summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--arch/arm64/include/asm/esr.h1
-rw-r--r--arch/arm64/include/asm/kvm_asm.h2
-rw-r--r--arch/arm64/include/asm/kvm_host.h36
-rw-r--r--arch/arm64/include/asm/kvm_mmu.h26
-rw-r--r--arch/arm64/include/asm/kvm_nested.h127
-rw-r--r--arch/arm64/include/asm/sysreg.h17
-rw-r--r--arch/arm64/kvm/arm.c11
-rw-r--r--arch/arm64/kvm/hyp/vhe/switch.c51
-rw-r--r--arch/arm64/kvm/hyp/vhe/tlb.c147
-rw-r--r--arch/arm64/kvm/mmu.c213
-rw-r--r--arch/arm64/kvm/nested.c785
-rw-r--r--arch/arm64/kvm/reset.c6
-rw-r--r--arch/arm64/kvm/sys_regs.c398
13 files changed, 1777 insertions, 43 deletions
diff --git a/arch/arm64/include/asm/esr.h b/arch/arm64/include/asm/esr.h
index 7abf09df7033..15a4be765cad 100644
--- a/arch/arm64/include/asm/esr.h
+++ b/arch/arm64/include/asm/esr.h
@@ -152,6 +152,7 @@
#define ESR_ELx_Xs_MASK (GENMASK_ULL(4, 0))
/* ISS field definitions for exceptions taken in to Hyp */
+#define ESR_ELx_FSC_ADDRSZ (0x00)
#define ESR_ELx_CV (UL(1) << 24)
#define ESR_ELx_COND_SHIFT (20)
#define ESR_ELx_COND_MASK (UL(0xF) << ESR_ELx_COND_SHIFT)
diff --git a/arch/arm64/include/asm/kvm_asm.h b/arch/arm64/include/asm/kvm_asm.h
index a6330460d9e5..2181a11b9d92 100644
--- a/arch/arm64/include/asm/kvm_asm.h
+++ b/arch/arm64/include/asm/kvm_asm.h
@@ -232,6 +232,8 @@ extern void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
phys_addr_t start, unsigned long pages);
extern void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu);
+extern int __kvm_tlbi_s1e2(struct kvm_s2_mmu *mmu, u64 va, u64 sys_encoding);
+
extern void __kvm_timer_set_cntvoff(u64 cntvoff);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
diff --git a/arch/arm64/include/asm/kvm_host.h b/arch/arm64/include/asm/kvm_host.h
index 36b8e97bf49e..d486b7fc55a0 100644
--- a/arch/arm64/include/asm/kvm_host.h
+++ b/arch/arm64/include/asm/kvm_host.h
@@ -189,6 +189,33 @@ struct kvm_s2_mmu {
uint64_t split_page_chunk_size;
struct kvm_arch *arch;
+
+ /*
+ * For a shadow stage-2 MMU, the virtual vttbr used by the
+ * host to parse the guest S2.
+ * This either contains:
+ * - the virtual VTTBR programmed by the guest hypervisor with
+ * CnP cleared
+ * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
+ *
+ * We also cache the full VTCR which gets used for TLB invalidation,
+ * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
+ * to be cached in a TLB" to the letter.
+ */
+ u64 tlb_vttbr;
+ u64 tlb_vtcr;
+
+ /*
+ * true when this represents a nested context where virtual
+ * HCR_EL2.VM == 1
+ */
+ bool nested_stage2_enabled;
+
+ /*
+ * 0: Nobody is currently using this, check vttbr for validity
+ * >0: Somebody is actively using this.
+ */
+ atomic_t refcnt;
};
struct kvm_arch_memory_slot {
@@ -256,6 +283,14 @@ struct kvm_arch {
*/
u64 fgu[__NR_FGT_GROUP_IDS__];
+ /*
+ * Stage 2 paging state for VMs with nested S2 using a virtual
+ * VMID.
+ */
+ struct kvm_s2_mmu *nested_mmus;
+ size_t nested_mmus_size;
+ int nested_mmus_next;
+
/* Interrupt controller */
struct vgic_dist vgic;
@@ -1306,6 +1341,7 @@ void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
int __init kvm_set_ipa_limit(void);
+u32 kvm_get_pa_bits(struct kvm *kvm);
#define __KVM_HAVE_ARCH_VM_ALLOC
struct kvm *kvm_arch_alloc_vm(void);
diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h
index d5e48d870461..216ca424bb16 100644
--- a/arch/arm64/include/asm/kvm_mmu.h
+++ b/arch/arm64/include/asm/kvm_mmu.h
@@ -98,6 +98,7 @@ alternative_cb_end
#include <asm/mmu_context.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_host.h>
+#include <asm/kvm_nested.h>
void kvm_update_va_mask(struct alt_instr *alt,
__le32 *origptr, __le32 *updptr, int nr_inst);
@@ -165,6 +166,10 @@ int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr);
void __init free_hyp_pgds(void);
+void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size);
+void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end);
+void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end);
+
void stage2_unmap_vm(struct kvm *kvm);
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type);
void kvm_uninit_stage2_mmu(struct kvm *kvm);
@@ -326,5 +331,26 @@ static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
{
return container_of(mmu->arch, struct kvm, arch);
}
+
+static inline u64 get_vmid(u64 vttbr)
+{
+ return (vttbr & VTTBR_VMID_MASK(kvm_get_vmid_bits())) >>
+ VTTBR_VMID_SHIFT;
+}
+
+static inline bool kvm_s2_mmu_valid(struct kvm_s2_mmu *mmu)
+{
+ return !(mmu->tlb_vttbr & VTTBR_CNP_BIT);
+}
+
+static inline bool kvm_is_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
+{
+ /*
+ * Be careful, mmu may not be fully initialised so do look at
+ * *any* of its fields.
+ */
+ return &kvm->arch.mmu != mmu;
+}
+
#endif /* __ASSEMBLY__ */
#endif /* __ARM64_KVM_MMU_H__ */
diff --git a/arch/arm64/include/asm/kvm_nested.h b/arch/arm64/include/asm/kvm_nested.h
index 5e0ab0596246..971dbe533730 100644
--- a/arch/arm64/include/asm/kvm_nested.h
+++ b/arch/arm64/include/asm/kvm_nested.h
@@ -5,6 +5,7 @@
#include <linux/bitfield.h>
#include <linux/kvm_host.h>
#include <asm/kvm_emulate.h>
+#include <asm/kvm_pgtable.h>
static inline bool vcpu_has_nv(const struct kvm_vcpu *vcpu)
{
@@ -61,6 +62,125 @@ static inline u64 translate_ttbr0_el2_to_ttbr0_el1(u64 ttbr0)
}
extern bool forward_smc_trap(struct kvm_vcpu *vcpu);
+extern void kvm_init_nested(struct kvm *kvm);
+extern int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu);
+extern void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu);
+extern struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu);
+
+union tlbi_info;
+
+extern void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
+ const union tlbi_info *info,
+ void (*)(struct kvm_s2_mmu *,
+ const union tlbi_info *));
+extern void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu);
+extern void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu);
+
+struct kvm_s2_trans {
+ phys_addr_t output;
+ unsigned long block_size;
+ bool writable;
+ bool readable;
+ int level;
+ u32 esr;
+ u64 upper_attr;
+};
+
+static inline phys_addr_t kvm_s2_trans_output(struct kvm_s2_trans *trans)
+{
+ return trans->output;
+}
+
+static inline unsigned long kvm_s2_trans_size(struct kvm_s2_trans *trans)
+{
+ return trans->block_size;
+}
+
+static inline u32 kvm_s2_trans_esr(struct kvm_s2_trans *trans)
+{
+ return trans->esr;
+}
+
+static inline bool kvm_s2_trans_readable(struct kvm_s2_trans *trans)
+{
+ return trans->readable;
+}
+
+static inline bool kvm_s2_trans_writable(struct kvm_s2_trans *trans)
+{
+ return trans->writable;
+}
+
+static inline bool kvm_s2_trans_executable(struct kvm_s2_trans *trans)
+{
+ return !(trans->upper_attr & BIT(54));
+}
+
+extern int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
+ struct kvm_s2_trans *result);
+extern int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu,
+ struct kvm_s2_trans *trans);
+extern int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2);
+extern void kvm_nested_s2_wp(struct kvm *kvm);
+extern void kvm_nested_s2_unmap(struct kvm *kvm);
+extern void kvm_nested_s2_flush(struct kvm *kvm);
+
+unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val);
