summaryrefslogtreecommitdiffstats
path: root/UefiCpuPkg/PiSmmCpuDxeSmm/X64/SmmProfileArch.c
blob: 63bae5a9137cbbff9cf2617b1f5825429a6eb141 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/** @file
X64 processor specific functions to enable SMM profile.

Copyright (c) 2012 - 2019, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>

SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "PiSmmCpuDxeSmm.h"
#include "SmmProfileInternal.h"

//
// Current page index.
//
UINTN                     mPFPageIndex;

//
// Pool for dynamically creating page table in page fault handler.
//
UINT64                    mPFPageBuffer;

//
// Store the uplink information for each page being used.
//
UINT64                    *mPFPageUplink[MAX_PF_PAGE_COUNT];

/**
  Create SMM page table for S3 path.

**/
VOID
InitSmmS3Cr3 (
  VOID
  )
{
  EFI_PHYSICAL_ADDRESS              Pages;
  UINT64                            *PTEntry;

  //
  // Generate PAE page table for the first 4GB memory space
  //
  Pages = Gen4GPageTable (FALSE);

  //
  // Fill Page-Table-Level4 (PML4) entry
  //
  PTEntry = (UINT64*)AllocatePageTableMemory (1);
  ASSERT (PTEntry != NULL);
  *PTEntry = Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
  ZeroMem (PTEntry + 1, EFI_PAGE_SIZE - sizeof (*PTEntry));

  //
  // Return the address of PML4 (to set CR3)
  //
  mSmmS3ResumeState->SmmS3Cr3 = (UINT32)(UINTN)PTEntry;

  return ;
}

/**
  Allocate pages for creating 4KB-page based on 2MB-page when page fault happens.

**/
VOID
InitPagesForPFHandler (
  VOID
  )
{
  VOID          *Address;

  //
  // Pre-Allocate memory for page fault handler
  //
  Address = NULL;
  Address = AllocatePages (MAX_PF_PAGE_COUNT);
  ASSERT (Address != NULL);

  mPFPageBuffer =  (UINT64)(UINTN) Address;
  mPFPageIndex = 0;
  ZeroMem ((VOID *) (UINTN) mPFPageBuffer, EFI_PAGE_SIZE * MAX_PF_PAGE_COUNT);
  ZeroMem (mPFPageUplink, sizeof (mPFPageUplink));

  return;
}

/**
  Allocate one page for creating 4KB-page based on 2MB-page.

  @param  Uplink   The address of Page-Directory entry.

**/
VOID
AcquirePage (
  UINT64          *Uplink
  )
{
  UINT64          Address;

  //
  // Get the buffer
  //
  Address = mPFPageBuffer + EFI_PAGES_TO_SIZE (mPFPageIndex);
  ZeroMem ((VOID *) (UINTN) Address, EFI_PAGE_SIZE);

  //
  // Cut the previous uplink if it exists and wasn't overwritten
  //
  if ((mPFPageUplink[mPFPageIndex] != NULL) && ((*mPFPageUplink[mPFPageIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK) == Address)) {
    *mPFPageUplink[mPFPageIndex] = 0;
  }

  //
  // Link & Record the current uplink
  //
  *Uplink = Address | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
  mPFPageUplink[mPFPageIndex] = Uplink;

  mPFPageIndex = (mPFPageIndex + 1) % MAX_PF_PAGE_COUNT;
}

/**
  Update page table to map the memory correctly in order to make the instruction
  which caused page fault execute successfully. And it also save the original page
  table to be restored in single-step exception.

  @param  PageTable           PageTable Address.
  @param  PFAddress           The memory address which caused page fault exception.
  @param  CpuIndex            The index of the processor.
  @param  ErrorCode           The Error code of exception.
  @param  IsValidPFAddress    The flag indicates if SMM profile data need be added.

**/
VOID
RestorePageTableAbove4G (
  UINT64        *PageTable,
  UINT64        PFAddress,
  UINTN         CpuIndex,
  UINTN         ErrorCode,
  BOOLEAN       *IsValidPFAddress
  )
{
  UINTN         PTIndex;
  UINT64        Address;
  BOOLEAN       Nx;
  BOOLEAN       Existed;
  UINTN         Index;
  UINTN         PFIndex;
  IA32_CR4      Cr4;
  BOOLEAN       Enable5LevelPaging;

  ASSERT ((PageTable != NULL) && (IsValidPFAddress != NULL));

  Cr4.UintN = AsmReadCr4 ();
  Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);

