diff options
author | Steven Price <steven.price@arm.com> | 2024-10-17 14:14:34 +0100 |
---|---|---|
committer | Catalin Marinas <catalin.marinas@arm.com> | 2024-10-23 10:19:33 +0100 |
commit | 972d755f01954bd0e36d8696f0d7dc6466072c21 (patch) | |
tree | a8a32b192c019f76e5d69435c9311a87773b65c8 /Documentation | |
parent | 7999edc484ca376f803562edb2d43ec921642c2a (diff) | |
download | linux-stable-972d755f01954bd0e36d8696f0d7dc6466072c21.tar.gz linux-stable-972d755f01954bd0e36d8696f0d7dc6466072c21.tar.bz2 linux-stable-972d755f01954bd0e36d8696f0d7dc6466072c21.zip |
arm64: Document Arm Confidential Compute
Add some documentation on Arm CCA and the requirements for running Linux
as a Realm guest. Also update booting.rst to describe the requirement
for RIPAS RAM.
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/20241017131434.40935-12-steven.price@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/arch/arm64/arm-cca.rst | 69 | ||||
-rw-r--r-- | Documentation/arch/arm64/booting.rst | 3 | ||||
-rw-r--r-- | Documentation/arch/arm64/index.rst | 1 |
3 files changed, 73 insertions, 0 deletions
diff --git a/Documentation/arch/arm64/arm-cca.rst b/Documentation/arch/arm64/arm-cca.rst new file mode 100644 index 000000000000..c48b7d4ab6bd --- /dev/null +++ b/Documentation/arch/arm64/arm-cca.rst @@ -0,0 +1,69 @@ +.. SPDX-License-Identifier: GPL-2.0 + +===================================== +Arm Confidential Compute Architecture +===================================== + +Arm systems that support the Realm Management Extension (RME) contain +hardware to allow a VM guest to be run in a way which protects the code +and data of the guest from the hypervisor. It extends the older "two +world" model (Normal and Secure World) into four worlds: Normal, Secure, +Root and Realm. Linux can then also be run as a guest to a monitor +running in the Realm world. + +The monitor running in the Realm world is known as the Realm Management +Monitor (RMM) and implements the Realm Management Monitor +specification[1]. The monitor acts a bit like a hypervisor (e.g. it runs +in EL2 and manages the stage 2 page tables etc of the guests running in +Realm world), however much of the control is handled by a hypervisor +running in the Normal World. The Normal World hypervisor uses the Realm +Management Interface (RMI) defined by the RMM specification to request +the RMM to perform operations (e.g. mapping memory or executing a vCPU). + +The RMM defines an environment for guests where the address space (IPA) +is split into two. The lower half is protected - any memory that is +mapped in this half cannot be seen by the Normal World and the RMM +restricts what operations the Normal World can perform on this memory +(e.g. the Normal World cannot replace pages in this region without the +guest's cooperation). The upper half is shared, the Normal World is free +to make changes to the pages in this region, and is able to emulate MMIO +devices in this region too. + +A guest running in a Realm may also communicate with the RMM using the +Realm Services Interface (RSI) to request changes in its environment or +to perform attestation about its environment. In particular it may +request that areas of the protected address space are transitioned +between 'RAM' and 'EMPTY' (in either direction). This allows a Realm +guest to give up memory to be returned to the Normal World, or to +request new memory from the Normal World. Without an explicit request +from the Realm guest the RMM will otherwise prevent the Normal World +from making these changes. + +Linux as a Realm Guest +---------------------- + +To run Linux as a guest within a Realm, the following must be provided +either by the VMM or by a `boot loader` run in the Realm before Linux: + + * All protected RAM described to Linux (by DT or ACPI) must be marked + RIPAS RAM before handing control over to Linux. + + * MMIO devices must be either unprotected (e.g. emulated by the Normal + World) or marked RIPAS DEV. + + * MMIO devices emulated by the Normal World and used very early in boot + (specifically earlycon) must be specified in the upper half of IPA. + For earlycon this can be done by specifying the address on the + command line, e.g. with an IPA size of 33 bits and the base address + of the emulated UART at 0x1000000: ``earlycon=uart,mmio,0x101000000`` + + * Linux will use bounce buffers for communicating with unprotected + devices. It will transition some protected memory to RIPAS EMPTY and + expect to be able to access unprotected pages at the same IPA address + but with the highest valid IPA bit set. The expectation is that the + VMM will remove the physical pages from the protected mapping and + provide those pages as unprotected pages. + +References +---------- +[1] https://developer.arm.com/documentation/den0137/ diff --git a/Documentation/arch/arm64/booting.rst b/Documentation/arch/arm64/booting.rst index b57776a68f15..30164fb24a24 100644 --- a/Documentation/arch/arm64/booting.rst +++ b/Documentation/arch/arm64/booting.rst @@ -41,6 +41,9 @@ to automatically locate and size all RAM, or it may use knowledge of the RAM in the machine, or any other method the boot loader designer sees fit.) +For Arm Confidential Compute Realms this includes ensuring that all +protected RAM has a Realm IPA state (RIPAS) of "RAM". + 2. Setup the device tree ------------------------- diff --git a/Documentation/arch/arm64/index.rst b/Documentation/arch/arm64/index.rst index 78544de0a8a9..12c243c3af20 100644 --- a/Documentation/arch/arm64/index.rst +++ b/Documentation/arch/arm64/index.rst @@ -10,6 +10,7 @@ ARM64 Architecture acpi_object_usage amu arm-acpi + arm-cca asymmetric-32bit booting cpu-feature-registers |