+
+static inline bool kvm_supported_tlbi_s1e1_op(struct kvm_vcpu *vpcu, u32 instr)
+{
+ struct kvm *kvm = vpcu->kvm;
+ u8 CRm = sys_reg_CRm(instr);
+
+ if (!(sys_reg_Op0(instr) == TLBI_Op0 &&
+ sys_reg_Op1(instr) == TLBI_Op1_EL1))
+ return false;
+
+ if (!(sys_reg_CRn(instr) == TLBI_CRn_XS ||
+ (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
+ kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))))
+ return false;
+
+ if (CRm == TLBI_CRm_nROS &&
+ !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
+ return false;
+
+ if ((CRm == TLBI_CRm_RIS || CRm == TLBI_CRm_ROS ||
+ CRm == TLBI_CRm_RNS) &&
+ !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
+ return false;
+
+ return true;
+}
+
+static inline bool kvm_supported_tlbi_s1e2_op(struct kvm_vcpu *vpcu, u32 instr)
+{
+ struct kvm *kvm = vpcu->kvm;
+ u8 CRm = sys_reg_CRm(instr);
+
+ if (!(sys_reg_Op0(instr) == TLBI_Op0 &&
+ sys_reg_Op1(instr) == TLBI_Op1_EL2))
+ return false;
+
+ if (!(sys_reg_CRn(instr) == TLBI_CRn_XS ||
+ (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
+ kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))))
+ return false;
+
+ if (CRm == TLBI_CRm_IPAIS || CRm == TLBI_CRm_IPAONS)
+ return false;
+
+ if (CRm == TLBI_CRm_nROS &&
+ !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
+ return false;
+
+ if ((CRm == TLBI_CRm_RIS || CRm == TLBI_CRm_ROS ||
+ CRm == TLBI_CRm_RNS) &&
+ !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
+ return false;
+
+ return true;
+}
int kvm_init_nv_sysregs(struct kvm *kvm);
@@ -76,4 +196,11 @@ static inline bool kvm_auth_eretax(struct kvm_vcpu *vcpu, u64 *elr)
}
#endif
+#define KVM_NV_GUEST_MAP_SZ (KVM_PGTABLE_PROT_SW1 | KVM_PGTABLE_PROT_SW0)
+
+static inline u64 kvm_encode_nested_level(struct kvm_s2_trans *trans)
+{
+ return FIELD_PREP(KVM_NV_GUEST_MAP_SZ, trans->level);
+}
+
#endif /* __ARM64_KVM_NESTED_H */
diff --git a/arch/arm64/include/asm/sysreg.h b/arch/arm64/include/asm/sysreg.h
index af3b206fa423..be4152819456 100644
--- a/arch/arm64/include/asm/sysreg.h
+++ b/arch/arm64/include/asm/sysreg.h
@@ -654,6 +654,23 @@
#define OP_AT_S12E0W sys_insn(AT_Op0, 4, AT_CRn, 8, 7)
/* TLBI instructions */
+#define TLBI_Op0 1
+
+#define TLBI_Op1_EL1 0 /* Accessible from EL1 or higher */
+#define TLBI_Op1_EL2 4 /* Accessible from EL2 or higher */
+
+#define TLBI_CRn_XS 8 /* Extra Slow (the common one) */
+#define TLBI_CRn_nXS 9 /* not Extra Slow (which nobody uses)*/
+
+#define TLBI_CRm_IPAIS 0 /* S2 Inner-Shareable */
+#define TLBI_CRm_nROS 1 /* non-Range, Outer-Sharable */
+#define TLBI_CRm_RIS 2 /* Range, Inner-Sharable */
+#define TLBI_CRm_nRIS 3 /* non-Range, Inner-Sharable */
+#define TLBI_CRm_IPAONS 4 /* S2 Outer and Non-Shareable */
+#define TLBI_CRm_ROS 5 /* Range, Outer-Sharable */
+#define TLBI_CRm_RNS 6 /* Range, Non-Sharable */
+#define TLBI_CRm_nRNS 7 /* non-Range, Non-Sharable */
+
#define OP_TLBI_VMALLE1OS sys_insn(1, 0, 8, 1, 0)
#define OP_TLBI_VAE1OS sys_insn(1, 0, 8, 1, 1)
#define OP_TLBI_ASIDE1OS sys_insn(1, 0, 8, 1, 2)
diff --git a/arch/arm64/kvm/arm.c b/arch/arm64/kvm/arm.c
index 53e23528d2cf..34e364151498 100644
--- a/arch/arm64/kvm/arm.c
+++ b/arch/arm64/kvm/arm.c
@@ -179,6 +179,8 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
mutex_unlock(&kvm->lock);
#endif
+ kvm_init_nested(kvm);
+
ret = kvm_share_hyp(kvm, kvm + 1);
if (ret)
return ret;
@@ -578,6 +580,9 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
struct kvm_s2_mmu *mmu;
int *last_ran;
+ if (vcpu_has_nv(vcpu))
+ kvm_vcpu_load_hw_mmu(vcpu);
+
mmu = vcpu->arch.hw_mmu;
last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
@@ -633,6 +638,8 @@ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
kvm_timer_vcpu_put(vcpu);
kvm_vgic_put(vcpu);
kvm_vcpu_pmu_restore_host(vcpu);
+ if (vcpu_has_nv(vcpu))
+ kvm_vcpu_put_hw_mmu(vcpu);
kvm_arm_vmid_clear_active();
vcpu_clear_on_unsupported_cpu(vcpu);
@@ -1491,6 +1498,10 @@ static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
ret = kvm_arm_set_default_pmu(kvm);
+ /* Prepare for nested if required */
+ if (!ret && vcpu_has_nv(vcpu))
+ ret = kvm_vcpu_init_nested(vcpu);
+
return ret;
}
diff --git a/arch/arm64/kvm/hyp/vhe/switch.c b/arch/arm64/kvm/hyp/vhe/switch.c
index 8fbb6a2e0559..88409a135a6f 100644
--- a/arch/arm64/kvm/hyp/vhe/switch.c
+++ b/arch/arm64/kvm/hyp/vhe/switch.c
@@ -266,10 +266,59 @@ static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu)
__fpsimd_save_state(*host_data_ptr(fpsimd_state));
}
+static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ int ret = -EINVAL;
+ u32 instr;
+ u64 val;
+
+ /*
+ * Ideally, we would never trap on EL2 S1 TLB invalidations using
+ * the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}.
+ * But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2,
+ * meaning that we can't track changes to the virtual TGE bit. So we
+ * have to leave HCR_EL2.TTLB set on the host. Oopsie...
+ *
+ * Try and handle these invalidation as quickly as possible, without
+ * fully exiting. Note that we don't need to consider any forwarding
+ * here, as having E2H+TGE set is the very definition of being
+ * InHost.
+ *
+ * For the lesser hypervisors out there that have failed to get on
+ * with the VHE program, we can also handle the nVHE style of EL2
+ * invalidation.
+ */
+ if (!(is_hyp_ctxt(vcpu)))
+ return false;
+
+ instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
+ val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
+
+ if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) &&
+ vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) ||
+ kvm_supported_tlbi_s1e2_op (vcpu, instr))
+ ret = __kvm_tlbi_s1e2(NULL, val, instr);
+
+ if (ret)
+ return false;
+
+ __kvm_skip_instr(vcpu);
+
+ return true;
+}
+
+static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code)
+{
+ if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code))
+ return true;
+
+ return kvm_hyp_handle_sysreg(vcpu, exit_code);
+}
+
static const exit_handler_fn hyp_exit_handlers[] = {
[0 ... ESR_ELx_EC_MAX] = NULL,
[ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32,
- [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg,
+ [ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg_vhe,
[ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd,
[ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd,
[ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low,
diff --git a/arch/arm64/kvm/hyp/vhe/tlb.c b/arch/arm64/kvm/hyp/vhe/tlb.c
index 5fa0359f3a87..3d50a1bd2bdb 100644
--- a/arch/arm64/kvm/hyp/vhe/tlb.c
+++ b/arch/arm64/kvm/hyp/vhe/tlb.c
@@ -219,3 +219,150 @@ void __kvm_flush_vm_context(void)
__tlbi(alle1is);
dsb(ish);
}
+
+/*
+ * TLB invalidation emulation for NV. For any given instruction, we
+ * perform the following transformtions:
+ *
+ * - a TLBI targeting EL2 S1 is remapped to EL1 S1
+ * - a non-shareable TLBI is upgraded to being inner-shareable
+ * - an outer-shareable TLBI is also mapped to inner-shareable
+ * - an nXS TLBI is upgraded to XS
+ */
+int __kvm_tlbi_s1e2(struct kvm_s2_mmu *mmu, u64 va, u64 sys_encoding)
+{
+ struct tlb_inv_context cxt;
+ int ret = 0;
+
+ /*
+ * The guest will have provided its own DSB ISHST before trapping.
