summaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorJan Kara <jack@suse.cz>2020-05-29 15:05:22 +0200
committerJan Kara <jack@suse.cz>2020-06-15 09:18:45 +0200
commit5afced3bf28100d81fb2fe7e98918632a08feaf5 (patch)
tree98ed68d4d68274ce063024fde6787d5d0c6eb9a7 /include
parentb35250c0816c7cf7d0a8de92f5fafb6a7508a708 (diff)
downloadlinux-stable-5afced3bf28100d81fb2fe7e98918632a08feaf5.tar.gz
linux-stable-5afced3bf28100d81fb2fe7e98918632a08feaf5.tar.bz2
linux-stable-5afced3bf28100d81fb2fe7e98918632a08feaf5.zip
writeback: Avoid skipping inode writeback
Inode's i_io_list list head is used to attach inode to several different lists - wb->{b_dirty, b_dirty_time, b_io, b_more_io}. When flush worker prepares a list of inodes to writeback e.g. for sync(2), it moves inodes to b_io list. Thus it is critical for sync(2) data integrity guarantees that inode is not requeued to any other writeback list when inode is queued for processing by flush worker. That's the reason why writeback_single_inode() does not touch i_io_list (unless the inode is completely clean) and why __mark_inode_dirty() does not touch i_io_list if I_SYNC flag is set. However there are two flaws in the current logic: 1) When inode has only I_DIRTY_TIME set but it is already queued in b_io list due to sync(2), concurrent __mark_inode_dirty(inode, I_DIRTY_SYNC) can still move inode back to b_dirty list resulting in skipping writeback of inode time stamps during sync(2). 2) When inode is on b_dirty_time list and writeback_single_inode() races with __mark_inode_dirty() like: writeback_single_inode() __mark_inode_dirty(inode, I_DIRTY_PAGES) inode->i_state |= I_SYNC __writeback_single_inode() inode->i_state |= I_DIRTY_PAGES; if (inode->i_state & I_SYNC) bail if (!(inode->i_state & I_DIRTY_ALL)) - not true so nothing done We end up with I_DIRTY_PAGES inode on b_dirty_time list and thus standard background writeback will not writeback this inode leading to possible dirty throttling stalls etc. (thanks to Martijn Coenen for this analysis). Fix these problems by tracking whether inode is queued in b_io or b_more_io lists in a new I_SYNC_QUEUED flag. When this flag is set, we know flush worker has queued inode and we should not touch i_io_list. On the other hand we also know that once flush worker is done with the inode it will requeue the inode to appropriate dirty list. When I_SYNC_QUEUED is not set, __mark_inode_dirty() can (and must) move inode to appropriate dirty list. Reported-by: Martijn Coenen <maco@android.com> Reviewed-by: Martijn Coenen <maco@android.com> Tested-by: Martijn Coenen <maco@android.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Fixes: 0ae45f63d4ef ("vfs: add support for a lazytime mount option") CC: stable@vger.kernel.org Signed-off-by: Jan Kara <jack@suse.cz>
Diffstat (limited to 'include')
-rw-r--r--include/linux/fs.h8
1 files changed, 6 insertions, 2 deletions
diff --git a/include/linux/fs.h b/include/linux/fs.h
index 19ef6c88c152..48556efcdcf0 100644
--- a/include/linux/fs.h
+++ b/include/linux/fs.h
@@ -2157,6 +2157,10 @@ static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
*
* I_DONTCACHE Evict inode as soon as it is not used anymore.
*
+ * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists.
+ * Used to detect that mark_inode_dirty() should not move
+ * inode between dirty lists.
+ *
* Q: What is the difference between I_WILL_FREE and I_FREEING?
*/
#define I_DIRTY_SYNC (1 << 0)
@@ -2174,12 +2178,12 @@ static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src,
#define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP)
#define I_LINKABLE (1 << 10)
#define I_DIRTY_TIME (1 << 11)
-#define __I_DIRTY_TIME_EXPIRED 12
-#define I_DIRTY_TIME_EXPIRED (1 << __I_DIRTY_TIME_EXPIRED)
+#define I_DIRTY_TIME_EXPIRED (1 << 12)
#define I_WB_SWITCH (1 << 13)
#define I_OVL_INUSE (1 << 14)
#define I_CREATING (1 << 15)
#define I_DONTCACHE (1 << 16)
+#define I_SYNC_QUEUED (1 << 17)
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
#define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES)