diff options
54 files changed, 1734 insertions, 839 deletions
diff --git a/Documentation/RCU/NMI-RCU.rst b/Documentation/RCU/NMI-RCU.rst index 2a92bc685ef1..dff60a80b386 100644 --- a/Documentation/RCU/NMI-RCU.rst +++ b/Documentation/RCU/NMI-RCU.rst @@ -8,7 +8,7 @@ Although RCU is usually used to protect read-mostly data structures, it is possible to use RCU to provide dynamic non-maskable interrupt handlers, as well as dynamic irq handlers. This document describes how to do this, drawing loosely from Zwane Mwaikambo's NMI-timer -work in "arch/x86/kernel/traps.c". +work in an old version of "arch/x86/kernel/traps.c". The relevant pieces of code are listed below, each followed by a brief explanation:: @@ -116,7 +116,7 @@ Answer to Quick Quiz: This same sad story can happen on other CPUs when using a compiler with aggressive pointer-value speculation - optimizations. + optimizations. (But please don't!) More important, the rcu_dereference_sched() makes it clear to someone reading the code that the pointer is diff --git a/Documentation/RCU/UP.rst b/Documentation/RCU/UP.rst index e26dda27430c..8b20fd45f255 100644 --- a/Documentation/RCU/UP.rst +++ b/Documentation/RCU/UP.rst @@ -38,7 +38,7 @@ by having call_rcu() directly invoke its arguments only if it was called from process context. However, this can fail in a similar manner. Suppose that an RCU-based algorithm again scans a linked list containing -elements A, B, and C in process contexts, but that it invokes a function +elements A, B, and C in process context, but that it invokes a function on each element as it is scanned. Suppose further that this function deletes element B from the list, then passes it to call_rcu() for deferred freeing. This may be a bit unconventional, but it is perfectly legal @@ -59,7 +59,8 @@ Example 3: Death by Deadlock Suppose that call_rcu() is invoked while holding a lock, and that the callback function must acquire this same lock. In this case, if call_rcu() were to directly invoke the callback, the result would -be self-deadlock. +be self-deadlock *even if* this invocation occurred from a later +call_rcu() invocation a full grace period later. In some cases, it would possible to restructure to code so that the call_rcu() is delayed until after the lock is released. However, @@ -85,6 +86,14 @@ Quick Quiz #2: :ref:`Answers to Quick Quiz <answer_quick_quiz_up>` +It is important to note that userspace RCU implementations *do* +permit call_rcu() to directly invoke callbacks, but only if a full +grace period has elapsed since those callbacks were queued. This is +the case because some userspace environments are extremely constrained. +Nevertheless, people writing userspace RCU implementations are strongly +encouraged to avoid invoking callbacks from call_rcu(), thus obtaining +the deadlock-avoidance benefits called out above. + Summary ------- diff --git a/Documentation/RCU/lockdep.rst b/Documentation/RCU/lockdep.rst index 9308f1bdba05..2749f43ec1b0 100644 --- a/Documentation/RCU/lockdep.rst +++ b/Documentation/RCU/lockdep.rst @@ -69,9 +69,8 @@ checking of rcu_dereference() primitives: value of the pointer itself, for example, against NULL. The rcu_dereference_check() check expression can be any boolean -expression, but would normally include a lockdep expression. However, -any boolean expression can be used. For a moderately ornate example, -consider the following:: +expression, but would normally include a lockdep expression. For a +moderately ornate example, consider the following:: file = rcu_dereference_check(fdt->fd[fd], lockdep_is_held(&files->file_lock) || @@ -97,10 +96,10 @@ code, it could instead be written as follows:: atomic_read(&files->count) == 1); This would verify cases #2 and #3 above, and furthermore lockdep would -complain if this was used in an RCU read-side critical section unless one -of these two cases held. Because rcu_dereference_protected() omits all -barriers and compiler constraints, it generates better code than do the -other flavors of rcu_dereference(). On the other hand, it is illegal +complain even if this was used in an RCU read-side critical section unless +one of these two cases held. Because rcu_dereference_protected() omits +all barriers and compiler constraints, it generates better code than do +the other flavors of rcu_dereference(). On the other hand, it is illegal to use rcu_dereference_protected() if either the RCU-protected pointer or the RCU-protected data that it points to can change concurrently. diff --git a/Documentation/RCU/rcu.rst b/Documentation/RCU/rcu.rst index 3cfe01ba9a49..bf6617b330a7 100644 --- a/Documentation/RCU/rcu.rst +++ b/Documentation/RCU/rcu.rst @@ -77,15 +77,17 @@ Frequently Asked Questions search for the string "Patent" in Documentation/RCU/RTFP.txt to find them. Of these, one was allowed to lapse by the assignee, and the others have been contributed to the Linux kernel under GPL. + Many (but not all) have long since expired. There are now also LGPL implementations of user-level RCU available (https://liburcu.org/). - I hear that RCU needs work in order to support realtime kernels? - Realtime-friendly RCU can be enabled via the CONFIG_PREEMPT_RCU + Realtime-friendly RCU are enabled via the CONFIG_PREEMPTION kernel configuration parameter. - Where can I find more information on RCU? See the Documentation/RCU/RTFP.txt file. - Or point your browser at (http://www.rdrop.com/users/paulmck/RCU/). + Or point your browser at (https://docs.google.com/document/d/1X0lThx8OK0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit) + or (https://docs.google.com/document/d/1GCdQC8SDbb54W1shjEXqGZ0Rq8a6kIeYutdSIajfpLA/edit?usp=sharing). diff --git a/Documentation/RCU/rcu_dereference.rst b/Documentation/RCU/rcu_dereference.rst index 81e828c8313b..3b739f6243c8 100644 --- a/Documentation/RCU/rcu_dereference.rst +++ b/Documentation/RCU/rcu_dereference.rst @@ -19,8 +19,9 @@ Follow these rules to keep your RCU code working properly: can reload the value, and won't your code have fun with two different values for a single pointer! Without rcu_dereference(), DEC Alpha can load a pointer, dereference that pointer, and - return data preceding initialization that preceded the store of - the pointer. + return data preceding initialization that preceded the