+ * If it hasn't, that's its own problem, and we won't paper over it
+ * (plus, there is plenty of extra synchronisation before we even
+ * get here...).
+ */
+
+ if (mmu)
+ enter_vmid_context(mmu, &cxt);
+
+ switch (sys_encoding) {
+ case OP_TLBI_ALLE2:
+ case OP_TLBI_ALLE2IS:
+ case OP_TLBI_ALLE2OS:
+ case OP_TLBI_VMALLE1:
+ case OP_TLBI_VMALLE1IS:
+ case OP_TLBI_VMALLE1OS:
+ case OP_TLBI_ALLE2NXS:
+ case OP_TLBI_ALLE2ISNXS:
+ case OP_TLBI_ALLE2OSNXS:
+ case OP_TLBI_VMALLE1NXS:
+ case OP_TLBI_VMALLE1ISNXS:
+ case OP_TLBI_VMALLE1OSNXS:
+ __tlbi(vmalle1is);
+ break;
+ case OP_TLBI_VAE2:
+ case OP_TLBI_VAE2IS:
+ case OP_TLBI_VAE2OS:
+ case OP_TLBI_VAE1:
+ case OP_TLBI_VAE1IS:
+ case OP_TLBI_VAE1OS:
+ case OP_TLBI_VAE2NXS:
+ case OP_TLBI_VAE2ISNXS:
+ case OP_TLBI_VAE2OSNXS:
+ case OP_TLBI_VAE1NXS:
+ case OP_TLBI_VAE1ISNXS:
+ case OP_TLBI_VAE1OSNXS:
+ __tlbi(vae1is, va);
+ break;
+ case OP_TLBI_VALE2:
+ case OP_TLBI_VALE2IS:
+ case OP_TLBI_VALE2OS:
+ case OP_TLBI_VALE1:
+ case OP_TLBI_VALE1IS:
+ case OP_TLBI_VALE1OS:
+ case OP_TLBI_VALE2NXS:
+ case OP_TLBI_VALE2ISNXS:
+ case OP_TLBI_VALE2OSNXS:
+ case OP_TLBI_VALE1NXS:
+ case OP_TLBI_VALE1ISNXS:
+ case OP_TLBI_VALE1OSNXS:
+ __tlbi(vale1is, va);
+ break;
+ case OP_TLBI_ASIDE1:
+ case OP_TLBI_ASIDE1IS:
+ case OP_TLBI_ASIDE1OS:
+ case OP_TLBI_ASIDE1NXS:
+ case OP_TLBI_ASIDE1ISNXS:
+ case OP_TLBI_ASIDE1OSNXS:
+ __tlbi(aside1is, va);
+ break;
+ case OP_TLBI_VAAE1:
+ case OP_TLBI_VAAE1IS:
+ case OP_TLBI_VAAE1OS:
+ case OP_TLBI_VAAE1NXS:
+ case OP_TLBI_VAAE1ISNXS:
+ case OP_TLBI_VAAE1OSNXS:
+ __tlbi(vaae1is, va);
+ break;
+ case OP_TLBI_VAALE1:
+ case OP_TLBI_VAALE1IS:
+ case OP_TLBI_VAALE1OS:
+ case OP_TLBI_VAALE1NXS:
+ case OP_TLBI_VAALE1ISNXS:
+ case OP_TLBI_VAALE1OSNXS:
+ __tlbi(vaale1is, va);
+ break;
+ case OP_TLBI_RVAE2:
+ case OP_TLBI_RVAE2IS:
+ case OP_TLBI_RVAE2OS:
+ case OP_TLBI_RVAE1:
+ case OP_TLBI_RVAE1IS:
+ case OP_TLBI_RVAE1OS:
+ case OP_TLBI_RVAE2NXS:
+ case OP_TLBI_RVAE2ISNXS:
+ case OP_TLBI_RVAE2OSNXS:
+ case OP_TLBI_RVAE1NXS:
+ case OP_TLBI_RVAE1ISNXS:
+ case OP_TLBI_RVAE1OSNXS:
+ __tlbi(rvae1is, va);
+ break;
+ case OP_TLBI_RVALE2:
+ case OP_TLBI_RVALE2IS:
+ case OP_TLBI_RVALE2OS:
+ case OP_TLBI_RVALE1:
+ case OP_TLBI_RVALE1IS:
+ case OP_TLBI_RVALE1OS:
+ case OP_TLBI_RVALE2NXS:
+ case OP_TLBI_RVALE2ISNXS:
+ case OP_TLBI_RVALE2OSNXS:
+ case OP_TLBI_RVALE1NXS:
+ case OP_TLBI_RVALE1ISNXS:
+ case OP_TLBI_RVALE1OSNXS:
+ __tlbi(rvale1is, va);
+ break;
+ case OP_TLBI_RVAAE1:
+ case OP_TLBI_RVAAE1IS:
+ case OP_TLBI_RVAAE1OS:
+ case OP_TLBI_RVAAE1NXS:
+ case OP_TLBI_RVAAE1ISNXS:
+ case OP_TLBI_RVAAE1OSNXS:
+ __tlbi(rvaae1is, va);
+ break;
+ case OP_TLBI_RVAALE1:
+ case OP_TLBI_RVAALE1IS:
+ case OP_TLBI_RVAALE1OS:
+ case OP_TLBI_RVAALE1NXS:
+ case OP_TLBI_RVAALE1ISNXS:
+ case OP_TLBI_RVAALE1OSNXS:
+ __tlbi(rvaale1is, va);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+ dsb(ish);
+ isb();
+
+ if (mmu)
+ exit_vmid_context(&cxt);
+
+ return ret;
+}
diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c
index 8bcab0cc3fe9..6981b1bc0946 100644
--- a/arch/arm64/kvm/mmu.c
+++ b/arch/arm64/kvm/mmu.c
@@ -328,18 +328,23 @@ static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64
may_block));
}
-static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
+void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
{
__unmap_stage2_range(mmu, start, size, true);
}
+void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
+{
+ stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_flush);
+}
+
static void stage2_flush_memslot(struct kvm *kvm,
struct kvm_memory_slot *memslot)
{
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
- stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
+ kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
}
/**
@@ -362,6 +367,8 @@ static void stage2_flush_vm(struct kvm *kvm)
kvm_for_each_memslot(memslot, bkt, slots)
stage2_flush_memslot(kvm, memslot);
+ kvm_nested_s2_flush(kvm);
+
write_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
}
@@ -855,21 +862,9 @@ static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
.icache_inval_pou = invalidate_icache_guest_page,
};
-/**
- * kvm_init_stage2_mmu - Initialise a S2 MMU structure
- * @kvm: The pointer to the KVM structure
- * @mmu: The pointer to the s2 MMU structure
- * @type: The machine type of the virtual machine
- *
- * Allocates only the stage-2 HW PGD level table(s).
- * Note we don't need locking here as this is only called when the VM is
- * created, which can only be done once.
- */
-int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
+static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
{
u32 kvm_ipa_limit = get_kvm_ipa_limit();
- int cpu, err;
- struct kvm_pgtable *pgt;
u64 mmfr0, mmfr1;
u32 phys_shift;
@@ -896,11 +891,51 @@ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long t
mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
+ return 0;
+}
+
+/**
+ * kvm_init_stage2_mmu - Initialise a S2 MMU structure
+ * @kvm: The pointer to the KVM structure
+ * @mmu: The pointer to the s2 MMU structure
+ * @type: The machine type of the virtual machine
+ *
+ * Allocates only the stage-2 HW PGD level table(s).
