
  MpInitLibWhoAmI (&CallerNumber);
  if (CallerNumber != CpuMpData->BspNumber) {
    return EFI_DEVICE_ERROR;
  }

  //
  // Update AP state
  //
  CheckAndUpdateApsStatus ();

  ProcessorCount = CpuMpData->CpuCount;
  HasEnabledAp   = FALSE;
  //
  // Check whether all enabled APs are idle.
  // If any enabled AP is not idle, return EFI_NOT_READY.
  //
  for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
    CpuData = &CpuMpData->CpuData[ProcessorNumber];
    if (ProcessorNumber != CpuMpData->BspNumber) {
      ApState = GetApState (CpuData);
      if (ApState != CpuStateDisabled) {
        HasEnabledAp = TRUE;
        if (ApState != CpuStateIdle) {
          //
          // If any enabled APs are busy, return EFI_NOT_READY.
          //
          return EFI_NOT_READY;
        }
      }
    }
  }

  if (!HasEnabledAp && ExcludeBsp) {
    //
    // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.
    //
    return EFI_NOT_STARTED;
  }

  CpuMpData->RunningCount = 0;
  for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
    CpuData          = &CpuMpData->CpuData[ProcessorNumber];
    CpuData->Waiting = FALSE;
    if (ProcessorNumber != CpuMpData->BspNumber) {
      if (CpuData->State == CpuStateIdle) {
        //
        // Mark this processor as responsible for current calling.
        //
        CpuData->Waiting = TRUE;
        CpuMpData->RunningCount++;
      }
    }
  }

  CpuMpData->Procedure     = Procedure;
  CpuMpData->ProcArguments = ProcedureArgument;
  CpuMpData->SingleThread  = SingleThread;
  CpuMpData->FinishedCount = 0;
  CpuMpData->FailedCpuList = FailedCpuList;
  CpuMpData->ExpectedTime  = CalculateTimeout (
                               TimeoutInMicroseconds,
                               &CpuMpData->CurrentTime
                               );
  CpuMpData->TotalTime = 0;
  CpuMpData->WaitEvent = WaitEvent;

  if (!SingleThread) {
    WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);
  } else {
    for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
      if (ProcessorNumber == CallerNumber) {
        continue;
      }

      if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
        WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
        break;
      }
    }
  }

  if (!ExcludeBsp) {
    //
    // Start BSP.
    //
    Procedure (ProcedureArgument);
  }

  Status = EFI_SUCCESS;
  if (WaitEvent == NULL) {
    do {
      Status = CheckAllAPs ();
    } while (Status == EFI_NOT_READY);
  }

  return Status;
}

/**
  Worker function to let the caller get one enabled AP to execute a caller-provided
  function.

  @param[in]  Procedure               A pointer to the function to be run on
                                      enabled APs of the system.
  @param[in]  ProcessorNumber         The handle number of the AP.
  @param[in]  WaitEvent               The event created by the caller with CreateEvent()
                                      service.
  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
                                      APs to return from Procedure, either for
                                      blocking or non-blocking mode.
  @param[in]  ProcedureArgument       The parameter passed into Procedure for
                                      all APs.
  @param[out] Finished                If AP returns from Procedure before the
                                      timeout expires, its content is set to TRUE.
                                      Otherwise, the value is set to FALSE.

  @retval EFI_SUCCESS             In blocking mode, specified AP finished before
                                  the timeout expires.
  @retval others                  Failed to Startup AP.

**/
EFI_STATUS
StartupThisAPWorker (
  IN  EFI_AP_PROCEDURE  Procedure,
  IN  UINTN             ProcessorNumber,
  IN  EFI_EVENT         WaitEvent               OPTIONAL,
  IN  UINTN             TimeoutInMicroseconds,
  IN  VOID              *ProcedureArgument      OPTIONAL,
  OUT BOOLEAN           *Finished               OPTIONAL
  )
{
  EFI_STATUS   Status;
  CPU_MP_DATA  *CpuMpData;
  CPU_AP_DATA  *CpuData;
  UINTN        CallerNumber;

  CpuMpData = GetCpuMpData ();

  if (Finished != NULL) {
    *Finished = FALSE;
  }

  //
  // Check whether caller processor is BSP
  //
  MpInitLibWhoAmI (&CallerNumber);
  if (CallerNumber != CpuMpData->BspNumber) {
    return EFI_DEVICE_ERROR;
  }

  //
  // Check whether processor with the handle specified by ProcessorNumber exists
  //
  if (ProcessorNumber >= CpuMpData->CpuCount) {
    return EFI_NOT_FOUND;
  }

  //
  // Check whether specified processor is BSP
  //
  if (ProcessorNumber == CpuMpData->BspNumber) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Check parameter Procedure
  //
  if (Procedure == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Update AP state
  //
  CheckAndUpdateApsStatus ();