store + of the pointer. (As noted later, in recent kernels READ_ONCE() + also prevents DEC Alpha from playing these tricks.) In addition, the volatile cast in rcu_dereference() prevents the compiler from deducing the resulting pointer value. Please see @@ -34,7 +35,7 @@ Follow these rules to keep your RCU code working properly: takes on the role of the lockless_dereference() primitive that was removed in v4.15. -- You are only permitted to use rcu_dereference on pointer values. +- You are only permitted to use rcu_dereference() on pointer values. The compiler simply knows too much about integral values to trust it to carry dependencies through integer operations. There are a very few exceptions, namely that you can temporarily @@ -240,6 +241,7 @@ precautions. To see this, consider the following code fragment:: struct foo *q; int r1, r2; + rcu_read_lock(); p = rcu_dereference(gp2); if (p == NULL) return; @@ -248,7 +250,10 @@ precautions. To see this, consider the following code fragment:: if (p == q) { /* The compiler decides that q->c is same as p->c. */ r2 = p->c; /* Could get 44 on weakly order system. */ + } else { + r2 = p->c - r1; /* Unconditional access to p->c. */ } + rcu_read_unlock(); do_something_with(r1, r2); } @@ -297,6 +302,7 @@ Then one approach is to use locking, for example, as follows:: struct foo *q; int r1, r2; + rcu_read_lock(); p = rcu_dereference(gp2); if (p == NULL) return; @@ -306,7 +312,12 @@ Then one approach is to use locking, for example, as follows:: if (p == q) { /* The compiler decides that q->c is same as p->c. */ r2 = p->c; /* Locking guarantees r2 == 144. */ + } else { + spin_lock(&q->lock); + r2 = q->c - r1; + spin_unlock(&q->lock); } + rcu_read_unlock(); spin_unlock(&p->lock); do_something_with(r1, r2); } @@ -364,7 +375,7 @@ the exact value of "p" even in the not-equals case. This allows the compiler to make the return values independent of the load from "gp", in turn destroying the ordering between this load and the loads of the return values. This can result in "p->b" returning pre-initialization -garbage values. +garbage values on weakly ordered systems. In short, rcu_dereference() is *not* optional when you are going to dereference the resulting pointer. @@ -430,7 +441,7 @@ member of the rcu_dereference() to use in various situations: SPARSE CHECKING OF RCU-PROTECTED POINTERS ----------------------------------------- -The sparse static-analysis tool checks for direct access to RCU-protected +The sparse static-analysis tool checks for non-RCU access to RCU-protected pointers, which can result in "interesting" bugs due to compiler optimizations involving invented loads and perhaps also load tearing. For example, suppose someone mistakenly does something like this:: diff --git a/Documentation/RCU/rcubarrier.rst b/Documentation/RCU/rcubarrier.rst index 3b4a24877496..6da7f66da2a8 100644 --- a/Documentation/RCU/rcubarrier.rst +++ b/Documentation/RCU/rcubarrier.rst @@ -5,37 +5,12 @@ RCU and Unloadable Modules [Originally published in LWN Jan. 14, 2007: http://lwn.net/Articles/217484/] -RCU (read-copy update) is a synchronization mechanism that can be thought -of as a replacement for read-writer locking (among other things), but with -very low-overhead readers that are immune to deadlock, priority inversion, -and unbounded latency. RCU read-side critical sections are delimited -by rcu_read_lock() and rcu_read_unlock(), which, in non-CONFIG_PREEMPTION -kernels, generate no code whatsoever. - -This means that RCU writers are unaware of the presence of concurrent -readers, so that RCU updates to shared data must be undertaken quite -carefully, leaving an old version of the data structure in place until all -pre-existing readers have finished. These old versions are needed because -such readers might hold a reference to them. RCU updates can therefore be -rather expensive, and RCU is thus best suited for read-mostly situations. - -How can an RCU writer possibly determine when all readers are finished, -given that readers might well leave absolutely no trace of their -presence? There is a synchronize_rcu() primitive that blocks until all -pre-existing readers have completed. An updater wishing to delete an -element p from a linked list might do the following, while holding an -appropriate lock, of course:: - - list_del_rcu(p); - synchronize_rcu(); - kfree(p); - -But the above code cannot be used in IRQ context -- the call_rcu() -primitive must be used instead. This primitive takes a pointer to an -rcu_head struct placed within the RCU-protected data structure and -another pointer to a function that may be invoked later to free that -structure. Code to delete an element p from the linked list from IRQ -context might then be as follows:: +RCU updaters sometimes use call_rcu() to initiate an asynchronous wait for +a grace period to elapse. This primitive takes a pointer to an rcu_head +struct placed within the RCU-protected data structure and another pointer +to a function that may be invoked later to free that structure. Code to +delete an element p from the linked list from IRQ context might then be +as follows:: list_del_rcu(p); call_rcu(&p->rcu, p_callback); @@ -54,7 +29,7 @@ IRQ context. The function p_callback() might be defined as follows:: Unloading Modules That Use call_rcu() ------------------------------------- -But what if p_callback is defined in an unloadable module? +But what if the p_callback() function is defined in an unloadable module? If we unload the module while some RCU callbacks are pending, the CPUs executing these callbacks are going to be severely @@ -67,20 +42,21 @@ grace period to elapse, it does not wait for the callbacks to complete. One might be tempted to try several back-to-back synchronize_rcu() calls, but this is still not guaranteed to work. If there is a very -heavy RCU-callback load, then some of the callbacks might be deferred -in order to allow other processing to proceed. Such deferral is required -in realtime kernels in order to avoid excessive scheduling latencies. +heavy RCU-callback load, then some of the callbacks might be deferred in +order to allow other processing to proceed. For but one example, such +deferral is required in realtime kernels in order to avoid excessive +scheduling