+ * Note we don't need locking here as this is only called in two cases:
+ *
+ * - when the VM is created, which can't race against anything
+ *
+ * - when secondary kvm_s2_mmu structures are initialised for NV
+ * guests, and the caller must hold kvm->lock as this is called on a
+ * per-vcpu basis.
+ */
+int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
+{
+ int cpu, err;
+ struct kvm_pgtable *pgt;
+
+ /*
+ * If we already have our page tables in place, and that the
+ * MMU context is the canonical one, we have a bug somewhere,
+ * as this is only supposed to ever happen once per VM.
+ *
+ * Otherwise, we're building nested page tables, and that's
+ * probably because userspace called KVM_ARM_VCPU_INIT more
+ * than once on the same vcpu. Since that's actually legal,
+ * don't kick a fuss and leave gracefully.
+ */
if (mmu->pgt != NULL) {
+ if (kvm_is_nested_s2_mmu(kvm, mmu))
+ return 0;
+
kvm_err("kvm_arch already initialized?\n");
return -EINVAL;
}
+ err = kvm_init_ipa_range(mmu, type);
+ if (err)
+ return err;
+
pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
if (!pgt)
return -ENOMEM;
@@ -925,6 +960,10 @@ int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long t
mmu->pgt = pgt;
mmu->pgd_phys = __pa(pgt->pgd);
+
+ if (kvm_is_nested_s2_mmu(kvm, mmu))
+ kvm_init_nested_s2_mmu(mmu);
+
return 0;
out_destroy_pgtable:
@@ -976,7 +1015,7 @@ static void stage2_unmap_memslot(struct kvm *kvm,
if (!(vma->vm_flags & VM_PFNMAP)) {
gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
- unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
+ kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
}
hva = vm_end;
} while (hva < reg_end);
@@ -1003,6 +1042,8 @@ void stage2_unmap_vm(struct kvm *kvm)
kvm_for_each_memslot(memslot, bkt, slots)
stage2_unmap_memslot(kvm, memslot);
+ kvm_nested_s2_unmap(kvm);
+
write_unlock(&kvm->mmu_lock);
mmap_read_unlock(current->mm);
srcu_read_unlock(&kvm->srcu, idx);
@@ -1102,12 +1143,12 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
}
/**
- * stage2_wp_range() - write protect stage2 memory region range
+ * kvm_stage2_wp_range() - write protect stage2 memory region range
* @mmu: The KVM stage-2 MMU pointer
* @addr: Start address of range
* @end: End address of range
*/
-static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
+void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
{
stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
}
@@ -1138,7 +1179,8 @@ static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
write_lock(&kvm->mmu_lock);
- stage2_wp_range(&kvm->arch.mmu, start, end);
+ kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
+ kvm_nested_s2_wp(kvm);
write_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs_memslot(kvm, memslot);
}
@@ -1192,7 +1234,7 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
lockdep_assert_held_write(&kvm->mmu_lock);
- stage2_wp_range(&kvm->arch.mmu, start, end);
+ kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
/*
* Eager-splitting is done when manual-protect is set. We
@@ -1204,6 +1246,8 @@ void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
*/
if (kvm_dirty_log_manual_protect_and_init_set(kvm))
kvm_mmu_split_huge_pages(kvm, start, end);
+
+ kvm_nested_s2_wp(kvm);
}
static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
@@ -1375,6 +1419,7 @@ static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
}
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
+ struct kvm_s2_trans *nested,
struct kvm_memory_slot *memslot, unsigned long hva,
bool fault_is_perm)
{
@@ -1383,6 +1428,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
bool exec_fault, mte_allowed;
bool device = false, vfio_allow_any_uc = false;
unsigned long mmu_seq;
+ phys_addr_t ipa = fault_ipa;
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
struct vm_area_struct *vma;
@@ -1466,10 +1512,38 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
}
vma_pagesize = 1UL << vma_shift;
+
+ if (nested) {
+ unsigned long max_map_size;
+
+ max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
+
+ ipa = kvm_s2_trans_output(nested);
+
+ /*
+ * If we're about to create a shadow stage 2 entry, then we
+ * can only create a block mapping if the guest stage 2 page
+ * table uses at least as big a mapping.
+ */
+ max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
+
+ /*
+ * Be careful that if the mapping size falls between
+ * two host sizes, take the smallest of the two.
+ */
+ if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
+ max_map_size = PMD_SIZE;
+ else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
+ max_map_size = PAGE_SIZE;
+
+ force_pte = (max_map_size == PAGE_SIZE);
+ vma_pagesize = min(vma_pagesize, (long)max_map_size);
+ }
+
if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
fault_ipa &= ~(vma_pagesize - 1);
- gfn = fault_ipa >> PAGE_SHIFT;
+ gfn = ipa >> PAGE_SHIFT;
mte_allowed = kvm_vma_mte_allowed(vma);
vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
@@ -1520,6 +1594,25 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
if (exec_fault && device)
return -ENOEXEC;
+ /*
+ * Potentially reduce shadow S2 permissions to match the guest's own
+ * S2. For exec faults, we'd only reach this point if the guest
+ * actually allowed it (see kvm_s2_handle_perm_fault).
+ *
+ * Also encode the level of the original translation in the SW bits
+ * of the leaf entry as a proxy for the span of that translation.
+ * This will be retrieved on TLB invalidation from the guest and
+ * used to limit the invalidation scope if a TTL hint or a range
+ * isn't provided.
+ */
+ if (nested) {
+ writable &= kvm_s2_trans_writable(nested);
+ if (!kvm_s2_trans_readable(nested))
+ prot &= ~KVM_PGTABLE_PROT_R;
+
+ prot |= kvm_encode_nested_level(nested);
+ }
+
read_lock(&kvm->mmu_lock);
pgt = vcpu->arch.hw_mmu->pgt;
if (mmu_invalidate_retry(kvm, mmu_seq)) {
@@ -1566,7 +1659,8 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
prot |= KVM_PGTABLE_PROT_NORMAL_NC;
else
prot |= KVM_PGTABLE_PROT_DEVICE;
- } else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC)) {
+ } else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC) &&
+ (!nested || kvm_s2_trans_executable(nested))) {
prot |= KVM_PGTABLE_PROT_X;
}
@@ -1575,14 +1669,21 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
* permissions only if vma_pagesize equals fault_granule. Otherwise,
* kvm_pgtable_stage2_map() should be called to change block size.
*/
- if (fault_is_perm && vma_pagesize == fault_granule)
+ if (fault_is_perm && vma_pagesize == fault_granule) {
+ /*
+ * Drop the SW bits in favour of those stored in the
+ * PTE, which will be preserved.
+ */
+ prot &= ~KVM_NV_GUEST_MAP_SZ;
ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
- else
+ } else {
ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
__pfn_to_phys(pfn), prot,
memcache,
KVM_PGTABLE_WALK_HANDLE_FAULT |
KVM_PGTABLE_WALK_SHARED);
+ }
+
out_unlock:
read_unlock(&kvm->mmu_lock);
@@ -1626,8 +1727,10 @@ static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
*/
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
{
+ struct kvm_s2_trans nested_trans, *nested = NULL;
unsigned long esr;
- phys_addr_t fault_ipa;
+ phys_addr_t fault_ipa; /* The address we faulted on */
+ phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
struct kvm_memory_slot *memslot;
unsigned long hva;
bool is_iabt, write_fault, writable;
@@ -1636,7 +1739,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
esr = kvm_vcpu_get_esr(vcpu);
- fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
+ ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
if (esr_fsc_is_translation_fault(esr)) {
@@ -1686,7 +1789,42 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
idx = srcu_read_lock(&vcpu->kvm->srcu);
- gfn = fault_ipa >> PAGE_SHIFT;
+ /*
+ * We may have faulted on a shadow stage 2 page table if we are
+ * running a nested guest. In this case, we have to resolve the L2
+ * IPA to the L1 IPA first, before knowing what kind of memory should
+ * back the L1 IPA.
+ *
+ * If the shadow stage 2 page table walk faults, then we simply inject
+ * this to the guest and carry on.