  //
  // Check whether specified AP is disabled
  //
  if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // If WaitEvent is not NULL, execute in non-blocking mode.
  // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
  // CheckAPsStatus() will check completion and timeout periodically.
  //
  CpuData               = &CpuMpData->CpuData[ProcessorNumber];
  CpuData->WaitEvent    = WaitEvent;
  CpuData->Finished     = Finished;
  CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
  CpuData->TotalTime    = 0;

  WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);

  //
  // If WaitEvent is NULL, execute in blocking mode.
  // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
  //
  Status = EFI_SUCCESS;
  if (WaitEvent == NULL) {
    do {
      Status = CheckThisAP (ProcessorNumber);
    } while (Status == EFI_NOT_READY);
  }

  return Status;
}

/**
  Get pointer to CPU MP Data structure from GUIDed HOB.

  @return  The pointer to CPU MP Data structure.
**/
CPU_MP_DATA *
GetCpuMpDataFromGuidedHob (
  VOID
  )
{
  EFI_HOB_GUID_TYPE  *GuidHob;
  VOID               *DataInHob;
  CPU_MP_DATA        *CpuMpData;

  CpuMpData = NULL;
  GuidHob   = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
  if (GuidHob != NULL) {
    DataInHob = GET_GUID_HOB_DATA (GuidHob);
    CpuMpData = (CPU_MP_DATA *)(*(UINTN *)DataInHob);
  }

  return CpuMpData;
}

/**
  This service executes a caller provided function on all enabled CPUs.

  @param[in]  Procedure               A pointer to the function to be run on
                                      enabled APs of the system. See type
                                      EFI_AP_PROCEDURE.
  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
                                      APs to return from Procedure, either for
                                      blocking or non-blocking mode. Zero means
                                      infinity. TimeoutInMicroseconds is ignored
                                      for BSP.
  @param[in]  ProcedureArgument       The parameter passed into Procedure for
                                      all APs.

  @retval EFI_SUCCESS             In blocking mode, all CPUs have finished before
                                  the timeout expired.
  @retval EFI_SUCCESS             In non-blocking mode, function has been dispatched
                                  to all enabled CPUs.
  @retval EFI_DEVICE_ERROR        Caller processor is AP.
  @retval EFI_NOT_READY           Any enabled APs are busy.
  @retval EFI_NOT_READY           MP Initialize Library is not initialized.
  @retval EFI_TIMEOUT             In blocking mode, the timeout expired before
                                  all enabled APs have finished.
  @retval EFI_INVALID_PARAMETER   Procedure is NULL.

**/
EFI_STATUS
EFIAPI
MpInitLibStartupAllCPUs (
  IN  EFI_AP_PROCEDURE  Procedure,
  IN  UINTN             TimeoutInMicroseconds,
  IN  VOID              *ProcedureArgument      OPTIONAL
  )
{
  return StartupAllCPUsWorker (
           Procedure,
           FALSE,
           FALSE,
           NULL,
           TimeoutInMicroseconds,
           ProcedureArgument,
           NULL
           );
}

/**
  The function check if the specified Attr is set.

  @param[in]  CurrentAttr   The current attribute.
  @param[in]  Attr          The attribute to check.

  @retval  TRUE      The specified Attr is set.
  @retval  FALSE     The specified Attr is not set.

**/
STATIC
BOOLEAN
AmdMemEncryptionAttrCheck (
  IN  UINT64                             CurrentAttr,
  IN  CONFIDENTIAL_COMPUTING_GUEST_ATTR  Attr
  )
{
  switch (Attr) {
    case CCAttrAmdSev:
      //
      // SEV is automatically enabled if SEV-ES or SEV-SNP is active.
      //
      return CurrentAttr >= CCAttrAmdSev;
    case CCAttrAmdSevEs:
      //
      // SEV-ES is automatically enabled if SEV-SNP is active.
      //
      return CurrentAttr >= CCAttrAmdSevEs;
    case CCAttrAmdSevSnp:
      return CurrentAttr == CCAttrAmdSevSnp;
    default:
      return FALSE;
  }
}

/**
  Check if the specified confidential computing attribute is active.

  @param[in]  Attr          The attribute to check.

  @retval TRUE   The specified Attr is active.
  @retval FALSE  The specified Attr is not active.

**/
BOOLEAN
EFIAPI
ConfidentialComputingGuestHas (
  IN  CONFIDENTIAL_COMPUTING_GUEST_ATTR  Attr
  )
{
  UINT64  CurrentAttr;

  //
  // Get the current CC attribute.
  //
  CurrentAttr = PcdGet64 (PcdConfidentialComputingGuestAttr);

  //
  // If attr is for the AMD group then call AMD specific checks.
  //
  if (((RShiftU64 (CurrentAttr, 8)) & 0xff) == 1) {
    return AmdMemEncryptionAttrCheck (CurrentAttr, Attr);
  }

  return (CurrentAttr == Attr);
}