latencies. rcu_barrier() ------------- -We instead need the rcu_barrier() primitive. Rather than waiting for -a grace period to elapse, rcu_barrier() waits for all outstanding RCU -callbacks to complete. Please note that rcu_barrier() does **not** imply -synchronize_rcu(), in particular, if there are no RCU callbacks queued -anywhere, rcu_barrier() is within its rights to return immediately, -without waiting for a grace period to elapse. +This situation can be handled by the rcu_barrier() primitive. Rather +than waiting for a grace period to elapse, rcu_barrier() waits for all +outstanding RCU callbacks to complete. Please note that rcu_barrier() +does **not** imply synchronize_rcu(), in particular, if there are no RCU +callbacks queued anywhere, rcu_barrier() is within its rights to return +immediately, without waiting for anything, let alone a grace period. Pseudo-code using rcu_barrier() is as follows: @@ -89,83 +65,86 @@ Pseudo-code using rcu_barrier() is as follows: 3. Allow the module to be unloaded. There is also an srcu_barrier() function for SRCU, and you of course -must match the flavor of rcu_barrier() with that of call_rcu(). If your -module uses multiple flavors of call_rcu(), then it must also use multiple -flavors of rcu_barrier() when unloading that module. For example, if -it uses call_rcu(), call_srcu() on srcu_struct_1, and call_srcu() on -srcu_struct_2, then the following three lines of code will be required -when unloading:: - - 1 rcu_barrier(); - 2 srcu_barrier(&srcu_struct_1); - 3 srcu_barrier(&srcu_struct_2); - -The rcutorture module makes use of rcu_barrier() in its exit function -as follows:: - - 1 static void - 2 rcu_torture_cleanup(void) - 3 { - 4 int i; - 5 - 6 fullstop = 1; - 7 if (shuffler_task != NULL) { - 8 VERBOSE_PRINTK_STRING("Stopping rcu_torture_shuffle task"); - 9 kthread_stop(shuffler_task); - 10 } - 11 shuffler_task = NULL; +must match the flavor of srcu_barrier() with that of call_srcu(). +If your module uses multiple srcu_struct structures, then it must also +use multiple invocations of srcu_barrier() when unloading that module. +For example, if it uses call_rcu(), call_srcu() on srcu_struct_1, and +call_srcu() on srcu_struct_2, then the following three lines of code +will be required when unloading:: + + 1 rcu_barrier(); + 2 srcu_barrier(&srcu_struct_1); + 3 srcu_barrier(&srcu_struct_2); + +If latency is of the essence, workqueues could be used to run these +three functions concurrently. + +An ancient version of the rcutorture module makes use of rcu_barrier() +in its exit function as follows:: + + 1 static void + 2 rcu_torture_cleanup(void) + 3 { + 4 int i; + 5 + 6 fullstop = 1; + 7 if (shuffler_task != NULL) { + 8 VERBOSE_PRINTK_STRING("Stopping rcu_torture_shuffle task"); + 9 kthread_stop(shuffler_task); + 10 } + 11 shuffler_task = NULL; 12 - 13 if (writer_task != NULL) { - 14 VERBOSE_PRINTK_STRING("Stopping rcu_torture_writer task"); - 15 kthread_stop(writer_task); - 16 } - 17 writer_task = NULL; + 13 if (writer_task != NULL) { + 14 VERBOSE_PRINTK_STRING("Stopping rcu_torture_writer task"); + 15 kthread_stop(writer_task); + 16 } + 17 writer_task = NULL; 18 - 19 if (reader_tasks != NULL) { - 20 for (i = 0; i < nrealreaders; i++) { - 21 if (reader_tasks[i] != NULL) { - 22 VERBOSE_PRINTK_STRING( - 23 "Stopping rcu_torture_reader task"); - 24 kthread_stop(reader_tasks[i]); - 25 } - 26 reader_tasks[i] = NULL; - 27 } - 28 kfree(reader_tasks); - 29 reader_tasks = NULL; - 30 } - 31 rcu_torture_current = NULL; + 19 if (reader_tasks != NULL) { + 20 for (i = 0; i < nrealreaders; i++) { + 21 if (reader_tasks[i] != NULL) { + 22 VERBOSE_PRINTK_STRING( + 23 "Stopping rcu_torture_reader task"); + 24 kthread_stop(reader_tasks[i]); + 25 } + 26 reader_tasks[i] = NULL; + 27 } + 28 kfree(reader_tasks); + 29 reader_tasks = NULL; + 30 } + 31 rcu_torture_current = NULL; 32 - 33 if (fakewriter_tasks != NULL) { - 34 for (i = 0; i < nfakewriters; i++) { - 35 if (fakewriter_tasks[i] != NULL) { - 36 VERBOSE_PRINTK_STRING( - 37 "Stopping rcu_torture_fakewriter task"); - 38 kthread_stop(fakewriter_tasks[i]); - 39 } - 40 fakewriter_tasks[i] = NULL; - 41 } - 42 kfree(fakewriter_tasks); - 43 fakewriter_tasks = NULL; - 44 } + 33 if (fakewriter_tasks != NULL) { + 34 for (i = 0; i < nfakewriters; i++) { + 35 if (fakewriter_tasks[i] != NULL) { + 36 VERBOSE_PRINTK_STRING( + 37 "Stopping rcu_torture_fakewriter task"); + 38 kthread_stop(fakewriter_tasks[i]); + 39 } + 40 fakewriter_tasks[i] = NULL; + 41 } + 42 kfree(fakewriter_tasks); + 43 fakewriter_tasks = NULL; + 44 } 45 - 46 if (stats_task != NULL) { - 47 VERBOSE_PRINTK_STRING("Stopping rcu_torture_stats task"); - 48 kthread_stop(stats_task); - 49 } - 50 stats_task = NULL; + 46 if (stats_task != NULL) { + 47 VERBOSE_PRINTK_STRING("Stopping rcu_torture_stats task"); + 48 kthread_stop(stats_task); + 49 } + 50 stats_task = NULL; 51 - 52 /* Wait for all RCU callbacks to fire. */ - 53 rcu_barrier(); + 52 /* Wait for all RCU callbacks to fire. */ + 53 rcu_barrier(); 54 - 55 rcu_torture_stats_print(); /* -After- the stats thread is stopped! */ + 55 rcu_torture_stats_print(); /* -After- the stats thread is stopped! */ 56 - 57 if (cur_ops->cleanup != NULL) - 58 cur_ops->cleanup(); - 59 if (atomic_read(&n_rcu_torture_error)) - 60 rcu_torture_print_module_parms("End of test: FAILURE"); - 61 else - 62 rcu_torture_print_module_parms("End of test: SUCCESS"); - 63 } + 57 if (cur_ops->cleanup != NULL) + 58 cur_ops->cleanup(); + 59 if (atomic_read(&n_rcu_torture_error)) + 60 rcu_torture_print_module_parms("End of test: FAILURE"); + 61 else + 62 rcu_torture_print_module_parms("End of test: SUCCESS"); + 63 } Line 6 sets a global variable that prevents any RCU callbacks from re-posting themselves. This will not be necessary in most cases, since @@ -190,16 +169,17 @@ Quick Quiz #1: :ref:`Answer to Quick Quiz #1 <answer_rcubarrier_quiz_1>` Your module might have additional complications. For example, if your -module invokes call_rcu() from timers, you will need to first cancel all -the timers, and only then invoke rcu_barrier() to wait for any remaining +module invokes call_rcu() from timers, you will need to first refrain +from posting new timers, cancel (or wait for) all the already-posted +timers, and only then invoke rcu_barrier() to wait for any remaining RCU callbacks to complete. -Of course, if you module uses call_rcu(), you will need to invoke +Of course, if your module uses call_rcu(), you will need to invoke rcu_barrier() before unloading. Similarly, if your module uses call_srcu(), you will need to invoke srcu_barrier() before unloading, and on the same srcu_struct structure. If your module uses call_rcu() -**and** call_srcu(), then you will need to invoke rcu_barrier() **and** -srcu_barrier(). +**and** call_srcu(), then (as noted above) you will need to invoke +rcu_barrier() **and** srcu_barrier(). Implementing rcu_barrier() @@ -211,27 +191,40 @@ queues. His implementation queues an RCU callback on each of the per-CPU callback queues, and then waits until they have all started executing, at which point, all earlier RCU callbacks are guaranteed to have completed. -The original code for rcu_barrier() was as follows:: - - 1 void rcu_barrier(void) - 2 { - 3 BUG_ON(in_interrupt()); - 4 /* Take cpucontrol mutex to protect against CPU hotplug */ - 5 mutex_lock(&rcu_barrier_mutex); - 6 init_completion(&rcu_barrier_completion); - 7 atomic_set(&rcu_barrier_cpu_count, 0); - 8 on_each_cpu(rcu_barrier_func, NULL, 0, 1); - 9 wait_for_completion(&rcu_barrier_completion); - 10 mutex_unlock(&rcu_barrier_mutex); - 11 } - -Line 3 verifies that the caller is in process context, and lines 5 and 10 +The original code for rcu_barrier() was roughly as follows:: + + 1 void rcu_barrier(void) + 2 { + 3 BUG_ON(in_interrupt()); + 4 /* Take cpucontrol mutex to protect against CPU hotplug */ + 5 mutex_lock(&rcu_barrier_mutex); + 6 init_completion(&rcu_barrier_completion); + 7 atomic_set(&rcu_barrier_cpu_count, 1); + 8 on_each_cpu(rcu_barrier_func, NULL, 0, 1); + 9 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) + 10 complete(&rcu_barrier_completion); + 11 wait_for_completion(&rcu_barrier_completion); + 12 mutex_unlock(&rcu_barrier_mutex); + 13 } + +Line 3 verifies that the caller is in process context, and lines 5 and 12 use rcu_barrier_mutex to ensure that only one rcu_barrier() is using the global completion and counters at a time, which are initialized on lines 6 and 7. Line 8 causes each CPU to invoke rcu_barrier_func(), which is shown below. Note that the final "1" in on_each_cpu()'s argument list ensures that all the calls to rcu_barrier_func() will have completed -before on_each_cpu() returns. Line 9 then waits for the completion. +before on_each_cpu() returns. Line 9 removes the initial count from +rcu_barrier_cpu_count, and if this count is now zero, line 10 finalizes +the completion, which prevents line 11 from blocking. Either way, +line 11 then waits (if needed) for the completion. + +.. _rcubarrier_quiz_2: + +Quick Quiz #2: + Why doesn't line 8 initialize rcu_barrier_cpu_count to zero, + thereby avoiding the need for lines 9 and 10? + +:ref:`Answer to Quick Quiz #2 <answer_rcubarrier_quiz_2>` This code was rewritten in 2008 and several times thereafter, but this still gives the general idea. @@ -239,21 +232,21 @@ still gives the general idea. The rcu_barrier_func() runs on each CPU, where it invokes call_rcu() to post an RCU callback, as follows:: - 1 static void rcu_barrier_func(void *notused) - 2 { - 3 int cpu = smp_processor_id(); - 4 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); - 5 struct rcu_head *head; - 6 - 7 head = &rdp->barrier; - 8 atomic_inc(&rcu_barrier_cpu_count); - 9 call_rcu(head, rcu_barrier_callback); - 10 } + 1 static void rcu_barrier_func(void *notused) + 2 { + 3 int cpu = smp_processor_id(); + 4 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); + 5 struct rcu_head *head; + 6 + 7 head = &rdp->barrier; + 8 atomic_inc(&rcu_barrier_cpu_count); + 9 call_rcu(head, rcu_barrier_callback); + 10 } Lines 3 and 4 locate RCU's internal per-CPU rcu_data structure, which contains the struct rcu_head that needed for the later call to call_rcu(). Line 7 picks up a pointer to this struct rcu_head, and line -8 increments a global counter. This counter will later be decremented +8 increments the global counter. This counter will later be decremented by the callback. Line 9 then registers the rcu_barrier_callback() on the current CPU's queue. @@ -261,33 +254,34 @@ The rcu_barrier_callback() function simply atomically decrements the rcu_barrier_cpu_count variable and finalizes the completion when it reaches zero, as follows:: - 1 static void rcu_barrier_callback(struct rcu_head *notused) - 2 { - 3 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) - 4 complete(&rcu_barrier_completion); - 5 } + 1 static void rcu_barrier_callback(struct rcu_head *notused) + 2 { + 3 if (atomic_dec_and_test(&rcu_barrier_cpu_count)) + 4 complete(&rcu_barrier_completion); + 5 } -.. _rcubarrier_quiz_2: +.. _rcubarrier_quiz_3: -Quick Quiz #2: +Quick Quiz #3: What happens if CPU 0's rcu_barrier_func() executes immediately (thus incrementing rcu_barrier_cpu_count to the value one), but the other CPU's rcu_barrier_func() invocations are delayed for a full grace period? Couldn't this result in rcu_barrier() returning prematurely? -:ref:`Answer to Quick Quiz #2 <answer_rcubarrier_quiz_2>` +:ref:`Answer to Quick Quiz #3 <answer_rcubarrier_quiz_3>` The current rcu_barrier() implementation is more complex, due to the need to avoid disturbing idle CPUs (especially on battery-powered systems) and the need to minimally disturb non-idle CPUs in real-time systems. -However, the code above illustrates the concepts. +In addition, a great many optimizations have been applied. However, +the code above illustrates the concepts. rcu_barrier() Summary --------------------- -The rcu_barrier() primitive has seen relatively little use, since most +The rcu_barrier() primitive is used relatively infrequently, since most code using RCU is in the core kernel rather than in modules. However, if you are using RCU from an unloadable module, you need to use rcu_barrier() so that your module may be safely unloaded. @@ -302,7 +296,8 @@ Quick Quiz #1: Is there any other situation where rcu_barrier() might be required? -Answer: Interestingly enough, rcu_barrier() was not originally +Answer: + Interestingly enough, rcu_barrier() was not originally implemented for module unloading. Nikita Danilov was using RCU in a filesystem, which resulted in a similar situation at filesystem-unmount time. Dipankar Sarma coded up rcu_barrier() @@ -318,13 +313,48 @@ Answer: Interestingly enough, rcu_barrier() was not originally .. _answer_rcubarrier_quiz_2: Quick Quiz #2: + Why doesn't line 8 initialize rcu_barrier_cpu_count to zero, + thereby avoiding the need for lines 9 and 10? + +Answer: + Suppose that the on_each_cpu() function shown on line 8 was + delayed, so that CPU 0's rcu_barrier_func() executed and + the corresponding grace period elapsed, all before CPU 1's + rcu_barrier_func() started executing. This would result in + rcu_barrier_cpu_count being decremented to zero, so that line + 11's wait_for_completion() would return immediately, failing to + wait for CPU 1's callbacks to be invoked. + + Note that this was not a problem when the rcu_barrier() code + was first added back in 2005. This is because on_each_cpu() + disables preemption, which acted as an RCU read-side critical + section, thus preventing CPU 0's grace period from completing + until on_each_cpu() had dealt with all of the CPUs. However, + with the advent of preemptible RCU, rcu_barrier() no longer + waited on nonpreemptible regions of code in preemptible kernels, + that being the job of the new rcu_barrier_sched() function. + + However, with the RCU flavor consolidation around v4.20, this + possibility was once again ruled out, because the consolidated + RCU once again waits on nonpreemptible regions of code. + + Nevertheless, that extra count might still be a good idea. + Relying on these sort of accidents of implementation can result + in later surprise bugs when the implementation changes. + +:ref:`Back to Quick Quiz #2 <rcubarrier_quiz_2>` + +.. _answer_rcubarrier_quiz_3: + +Quick Quiz #3: What happens if CPU 0's rcu_barrier_func() executes immediately (thus incrementing rcu_barrier_cpu_count to the value one), but the other CPU's rcu_barrier_func() invocations are delayed for a full grace period? Couldn't this result in rcu_barrier() returning prematurely? -Answer: This cannot happen. The reason is that on_each_cpu() has its last +Answer: + This cannot happen. The reason is that on_each_cpu() has its last argument, the wait flag, set to "1". This flag is passed through to smp_call_function() and further to smp_call_function_on_cpu(), causing this latter to spin until the cross-CPU invocation of @@ -336,18 +366,15 @@ Answer: This cannot happen. The reason is that on_each_cpu() has its last Therefore, on_each_cpu() disables preemption across its call to smp_call_function() and also across the local call to - rcu_barrier_func(). This prevents the local CPU from context - switching, again preventing grace periods from completing. This + rcu_barrier_func(). Because recent RCU implementations treat + preemption-disabled regions of code as RCU read-side critical + sections, this prevents grace periods from completing. This means that all CPUs have executed rcu_barrier_func() before the first rcu_barrier_callback() can possibly execute, in turn preventing rcu_barrier_cpu_count from prematurely reaching zero. - Currently, -rt implementations of RCU keep but a single global - queue for RCU callbacks, and thus do not suffer from this - problem. However, when the -rt RCU eventually does have per-CPU - callback queues, things will have to change. One simple change - is to add an rcu_read_lock() before line 8 of rcu_barrier() - and an rcu_read_unlock() after line 8 of this same function. If - you can think of a better change, please let me know! + But if on_each_cpu() ever decides to forgo disabling preemption, + as might well happen due to real-time latency considerations, + initializing rcu_barrier_cpu_count to one will save the day. -:ref:`Back to Quick Quiz #2 <rcubarrier_quiz_2>` +:ref:`Back to Quick Quiz #3 <rcubarrier_quiz_3>` diff --git a/Documentation/RCU/rculist_nulls.rst b/Documentation/RCU/rculist_nulls.rst index ca4692775ad4..9a734bf54b76 100644 --- a/Documentation/RCU/rculist_nulls.rst +++ b/Documentation/RCU/rculist_nulls.rst @@ -14,19 +14,19 @@ Using 'nulls' ============= Using special makers (called 'nulls') is a convenient way -to solve following problem : +to solve following problem. -A typical RCU linked list managing objects which are -allocated with SLAB_TYPESAFE_BY_RCU kmem_cache can -use following algos : +Without 'nulls', a typical RCU linked list managing objects which are +allocated with SLAB_TYPESAFE_BY_RCU kmem_cache can use the following +algorithms: -1) Lookup algo --------------- +1) Lookup algorithm +------------------- :: - rcu_read_lock() begin: + rcu_read_lock() obj = lockless_lookup(key); if (obj) { if (!try_get_ref(obj)) // might fail for free objects @@ -38,6 +38,7 @@ use following algos : */ if (obj->key != key) { // not the object we expected put_ref(obj); + rcu_read_unlock(); goto begin; } } @@ -52,9 +53,9 @@ but a version with an additional memory barrier (smp_rmb()) { struct hlist_node *node, *next; for (pos = rcu_dereference((head)->first); - pos && ({ next = pos->next; smp_rmb(); prefetch(next); 1; }) && - ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); - pos = rcu_dereference(next)) + pos && ({ next = pos->next; smp_rmb(); prefetch(next); 1; }) && + ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); + pos = rcu_dereference(next)) if (obj->key == key) return obj; return NULL; @@ -64,9 +65,9 @@ And note the traditional hlist_for_each_entry_rcu() misses this smp_rmb():: struct hlist_node *node; for (pos = rcu_dereference((head)->first); - pos && ({ prefetch(pos->next); 1; }) && - ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); - pos = rcu_dereference(pos->next)) + pos && ({ prefetch(pos->next); 1; }) && + ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); + pos = rcu_dereference(pos->next)) if (obj->key == key) return obj; return NULL; @@ -82,36 +83,32 @@ Quoting Corey Minyard:: solved by pre-fetching the "next" field (with proper barriers) before checking the key." -2) Insert algo --------------- +2) Insertion algorithm +---------------------- We need to make sure a reader cannot read the new 'obj->obj_next' value -and previous value of 'obj->key'. Or else, an item could be deleted +and previous value of 'obj->key'. Otherwise, an item could be deleted from a chain, and inserted into another chain. If new chain was empty -before the move, 'next' pointer is NULL, and lockless reader can -not detect it missed following items in original chain. +before the move, 'next' pointer is NULL, and lockless reader can not +detect the fact that it missed following items in original chain. :: /* - * Please note that new inserts are done at the head of list, - * not in the middle or end. - */ + * Please note that new inserts are done at the head of list, + * not in the middle or end. + */ obj = kmem_cache_alloc(...); lock_chain(); // typically a spin_lock() obj->key = key; - /* - * we need to make sure obj->key is updated before obj->next - * or obj->refcnt - */ - smp_wmb(); - atomic_set(&obj->refcnt, 1); + atomic_set_release(&obj->refcnt, 1); // key before refcnt hlist_add_head_rcu(&obj->obj_node, list); unlock_chain(); // typically a spin_unlock() -3) Remove algo --------------- +3) Removal algorithm +-------------------- + Nothing special here, we can use a standard RCU hlist deletion. But thanks to SLAB_TYPESAFE_BY_RCU, beware a deleted object can be reused very very fast (before the end of RCU grace period) @@ -133,7 +130,7 @@ Avoiding extra smp_rmb() ======================== With hlist_nulls we can avoid extra smp_rmb() in lockless_lookup() -and extra smp_wmb() in insert function. +and extra _release() in insert function. For example, if we choose to store the slot number as the 'nulls' end-of-list marker for each slot of the hash table, we can detect @@ -142,59 +139,61 @@ to another chain) checking the final 'nulls' value if the lookup met the end of chain. If final 'nulls' value is not the slot number, then we must restart the lookup at the beginning. If the object was moved to the same chain, -then the reader doesn't care : It might eventually +then the reader doesn't care: It might occasionally scan the list again without harm. -1) lookup algo --------------- +1) lookup algorithm +------------------- :: head = &table[slot]; - rcu_read_lock(); begin: + rcu_read_lock(); hlist_nulls_for_each_entry_rcu(obj, node, head, member) { if (obj->key == key) { - if (!try_get_ref(obj)) // might fail for free objects + if (!try_get_ref(obj)) { // might fail for free objects + rcu_read_unlock(); goto begin; + } if (obj->key != key) { // not the object we expected put_ref(obj); + rcu_read_unlock(); goto begin; } - goto out; + goto out; + } + } + + // If the nulls value we got at the end of this lookup is + // not the expected one, we must restart lookup. + // We probably met an item that was moved to another chain. + if (get_nulls_value(node) != slot) { + put_ref(obj); + rcu_read_unlock(); + goto begin; } - /* - * if the nulls value we got at the end of this lookup is - * not the expected one, we must restart lookup. - * We probably met an item that was moved to another chain. - */ - if (get_nulls_value(node) != slot) - goto begin; obj = NULL; out: rcu_read_unlock(); -2) Insert function ------------------- +2) Insert algorithm +------------------- :: /* - * Please note that new inserts are done at the head of list, - * not in the middle or end. - */ + * Please note that new inserts are done at the head of list, + * not in the middle or end. + */ obj = kmem_cache_alloc(cachep); lock_chain(); // typically a spin_lock() obj->key = key; + atomic_set_release(&obj->refcnt, 1); // key before refcnt /* - * changes to obj->key must be visible before refcnt one - */ - smp_wmb(); - atomic_set(&obj->refcnt, 1); - /* - * insert obj in RCU way (readers might be traversing chain) - */ + * insert obj in RCU way (readers might be traversing chain) + */ hlist_nulls_add_head_rcu(&obj->obj_node, list); unlock_chain(); // typically a spin_unlock() diff --git a/Documentation/RCU/stallwarn.rst b/Documentation/RCU/stallwarn.rst index e38c587067fc..ca7b7cd806a1 100644 --- a/Documentation/RCU/stallwarn.rst +++ b/Documentation/RCU/stallwarn.rst @@ -25,10 +25,10 @@ warnings: - A CPU looping with bottom halves disabled. -- For !CONFIG_PREEMPTION kernels, a CPU looping anywhere in the kernel - without invoking schedule(). If the looping in the kernel is - really expected and desirable behavior, you might need to add - some calls to cond_resched(). +- For !CONFIG_PREEMPTION kernels, a CPU looping anywhere in the + kernel without potentially invoking schedule(). If the looping + in the kernel is really expected and desirable behavior, you + might need to add some calls to cond_resched(). - Booting Linux using a console connection that is too slow to keep up with the boot-time console-message rate. For example, @@ -108,16 +108,17 @@ warnings: - A bug in the RCU implementation. -- A hardware failure. This is quite unlikely, but has occurred - at least once in real life. A CPU failed in a running system, - becoming unresponsive, but not causing an immediate crash. - This resulted in a series of RCU CPU stall warnings, eventually - leading the realization that the CPU had failed. +- A hardware failure. This is quite unlikely, but is not at all + uncommon in large datacenter. In one memorable case some decades + back, a CPU failed in a running system, becoming unresponsive, + but not causing an immediate crash. This resulted in a series + of RCU CPU stall warnings, eventually leading the realization + that the CPU had failed. -The RCU, RCU-sched, and RCU-tasks implementations have CPU stall warning. -Note that SRCU does *not* have CPU stall warnings. Please note that -RCU only detects CPU stalls when there is a grace period in progress. -No grace period, no CPU stall warnings. +The RCU, RCU-sched, RCU-tasks, and RCU-tasks-trace implementations have +CPU stall warning. Note that SRCU does *not* have CPU stall warnings. +Please note that RCU only detects CPU stalls when there is a grace period +in progress. No grace period, no CPU stall warnings. To diagnose the cause of the stall, inspect the stack traces. The offending function will usually be near the top of the stack. @@ -205,16 +206,21 @@ RCU_STALL_RAT_DELAY rcupdate.rcu_task_stall_timeout ------------------------------- - This boot/sysfs parameter controls the RCU-tasks stall warning - interval. A value of zero or less suppresses RCU-tasks stall - warnings. A positive value sets the stall-warning interval - in seconds. An RCU-tasks stall warning starts with the line: + This boot/sysfs parameter controls the RCU-tasks and + RCU-tasks-trace stall warning intervals. A value of zero or less + suppresses RCU-tasks stall warnings. A positive value sets the + stall-warning interval in seconds. An RCU-tasks stall warning + starts with the line: INFO: rcu_tasks detected stalls on tasks: And continues with the output of sched_show_task() for each task stalling the current RCU-tasks grace period. + An RCU-tasks-trace stall warning starts (and continues) similarly: + + INFO: rcu_tasks_trace detected stalls on tasks + Interpreting RCU's CPU Stall-Detector "Splats" ============================================== @@ -248,7 +254,8 @@ dynticks counter, which will have an even-numbered value if the CPU is in dyntick-idle mode and an odd-numbered value otherwise. The hex number between the two "/"s is the value of the nesting, which will be a small non-negative number if in the idle loop (as shown above) and a -very large positive number otherwise. +very large positive number otherwise. The number following the final +"/" is the NMI nesting, which will be a small non-negative number. The "softirq=" portion of the message tracks the number of RCU softirq handlers that the stalled CPU has executed. The number before the "/" @@ -383,3 +390,95 @@ for example, "P3421". It is entirely possible to see stall warnings from normal and from expedited grace periods at about the same time during the same run. + +RCU_CPU_STALL_CPUTIME +===================== + +In kernels built with CONFIG_RCU_CPU_STALL_CPUTIME=y or booted with +rcupdate.rcu_cpu_stall_cputime=1, the following additional information +is supplied with each RCU CPU stall warning:: + + rcu: hardirqs softirqs csw/system + rcu: number: 624 45 0 + rcu: cputime: 69 1 2425 ==> 2500(ms) + +These statistics are collected during the sampling period. The values +in row "number:" are the number of hard interrupts, number of soft +interrupts, and number of context switches on the stalled CPU. The +first three values in row "cputime:" indicate the CPU time in +milliseconds consumed by hard interrupts, soft interrupts, and tasks +on the stalled CPU. The last number is the measurement interval, again +in milliseconds. Because user-mode tasks normally do not cause RCU CPU +stalls, these tasks are typically kernel tasks, which is why only the +system CPU time are considered. + +The sampling period is shown as follows:: + + |<------------first timeout---------->|<-----second timeout----->| + |<--half timeout-->|<--half timeout-->| | + | |<--first period-->| | + | |<-----------second sampling period---------->| + | | | | + snapshot time point 1st-stall 2nd-stall + +The following describes four typical scenarios: + +1. A CPU looping with interrupts disabled. + + :: + + rcu: hardirqs softirqs csw/system + rcu: number: 0 0 0 + rcu: cputime: 0 0 0 ==> 2500(ms) + + Because interrupts have been disabled throughout the measurement + interval, there are no interrupts and no context switches. + Furthermore, because CPU time consumption was measured using interrupt + handlers, the system CPU consumption is misleadingly measured as zero. + This scenario will normally also have "(0 ticks this GP)" printed on + this CPU's summary line. + +2. A CPU looping with bottom halves disabled. + + This is similar to the previous example, but with non-zero number of + and CPU time consumed by hard interrupts, along with non-zero CPU + time consumed by in-kernel execution:: + + rcu: hardirqs softirqs csw/system + rcu: number: 624 0 0 + rcu: cputime: 49 0 2446 ==> 2500(ms) + + The fact that there are zero softirqs gives a hint that these were + disabled, perhaps via local_bh_disable(). It is of course possible + that there were no softirqs, perhaps because all events that would + result in softirq execution are confined to other CPUs. In this case, + the diagnosis should continue as shown in the next example. + +3. A CPU looping with preemption disabled. + + Here, only the number of context switches is zero:: + + rcu: hardirqs softirqs csw/system + rcu: number: 624 45 0 + rcu: cputime: 69 1 2425 ==> 2500(ms) + + This situation hints that the stalled CPU was looping with preemption + disabled. + +4. No looping, but massive hard and soft interrupts. + + :: + + rcu: hardirqs softirqs csw/system + rcu: number: xx xx 0 + rcu: cputime: xx xx 0 ==> 2500(ms) + + Here, the number and CPU time of hard interrupts are all non-zero, + but the number of context switches and the in-kernel CPU time consumed + are zero. The number and cputime of soft interrupts will usually be + non-zero, but could be zero, for example, if the CPU was spinning + within a single hard interrupt handler. + + If this type of RCU CPU stall warning can be reproduced, you can + narrow it down by looking at /proc/interrupts or by writing code to + trace each interrupt, for example, by referring to show_interrupts(). diff --git a/Documentation/RCU/torture.rst b/Documentation/RCU/torture.rst index a90147713062..0316ba0c6922 100644 --- a/Documentation/RCU/torture.rst +++ b/Documentation/RCU/torture.rst @@ -206,7 +206,11 @@ values for memory may require disabling the callback-flooding tests using the --bootargs parameter discussed below. Sometimes additional debugging is useful, and in such cases the --kconfig -parameter to kvm.sh may be used, for example, ``--kconfig 'CONFIG_KASAN=y'``. +parameter to kvm.sh may be used, for example, ``--kconfig 'CONFIG_RCU_EQS_DEBUG=y'``. +In addition, there are the --gdb, --kasan, and --kcsan parameters. +Note that --gdb limits you to one scenario per kvm.sh run and requires +that you have another window open from which to run ``gdb`` as instructed +by the script. Kernel boot arguments can also be supplied, for example, to control rcutorture's module parameters. For example, to test a change to RCU's @@ -219,10 +223,17 @@ require disabling rcutorture's callback-flooding tests:: --bootargs 'rcutorture.fwd_progress=0' Sometimes all that is needed is a full set of kernel builds. This is -what the --buildonly argument does. +what the --buildonly parameter does. -Finally, the --trust-make argument allows each kernel build to reuse what -it can from the previous kernel build. +The --duration parameter can override the default run time of 30 minutes. +For example, ``--duration 