+ *
+ * If there are no shadow S2 PTs because S2 is disabled, there is
+ * nothing to walk and we treat it as a 1:1 before going through the
+ * canonical translation.
+ */
+ if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
+ vcpu->arch.hw_mmu->nested_stage2_enabled) {
+ u32 esr;
+
+ ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
+ if (ret) {
+ esr = kvm_s2_trans_esr(&nested_trans);
+ kvm_inject_s2_fault(vcpu, esr);
+ goto out_unlock;
+ }
+
+ ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
+ if (ret) {
+ esr = kvm_s2_trans_esr(&nested_trans);
+ kvm_inject_s2_fault(vcpu, esr);
+ goto out_unlock;
+ }
+
+ ipa = kvm_s2_trans_output(&nested_trans);
+ nested = &nested_trans;
+ }
+
+ gfn = ipa >> PAGE_SHIFT;
memslot = gfn_to_memslot(vcpu->kvm, gfn);
hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
write_fault = kvm_is_write_fault(vcpu);
@@ -1730,13 +1868,13 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
* faulting VA. This is always 12 bits, irrespective
* of the page size.
*/
- fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
- ret = io_mem_abort(vcpu, fault_ipa);
+ ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
+ ret = io_mem_abort(vcpu, ipa);
goto out_unlock;
}
/* Userspace should not be able to register out-of-bounds IPAs */
- VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
+ VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
if (esr_fsc_is_access_flag_fault(esr)) {
handle_access_fault(vcpu, fault_ipa);
@@ -1744,7 +1882,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
goto out_unlock;
}
- ret = user_mem_abort(vcpu, fault_ipa, memslot, hva,
+ ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
esr_fsc_is_permission_fault(esr));
if (ret == 0)
ret = 1;
@@ -1767,6 +1905,7 @@ bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
(range->end - range->start) << PAGE_SHIFT,
range->may_block);
+ kvm_nested_s2_unmap(kvm);
return false;
}
@@ -1780,6 +1919,10 @@ bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
range->start << PAGE_SHIFT,
size, true);
+ /*
+ * TODO: Handle nested_mmu structures here using the reverse mapping in
+ * a later version of patch series.
+ */
}
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
@@ -2022,11 +2165,6 @@ void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
{
}
-void kvm_arch_flush_shadow_all(struct kvm *kvm)
-{
- kvm_uninit_stage2_mmu(kvm);
-}
-
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
@@ -2034,7 +2172,8 @@ void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
phys_addr_t size = slot->npages << PAGE_SHIFT;
write_lock(&kvm->mmu_lock);
- unmap_stage2_range(&kvm->arch.mmu, gpa, size);
+ kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size);
+ kvm_nested_s2_unmap(kvm);
write_unlock(&kvm->mmu_lock);
}
diff --git a/arch/arm64/kvm/nested.c b/arch/arm64/kvm/nested.c
index d23618af8291..1d44318744e0 100644
--- a/arch/arm64/kvm/nested.c
+++ b/arch/arm64/kvm/nested.c
@@ -4,10 +4,13 @@
* Author: Jintack Lim <jintack.lim@linaro.org>
*/
+#include <linux/bitfield.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
+#include <asm/kvm_arm.h>
#include <asm/kvm_emulate.h>
+#include <asm/kvm_mmu.h>
#include <asm/kvm_nested.h>
#include <asm/sysreg.h>
@@ -17,6 +20,779 @@
#define NV_FTR(r, f) ID_AA64##r##_EL1_##f
/*
+ * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
+ * memory usage and potential number of different sets of S2 PTs in
+ * the guests. Running out of S2 MMUs only affects performance (we
+ * will invalidate them more often).
+ */
+#define S2_MMU_PER_VCPU 2
+
+void kvm_init_nested(struct kvm *kvm)
+{
+ kvm->arch.nested_mmus = NULL;
+ kvm->arch.nested_mmus_size = 0;
+}
+
+static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
+{
+ /*
+ * We only initialise the IPA range on the canonical MMU, which
+ * defines the contract between KVM and userspace on where the
+ * "hardware" is in the IPA space. This affects the validity of MMIO
+ * exits forwarded to userspace, for example.
+ *
+ * For nested S2s, we use the PARange as exposed to the guest, as it
+ * is allowed to use it at will to expose whatever memory map it
+ * wants to its own guests as it would be on real HW.
+ */
+ return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
+}
+
+int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_s2_mmu *tmp;
+ int num_mmus, ret = 0;
+
+ /*
+ * Let's treat memory allocation failures as benign: If we fail to
+ * allocate anything, return an error and keep the allocated array
+ * alive. Userspace may try to recover by intializing the vcpu
+ * again, and there is no reason to affect the whole VM for this.
+ */
+ num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
+ tmp = kvrealloc(kvm->arch.nested_mmus,
+ size_mul(sizeof(*kvm->arch.nested_mmus), kvm->arch.nested_mmus_size),
+ size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
+ GFP_KERNEL_ACCOUNT | __GFP_ZERO);
+ if (!tmp)
+ return -ENOMEM;
+
+ /*
+ * If we went through a realocation, adjust the MMU back-pointers in
+ * the previously initialised kvm_pgtable structures.
+ */
+ if (kvm->arch.nested_mmus != tmp)
+ for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
+ tmp[i].pgt->mmu = &tmp[i];
+
+ for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
+ ret = init_nested_s2_mmu(kvm, &tmp[i]);
+
+ if (ret) {
+ for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
+ kvm_free_stage2_pgd(&tmp[i]);
+
+ return ret;
+ }
+
+ kvm->arch.nested_mmus_size = num_mmus;
+ kvm->arch.nested_mmus = tmp;
+
+ return 0;
+}
+
+struct s2_walk_info {
+ int (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
+ void *data;
+ u64 baddr;
+ unsigned int max_oa_bits;
+ unsigned int pgshift;
+ unsigned int sl;
+ unsigned int t0sz;
+ bool be;
+};
+
+static unsigned int ps_to_output_size(unsigned int ps)
+{
+ switch (ps) {
+ case 0: return 32;
+ case 1: return 36;
+ case 2: return 40;
+ case 3: return 42;
+ case 4: return 44;
+ case 5:
+ default:
+ return 48;
+ }
+}
+
+static u32 compute_fsc(int level, u32 fsc)
+{
+ return fsc | (level & 0x3);
+}
+
+static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
+{
+ u32 esr;
+
+ esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
+ esr |= compute_fsc(level, fsc);
+ return esr;
+}
+
+static int get_ia_size(struct s2_walk_info *wi)
+{
+ return 64 - wi->t0sz;
+}
+
+static int check_base_s2_limits(struct s2_walk_info *wi,
+ int level, int input_size, int stride)
+{
+ int start_size, ia_size;
+
+ ia_size = get_ia_size(wi);
+
+ /* Check translation limits */
+ switch (BIT(wi->pgshift)) {
+ case SZ_64K:
+ if (level == 0 || (level == 1 && ia_size <= 42))
+ return -EFAULT;
+ break;
+ case SZ_16K:
+ if (level == 0 || (level == 1 && ia_size <= 40))
+ return -EFAULT;
+ break;
+ case SZ_4K:
+ if (level < 0 || (level == 0 && ia_size <= 42))
+ return -EFAULT;
+ break;
+ }
+
+ /* Check input size limits */
+ if (input_size > ia_size)
+ return -EFAULT;
+
+ /* Check number of entries in starting level table */
+ start_size = input_size - ((3 - level) * stride + wi->pgshift);
+ if (start_size < 1 || start_size > stride + 4)
+ return -EFAULT;
+
+ return 0;
+}
+
+/* Check if output is within boundaries */
+static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
+{
+ unsigned int output_size = wi->max_oa_bits;
+
+ if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
+ return -1;
+
+ return 0;
+}
+
+/*
+ * This is essentially a C-version of the pseudo code from the ARM ARM
+ * AArch64.TranslationTableWalk function. I strongly recommend looking at
+ * that pseudocode in trying to understand this.
+ *
+ * Must be called with the kvm->srcu read lock held
+ */
+static int walk_nested_s2_pgd(phys_addr_t ipa,
+ struct s2_walk_info *wi, struct kvm_s2_trans *out)
+{
+ int first_block_level, level, stride, input_size, base_lower_bound;
+ phys_addr_t base_addr;
+ unsigned int addr_top, addr_bottom;
+ u64 desc; /* page table entry */
+ int ret;
+ phys_addr_t paddr;
+
+ switch (BIT(wi->pgshift)) {
+ default:
+ case SZ_64K:
+ case SZ_16K:
+ level = 3 - wi->sl;
+ first_block_level = 2;
+ break;
+ case SZ_4K:
+ level = 2 - wi->sl;
+ first_block_level = 1;
+ break;
+ }
+
+ stride = wi->pgshift - 3;
+ input_size = get_ia_size(wi);
+ if (input_size > 48 || input_size < 25)
+ return -EFAULT;
+
+ ret = check_base_s2_limits(wi, level, input_size, stride);
+ if (WARN_ON(ret))
+ return ret;
+
+ base_lower_bound = 3 + input_size - ((3 - level) * stride +
+ wi->pgshift);
+ base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
+
+ if (check_output_size(wi, base_addr)) {
+ out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
+ return 1;
+ }
+
+ addr_top = input_size - 1;
+
+ while (1) {
+ phys_addr_t index;
+
+ addr_bottom = (3 - level) * stride + wi->pgshift;
+ index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
+ >> (addr_bottom - 3);
+
+ paddr = base_addr | index;
+ ret = wi->read_desc(paddr, &desc, wi->data);
+ if (ret < 0)
+ return ret;
+
+ /*
+ * Handle reversedescriptors if endianness differs between the
+ * host and the guest hypervisor.
+ */
+ if (wi->be)
+ desc = be64_to_cpu((__force __be64)desc);
+ else
+ desc = le64_to_cpu((__force __le64)desc);
+
+ /* Check for valid descriptor at this point */
+ if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
+ out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
+ out->upper_attr = desc;
+ return 1;
+ }
+
+ /* We're at the final level or block translation level */
+ if ((desc & 3) == 1 || level == 3)
+ break;
+
+ if (check_output_size(wi, desc)) {
+ out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
+ out->upper_attr = desc;
+ return 1;
+ }
+
+ base_addr = desc & GENMASK_ULL(47, wi->pgshift);
+
+ level += 1;
+ addr_top = addr_bottom - 1;
+ }
+
+ if (level < first_block_level) {
+ out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
+ out->upper_attr = desc;
+ return 1;
+ }
+
+ /*
+ * We don't use the contiguous bit in the stage-2 ptes, so skip check
+ * for misprogramming of the contiguous bit.
+ */
+
+ if (check_output_size(wi, desc)) {
+ out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
+ out->upper_attr = desc;
+ return 1;
+ }
+
+ if (!(desc & BIT(10))) {
+ out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
+ out->upper_attr = desc;
+ return 1;
+ }
+
+ /* Calculate and return the result */
+ paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
+ (ipa & GENMASK_ULL(addr_bottom - 1, 0));
+ out->output = paddr;
+ out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
+ out->readable = desc & (0b01 << 6);
+ out->writable = desc & (0b10 << 6);
+ out->level = level;
+ out->upper_attr = desc & GENMASK_ULL(63, 52);
+ return 0;
+}
+
+static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
+{
+ struct kvm_vcpu *vcpu = data;
+
+ return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
+}
+
+static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
+{
+ wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
+
+ switch (vtcr & VTCR_EL2_TG0_MASK) {
+ case VTCR_EL2_TG0_4K:
+ wi->pgshift = 12; break;
+ case VTCR_EL2_TG0_16K:
+ wi->pgshift = 14; break;
+ case VTCR_EL2_TG0_64K:
+ default: /* IMPDEF: treat any other value as 64k */
+ wi->pgshift = 16; break;
+ }
+
+ wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
+ /* Global limit for now, should eventually be per-VM */
+ wi->max_oa_bits = min(get_kvm_ipa_limit(),
+ ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr)));
+}
+
+int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
+ struct kvm_s2_trans *result)
+{
+ u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
+ struct s2_walk_info wi;
+ int ret;
+
+ result->esr = 0;
+
+ if (!vcpu_has_nv(vcpu))
+ return 0;
+
+ wi.read_desc = read_guest_s2_desc;
+ wi.data = vcpu;
+ wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
+
+ vtcr_to_walk_info(vtcr, &wi);
+
+ wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
+
+ ret = walk_nested_s2_pgd(gipa, &wi, result);
+ if (ret)
+ result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
+
+ return ret;
+}
+
+static unsigned int ttl_to_size(u8 ttl)
+{
+ int level = ttl & 3;
+ int gran = (ttl >> 2) & 3;
+ unsigned int max_size = 0;
+
+ switch (gran) {
+ case TLBI_TTL_TG_4K:
+ switch (level) {
+ case 0:
+ break;
+ case 1:
+ max_size = SZ_1G;
+ break;
+ case 2:
+ max_size = SZ_2M;
+ break;
+ case 3:
+ max_size = SZ_4K;
+ break;
+ }
+ break;
+ case TLBI_TTL_TG_16K:
+ switch (level) {
+ case 0:
+ case 1:
+ break;
+ case 2:
+ max_size = SZ_32M;
+ break;
+ case 3:
+ max_size = SZ_16K;
+ break;
+ }
+ break;
+ case TLBI_TTL_TG_64K:
+ switch (level) {
+ case 0:
+ case 1:
+ /* No 52bit IPA support */
+ break;
+ case 2:
+ max_size = SZ_512M;
+ break;
+ case 3:
+ max_size = SZ_64K;
+ break;
+ }
+ break;
+ default: /* No size information */
+ break;
+ }
+
+ return max_size;
+}
+
+/*
+ * Compute the equivalent of the TTL field by parsing the shadow PT. The
+ * granule size is extracted from the cached VTCR_EL2.TG0 while the level is
+ * retrieved from first entry carrying the level as a tag.
+ */
+static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
+{
+ u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
+ kvm_pte_t pte;
+ u8 ttl, level;
+
+ lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
+
+ switch (vtcr & VTCR_EL2_TG0_MASK) {
+ case VTCR_EL2_TG0_4K:
+ ttl = (TLBI_TTL_TG_4K << 2);
+ break;
+ case VTCR_EL2_TG0_16K:
+ ttl = (TLBI_TTL_TG_16K << 2);
+ break;
+ case VTCR_EL2_TG0_64K:
+ default: /* IMPDEF: treat any other value as 64k */
+ ttl = (TLBI_TTL_TG_64K << 2);
+ break;
+ }
+
+ tmp = addr;
+
+again:
+ /* Iteratively compute the block sizes for a particular granule size */
+ switch (vtcr & VTCR_EL2_TG0_MASK) {
+ case VTCR_EL2_TG0_4K:
+ if (sz < SZ_4K) sz = SZ_4K;
+ else if (sz < SZ_2M) sz = SZ_2M;
+ else if (sz < SZ_1G) sz = SZ_1G;
+ else sz = 0;
+ break;
+ case VTCR_EL2_TG0_16K:
+ if (sz < SZ_16K) sz = SZ_16K;
+ else if (sz < SZ_32M) sz = SZ_32M;
+ else sz = 0;
+ break;
+ case VTCR_EL2_TG0_64K:
+ default: /* IMPDEF: treat any other value as 64k */
+ if (sz < SZ_64K) sz = SZ_64K;
+ else if (sz < SZ_512M) sz = SZ_512M;
+ else sz = 0;
+ break;
+ }
+
+ if (sz == 0)
+ return 0;
+
+ tmp &= ~(sz - 1);
+ if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
+ goto again;
+ if (!(pte & PTE_VALID))
+ goto again;
+ level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
+ if (!level)
+ goto again;
+
+ ttl |= level;
+
+ /*
+ * We now have found some level information in the shadow S2. Check
+ * that the resulting range is actually including the original IPA.