  //
  // If page fault address is 4GB above.
  //

  //
  // Check if page fault address has existed in page table.
  // If it exists in page table but page fault is generated,
  // there are 2 possible reasons: 1. present flag is set to 0; 2. instruction fetch in protected memory range.
  //
  Existed = FALSE;
  PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
  PTIndex = 0;
  if (Enable5LevelPaging) {
    PTIndex = BitFieldRead64 (PFAddress, 48, 56);
  }
  if ((!Enable5LevelPaging) || ((PageTable[PTIndex] & IA32_PG_P) != 0)) {
    // PML5E
    if (Enable5LevelPaging) {
      PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
    }
    PTIndex = BitFieldRead64 (PFAddress, 39, 47);
    if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
      // PML4E
      PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
      PTIndex = BitFieldRead64 (PFAddress, 30, 38);
      if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
        // PDPTE
        PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
        PTIndex = BitFieldRead64 (PFAddress, 21, 29);
        // PD
        if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
          //
          // 2MB page
          //
          Address = (UINT64)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
          if ((Address & ~((1ull << 21) - 1)) == ((PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)))) {
            Existed = TRUE;
          }
        } else {
          //
          // 4KB page
          //
          PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask& PHYSICAL_ADDRESS_MASK);
          if (PageTable != 0) {
            //
            // When there is a valid entry to map to 4KB page, need not create a new entry to map 2MB.
            //
            PTIndex = BitFieldRead64 (PFAddress, 12, 20);
            Address = (UINT64)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
            if ((Address & ~((1ull << 12) - 1)) == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
              Existed = TRUE;
            }
          }
        }
      }
    }
  }

  //
  // If page entry does not existed in page table at all, create a new entry.
  //
  if (!Existed) {

    if (IsAddressValid (PFAddress, &Nx)) {
      //
      // If page fault address above 4GB is in protected range but it causes a page fault exception,
      // Will create a page entry for this page fault address, make page table entry as present/rw and execution-disable.
      // this access is not saved into SMM profile data.
      //
      *IsValidPFAddress = TRUE;
    }

    //
    // Create one entry in page table for page fault address.
    //
    SmiDefaultPFHandler ();
    //
    // Find the page table entry created just now.
    //
    PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
    PFAddress = AsmReadCr2 ();
    // PML5E
    if (Enable5LevelPaging) {
      PTIndex = BitFieldRead64 (PFAddress, 48, 56);
      PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
    }
    // PML4E
    PTIndex = BitFieldRead64 (PFAddress, 39, 47);
    PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
    // PDPTE
    PTIndex = BitFieldRead64 (PFAddress, 30, 38);
    PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
    // PD
    PTIndex = BitFieldRead64 (PFAddress, 21, 29);
    Address = PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK;
    //
    // Check if 2MB-page entry need be changed to 4KB-page entry.
    //
    if (IsAddressSplit (Address)) {
      AcquirePage (&PageTable[PTIndex]);

      // PTE
      PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
      for (Index = 0; Index < 512; Index++) {
        PageTable[Index] = Address | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
        if (!IsAddressValid (Address, &Nx)) {
          PageTable[Index] = PageTable[Index] & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
        }
        if (Nx && mXdSupported) {
          PageTable[Index] = PageTable[Index] | IA32_PG_NX;
        }
        if (Address == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
          PTIndex = Index;
        }
        Address += SIZE_4KB;
      } // end for PT
    } else {
      //
      // Update 2MB page entry.
      //
      if (!IsAddressValid (Address, &Nx)) {
        //
        // Patch to remove present flag and rw flag.
        //
        PageTable[PTIndex] = PageTable[PTIndex] & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
      }
      //
      // Set XD bit to 1
      //
      if (Nx && mXdSupported) {
        PageTable[PTIndex] = PageTable[PTIndex] | IA32_PG_NX;
      }
    }
  }

  //
  // Record old entries with non-present status
  // Old entries include the memory which instruction is at and the memory which instruction access.
  //
  //
  ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
  if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
    PFIndex = mPFEntryCount[CpuIndex];
    mLastPFEntryValue[CpuIndex][PFIndex]   = PageTable[PTIndex];
    mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
    mPFEntryCount[CpuIndex]++;
  }

  //
  // Add present flag or clear XD flag to make page fault handler succeed.
  //
  PageTable[PTIndex] |= (UINT64)(PAGE_ATTRIBUTE_BITS);
  if ((ErrorCode & IA32_PF_EC_ID) != 0) {
    //
    // If page fault is caused by instruction fetch, clear XD bit in the entry.
    //
    PageTable[PTIndex] &= ~IA32_PG_NX;
  }

  return;
}

/**
  Clear TF in FLAGS.

  @param  SystemContext    A pointer to the processor context when
                           the interrupt occurred on the processor.

**/
VOID
ClearTrapFlag (
  IN OUT EFI_SYSTEM_CONTEXT   SystemContext
  )
{
  SystemContext.SystemContextX64->Rflags &= (UINTN) ~BIT8;
}