+ */
+ sz = ttl_to_size(ttl);
+ if (addr < (tmp + sz))
+ return ttl;
+
+ return 0;
+}
+
+unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
+{
+ struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
+ unsigned long max_size;
+ u8 ttl;
+
+ ttl = FIELD_GET(TLBI_TTL_MASK, val);
+
+ if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
+ /* No TTL, check the shadow S2 for a hint */
+ u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
+ ttl = get_guest_mapping_ttl(mmu, addr);
+ }
+
+ max_size = ttl_to_size(ttl);
+
+ if (!max_size) {
+ /* Compute the maximum extent of the invalidation */
+ switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
+ case VTCR_EL2_TG0_4K:
+ max_size = SZ_1G;
+ break;
+ case VTCR_EL2_TG0_16K:
+ max_size = SZ_32M;
+ break;
+ case VTCR_EL2_TG0_64K:
+ default: /* IMPDEF: treat any other value as 64k */
+ /*
+ * No, we do not support 52bit IPA in nested yet. Once
+ * we do, this should be 4TB.
+ */
+ max_size = SZ_512M;
+ break;
+ }
+ }
+
+ WARN_ON(!max_size);
+ return max_size;
+}
+
+/*
+ * We can have multiple *different* MMU contexts with the same VMID:
+ *
+ * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
+ *
+ * - Multiple vcpus using private S2s (huh huh...), hence differing by the
+ * VBBTR_EL2.BADDR address
+ *
+ * - A combination of the above...
+ *
+ * We can always identify which MMU context to pick at run-time. However,
+ * TLB invalidation involving a VMID must take action on all the TLBs using
+ * this particular VMID. This translates into applying the same invalidation
+ * operation to all the contexts that are using this VMID. Moar phun!
+ */
+void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
+ const union tlbi_info *info,
+ void (*tlbi_callback)(struct kvm_s2_mmu *,
+ const union tlbi_info *))
+{
+ write_lock(&kvm->mmu_lock);
+
+ for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
+ struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
+
+ if (!kvm_s2_mmu_valid(mmu))
+ continue;
+
+ if (vmid == get_vmid(mmu->tlb_vttbr))
+ tlbi_callback(mmu, info);
+ }
+
+ write_unlock(&kvm->mmu_lock);
+}
+
+struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ bool nested_stage2_enabled;
+ u64 vttbr, vtcr, hcr;
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
+ vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
+ hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
+
+ nested_stage2_enabled = hcr & HCR_VM;
+
+ /* Don't consider the CnP bit for the vttbr match */
+ vttbr &= ~VTTBR_CNP_BIT;
+
+ /*
+ * Two possibilities when looking up a S2 MMU context:
+ *
+ * - either S2 is enabled in the guest, and we need a context that is
+ * S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
+ * which makes it safe from a TLB conflict perspective (a broken
+ * guest won't be able to generate them),
+ *
+ * - or S2 is disabled, and we need a context that is S2-disabled
+ * and matches the VMID only, as all TLBs are tagged by VMID even
+ * if S2 translation is disabled.
+ */
+ for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
+ struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
+
+ if (!kvm_s2_mmu_valid(mmu))
+ continue;
+
+ if (nested_stage2_enabled &&
+ mmu->nested_stage2_enabled &&
+ vttbr == mmu->tlb_vttbr &&
+ vtcr == mmu->tlb_vtcr)
+ return mmu;
+
+ if (!nested_stage2_enabled &&
+ !mmu->nested_stage2_enabled &&
+ get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
+ return mmu;
+ }
+ return NULL;
+}
+
+static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_s2_mmu *s2_mmu;
+ int i;
+
+ lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
+
+ s2_mmu = lookup_s2_mmu(vcpu);
+ if (s2_mmu)
+ goto out;
+
+ /*
+ * Make sure we don't always search from the same point, or we
+ * will always reuse a potentially active context, leaving
+ * free contexts unused.
+ */
+ for (i = kvm->arch.nested_mmus_next;
+ i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
+ i++) {
+ s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
+
+ if (atomic_read(&s2_mmu->refcnt) == 0)
+ break;
+ }
+ BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
+
+ /* Set the scene for the next search */
+ kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
+
+ /* Clear the old state */
+ if (kvm_s2_mmu_valid(s2_mmu))
+ kvm_stage2_unmap_range(s2_mmu, 0, kvm_phys_size(s2_mmu));
+
+ /*
+ * The virtual VMID (modulo CnP) will be used as a key when matching
+ * an existing kvm_s2_mmu.
+ *
+ * We cache VTCR at allocation time, once and for all. It'd be great
+ * if the guest didn't screw that one up, as this is not very
+ * forgiving...
+ */
+ s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
+ s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
+ s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
+
+out:
+ atomic_inc(&s2_mmu->refcnt);
+ return s2_mmu;
+}
+
+void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
+{
+ /* CnP being set denotes an invalid entry */
+ mmu->tlb_vttbr = VTTBR_CNP_BIT;
+ mmu->nested_stage2_enabled = false;
+ atomic_set(&mmu->refcnt, 0);
+}
+
+void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
+{
+ if (is_hyp_ctxt(vcpu)) {
+ vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
+ } else {
+ write_lock(&vcpu->kvm->mmu_lock);
+ vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
+ write_unlock(&vcpu->kvm->mmu_lock);
+ }
+}
+
+void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
+{
+ if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) {
+ atomic_dec(&vcpu->arch.hw_mmu->refcnt);
+ vcpu->arch.hw_mmu = NULL;
+ }
+}
+
+/*
+ * Returns non-zero if permission fault is handled by injecting it to the next
+ * level hypervisor.
+ */
+int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
+{
+ bool forward_fault = false;
+
+ trans->esr = 0;
+
+ if (!kvm_vcpu_trap_is_permission_fault(vcpu))
+ return 0;
+
+ if (kvm_vcpu_trap_is_iabt(vcpu)) {
+ forward_fault = !kvm_s2_trans_executable(trans);
+ } else {
+ bool write_fault = kvm_is_write_fault(vcpu);
+
+ forward_fault = ((write_fault && !trans->writable) ||
+ (!write_fault && !trans->readable));
+ }
+
+ if (forward_fault)
+ trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
+
+ return forward_fault;
+}
+
+int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
+{
+ vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
+ vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
+
+ return kvm_inject_nested_sync(vcpu, esr_el2);
+}
+
+void kvm_nested_s2_wp(struct kvm *kvm)
+{
+ int i;
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
+ struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
+
+ if (kvm_s2_mmu_valid(mmu))
+ kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
+ }
+}
+
+void kvm_nested_s2_unmap(struct kvm *kvm)
+{
+ int i;
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
+ struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
+
+ if (kvm_s2_mmu_valid(mmu))
+ kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu));
+ }
+}
+
+void kvm_nested_s2_flush(struct kvm *kvm)
+{
+ int i;
+
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
+ struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
+
+ if (kvm_s2_mmu_valid(mmu))
+ kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
+ }
+}
+
+void kvm_arch_flush_shadow_all(struct kvm *kvm)
+{
+ int i;
+
+ for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
+ struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
+
+ if (!WARN_ON(atomic_read(&mmu->refcnt)))
+ kvm_free_stage2_pgd(mmu);
+ }
+ kfree(kvm->arch.nested_mmus);
+ kvm->arch.nested_mmus = NULL;
+ kvm->arch.nested_mmus_size = 0;
+ kvm_uninit_stage2_mmu(kvm);
+}
+
+/*
* Our emulated CPU doesn't support all the possible features. For the
* sake of simplicity (and probably mental sanity), wipe out a number
* of feature bits we don't intend to support for the time being.
@@ -29,14 +805,13 @@ static u64 limit_nv_id_reg(u32 id, u64 val)
switch (id) {
case SYS_ID_AA64ISAR0_EL1:
- /* Support everything but TME, O.S. and Range TLBIs */
- val &= ~(NV_FTR(ISAR0, TLB) |
- NV_FTR(ISAR0, TME));
+ /* Support everything but TME */
+ val &= ~NV_FTR(ISAR0, TME);
break;
case SYS_ID_AA64ISAR1_EL1:
- /* Support everything but Spec Invalidation */
- val &= ~(GENMASK_ULL(63, 56) |
+ /* Support everything but Spec Invalidation and LS64 */
+ val &= ~(NV_FTR(ISAR1, LS64) |
NV_FTR(ISAR1, SPECRES));
break;
diff --git a/arch/arm64/kvm/reset.c b/arch/arm64/kvm/reset.c
index 3fc8ca164dbe..0b0ae5ae7bc2 100644
--- a/arch/arm64/kvm/reset.c
+++ b/arch/arm64/kvm/reset.c
@@ -268,6 +268,12 @@ void kvm_reset_vcpu(struct kvm_vcpu *vcpu)
preempt_enable();
}
+u32 kvm_get_pa_bits(struct kvm *kvm)
+{
+ /* Fixed limit until we can configure ID_AA64MMFR0.PARange */
+ return kvm_ipa_limit;
+}
+
u32 get_kvm_ipa_limit(void)
{
return kvm_ipa_limit;
diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c
index 22b45a15d068..803cd5f16e43 100644
--- a/arch/arm64/kvm/sys_regs.c
+++ b/arch/arm64/kvm/sys_regs.c
@@ -2741,6 +2741,264 @@ static const struct sys_reg_desc sys_reg_descs[] = {
EL2_REG(SP_EL2, NULL, reset_unknown, 0),
};
+static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
+{
+ struct kvm *kvm = vpcu->kvm;
+ u8 CRm = sys_reg_CRm(instr);
+
+ if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
+ !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
+ return false;
+
+ if (CRm == TLBI_CRm_nROS &&
+ !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
+ return false;
+
+ return true;
+}
+
+static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+
+ if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ write_lock(&vcpu->kvm->mmu_lock);
+
+ /*
+ * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
+ * corresponding VMIDs.
+ */
+ kvm_nested_s2_unmap(vcpu->kvm);
+
+ write_unlock(&vcpu->kvm->mmu_lock);
+
+ return true;
+}
+
+static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
+{
+ struct kvm *kvm = vpcu->kvm;
+ u8 CRm = sys_reg_CRm(instr);
+ u8 Op2 = sys_reg_Op2(instr);
+
+ if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
+ !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
+ return false;
+
+ if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
+ !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
+ return false;
+
+ if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
+ !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
+ return false;
+
+ if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
+ !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
+ return false;
+
+ return true;
+}
+
+/* Only defined here as this is an internal "abstraction" */
+union tlbi_info {
+ struct {
+ u64 start;
+ u64 size;
+ } range;
+
+ struct {
+ u64 addr;
+ } ipa;
+
+ struct {
+ u64 addr;
+ u32 encoding;
+ } va;
+};
+
+static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
+ const union tlbi_info *info)
+{
+ kvm_stage2_unmap_range(mmu, info->range.start, info->range.size);
+}
+
+static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+ u64 limit, vttbr;
+
+ if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
+ limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
+
+ kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
+ &(union tlbi_info) {
+ .range = {
+ .start = 0,
+ .size = limit,
+ },
+ },
+ s2_mmu_unmap_range);
+
+ return true;
+}
+
+static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+ u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
+ u64 base, range, tg, num, scale;
+ int shift;
+
+ if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ /*
+ * Because the shadow S2 structure doesn't necessarily reflect that
+ * of the guest's S2 (different base granule size, for example), we
+ * decide to ignore TTL and only use the described range.
+ */
+ tg = FIELD_GET(GENMASK(47, 46), p->regval);
+ scale = FIELD_GET(GENMASK(45, 44), p->regval);
+ num = FIELD_GET(GENMASK(43, 39), p->regval);
+ base = p->regval & GENMASK(36, 0);
+
+ switch(tg) {
+ case 1:
+ shift = 12;
+ break;
+ case 2:
+ shift = 14;
+ break;
+ case 3:
+ default: /* IMPDEF: handle tg==0 as 64k */
+ shift = 16;
+ break;
+ }
+
+ base <<= shift;
+ range = __TLBI_RANGE_PAGES(num, scale) << shift;
+
+ kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
+ &(union tlbi_info) {
+ .range = {
+ .start = base,
+ .size = range,
+ },
+ },
+ s2_mmu_unmap_range);
+
+ return true;
+}
+
+static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
+ const union tlbi_info *info)
+{
+ unsigned long max_size;
+ u64 base_addr;
+
+ /*
+ * We drop a number of things from the supplied value:
+ *
+ * - NS bit: we're non-secure only.
+ *
+ * - IPA[51:48]: We don't support 52bit IPA just yet...
+ *
+ * And of course, adjust the IPA to be on an actual address.
+ */
+ base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
+ max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
+ base_addr &= ~(max_size - 1);
+
+ kvm_stage2_unmap_range(mmu, base_addr, max_size);
+}
+
+static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+ u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
+
+ if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
+ &(union tlbi_info) {
+ .ipa = {
+ .addr = p->regval,
+ },
+ },
+ s2_mmu_unmap_ipa);
+
+ return true;
+}
+
+static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
+ const union tlbi_info *info)
+{
+ WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
+}
+
+static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+ u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
+
+ /*
+ * If we're here, this is because we've trapped on a EL1 TLBI
+ * instruction that affects the EL1 translation regime while
+ * we're running in a context that doesn't allow us to let the
+ * HW do its thing (aka vEL2):
+ *
+ * - HCR_EL2.E2H == 0 : a non-VHE guest
+ * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
+ *
+ * We don't expect these helpers to ever be called when running
+ * in a vEL1 context.
+ */
+
+ WARN_ON(!vcpu_is_el2(vcpu));
+
+ if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding)) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
+ &(union tlbi_info) {
+ .va = {
+ .addr = p->regval,
+ .encoding = sys_encoding,
+ },
+ },
+ s2_mmu_tlbi_s1e1);
+
+ return true;
+}
+
+#define SYS_INSN(insn, access_fn) \
+ { \
+ SYS_DESC(OP_##insn), \
+ .access = (access_fn), \
+ }
+
static struct sys_reg_desc sys_insn_descs[] = {
{ SYS_DESC(SYS_DC_ISW), access_dcsw },
{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
@@ -2751,6 +3009,146 @@ static struct sys_reg_desc sys_insn_descs[] = {
{ SYS_DESC(SYS_DC_CISW), access_dcsw },
{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
+
+ SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
+ SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
+ SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
+ SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
+ SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
+ SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
+
+ SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
+ SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
+ SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
+ SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
+
+ SYS_INSN(TLBI_ALLE2OS, trap_undef),
+ SYS_INSN(TLBI_VAE2OS, trap_undef),
+ SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
+ SYS_INSN(TLBI_VALE2OS, trap_undef),
+ SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
+
+ SYS_INSN(TLBI_RVAE2IS, trap_undef),
+ SYS_INSN(TLBI_RVALE2IS, trap_undef),
+
+ SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
+ SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
+ SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
+ SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
+ SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
+ SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
+ SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
+ SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
+ SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
+ SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
+ SYS_INSN(TLBI_RVAE2OS, trap_undef),
+ SYS_INSN(TLBI_RVALE2OS, trap_undef),
+ SYS_INSN(TLBI_RVAE2, trap_undef),
+ SYS_INSN(TLBI_RVALE2, trap_undef),
+ SYS_INSN(TLBI_ALLE1, handle_alle1is),
+ SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
+
+ SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
+ SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
+ SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
+ SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
+
+ SYS_INSN(TLBI_ALLE2OSNXS, trap_undef),
+ SYS_INSN(TLBI_VAE2OSNXS, trap_undef),
+ SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
+ SYS_INSN(TLBI_VALE2OSNXS, trap_undef),
+ SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
+
+ SYS_INSN(TLBI_RVAE2ISNXS, trap_undef),
+ SYS_INSN(TLBI_RVALE2ISNXS, trap_undef),
+ SYS_INSN(TLBI_ALLE2ISNXS, trap_undef),
+ SYS_INSN(TLBI_VAE2ISNXS, trap_undef),
+
+ SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
+ SYS_INSN(TLBI_VALE2ISNXS, trap_undef),
+ SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
+ SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
+ SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
+ SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
+ SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
+ SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
+ SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
+ SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
+ SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
+ SYS_INSN(TLBI_RVAE2OSNXS, trap_undef),
+ SYS_INSN(TLBI_RVALE2OSNXS, trap_undef),
+ SYS_INSN(TLBI_RVAE2NXS, trap_undef),
+ SYS_INSN(TLBI_RVALE2NXS, trap_undef),
+ SYS_INSN(TLBI_ALLE2NXS, trap_undef),
+ SYS_INSN(TLBI_VAE2NXS, trap_undef),
+ SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
+ SYS_INSN(TLBI_VALE2NXS, trap_undef),
+ SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
};
static const struct sys_reg_desc *first_idreg;