2d`` would run for two days, ``--duration 3h`` +would run for three hours, ``--duration 5m`` would run for five minutes, +and ``--duration 45s`` would run for 45 seconds. This last can be useful +for tracking down rare boot-time failures. + +Finally, the --trust-make parameter allows each kernel build to reuse what +it can from the previous kernel build. Please note that without the +--trust-make parameter, your tags files may be demolished. There are additional more arcane arguments that are documented in the source code of the kvm.sh script. @@ -291,3 +302,73 @@ the following summary at the end of the run on a 12-CPU system:: TREE07 ------- 167347 GPs (30.9902/s) [rcu: g1079021 f0x0 ] n_max_cbs: 478732 CPU count limited from 16 to 12 TREE09 ------- 752238 GPs (139.303/s) [rcu: g13075057 f0x0 ] n_max_cbs: 99011 + + +Repeated Runs +============= + +Suppose that you are chasing down a rare boot-time failure. Although you +could use kvm.sh, doing so will rebuild the kernel on each run. If you +need (say) 1,000 runs to have confidence that you have fixed the bug, +these pointless rebuilds can become extremely annoying. + +This is why kvm-again.sh exists. + +Suppose that a previous kvm.sh run left its output in this directory:: + + tools/testing/selftests/rcutorture/res/2022.11.03-11.26.28 + +Then this run can be re-run without rebuilding as follow: + + kvm-again.sh tools/testing/selftests/rcutorture/res/2022.11.03-11.26.28 + +A few of the original run's kvm.sh parameters may be overridden, perhaps +most notably --duration and --bootargs. For example:: + + kvm-again.sh tools/testing/selftests/rcutorture/res/2022.11.03-11.26.28 \ + --duration 45s + +would re-run the previous test, but for only 45 seconds, thus facilitating +tracking down the aforementioned rare boot-time failure. + + +Distributed Runs +================ + +Although kvm.sh is quite useful, its testing is confined to a single +system. It is not all that hard to use your favorite framework to cause +(say) 5 instances of kvm.sh to run on your 5 systems, but this will very +likely unnecessarily rebuild kernels. In addition, manually distributing +the desired rcutorture scenarios across the available systems can be +painstaking and error-prone. + +And this is why the kvm-remote.sh script exists. + +If you the following command works:: + + ssh system0 date + +and if it also works for system1, system2, system3, system4, and system5, +and all of these systems have 64 CPUs, you can type:: + + kvm-remote.sh "system0 system1 system2 system3 system4 system5" \ + --cpus 64 --duration 8h --configs "5*CFLIST" + +This will build each default scenario's kernel on the local system, then +spread each of five instances of each scenario over the systems listed, +running each scenario for eight hours. At the end of the runs, the +results will be gathered, recorded, and printed. Most of the parameters +that kvm.sh will accept can be passed to kvm-remote.sh, but the list of +systems must come first. + +The kvm.sh ``--dryrun scenarios`` argument is useful for working out +how many scenarios may be run in one batch across a group of systems. + +You can also re-run a previous remote run in a manner similar to kvm.sh: + + kvm-remote.sh "system0 system1 system2 system3 system4 system5" \ + tools/testing/selftests/rcutorture/res/2022.11.03-11.26.28-remote \ + --duration 24h + +In this case, most of the kvm-again.sh parmeters may be supplied following +the pathname of the old run-results directory. diff --git a/Documentation/RCU/whatisRCU.rst b/Documentation/RCU/whatisRCU.rst index 1c747ac3f2c8..2c5563a91998 100644 --- a/Documentation/RCU/whatisRCU.rst +++ b/Documentation/RCU/whatisRCU.rst @@ -16,18 +16,23 @@ to start learning about RCU: | 6. The RCU API, 2019 Edition https://lwn.net/Articles/777036/ | 2019 Big API Table https://lwn.net/Articles/777165/ +For those preferring video: + +| 1. Unraveling RCU Mysteries: Fundamentals https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries +| 2. Unraveling RCU Mysteries: Additional Use Cases https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries-additional-use-cases + What is RCU? RCU is a synchronization mechanism that was added to the Linux kernel during the 2.5 development effort that is optimized for read-mostly -situations. Although RCU is actually quite simple once you understand it, -getting there can sometimes be a challenge. Part of the problem is that -most of the past descriptions of RCU have been written with the mistaken -assumption that there is "one true way" to describe RCU. Instead, -the experience has been that different people must take different paths -to arrive at an understanding of RCU. This document provides several -different paths, as follows: +situations. Although RCU is actually quite simple, making effective use +of it requires you to think differently about your code. Another part +of the problem is the mistaken assumption that there is "one true way" to +describe and to use RCU. Instead, the experience has been that different +people must take different paths to arrive at an understanding of RCU, +depending on their experiences and use cases. This document provides +several different paths, as follows: :ref:`1. RCU OVERVIEW <1_whatisRCU>` @@ -157,34 +162,36 @@ rcu_read_lock() ^^^^^^^^^^^^^^^ void rcu_read_lock(void); - Used by a reader to inform the reclaimer that the reader is - entering an RCU read-side critical section. It is illegal - to block while in an RCU read-side critical section, though - kernels built with CONFIG_PREEMPT_RCU can preempt RCU - read-side critical sections. Any RCU-protected data structure - accessed during an RCU read-side critical section is guaranteed to - remain unreclaimed for the full duration of that critical section. - Reference counts may be used in conjunction with RCU to maintain - longer-term references to data structures. + This temporal primitive is used by a reader to inform the + reclaimer that the reader is entering an RCU read-side critical + section. It is illegal to block while in an RCU read-side + critical section, though kernels built with CONFIG_PREEMPT_RCU + can preempt RCU read-side critical sections. Any RCU-protected + data structure accessed during an RCU read-side critical section + is guaranteed to remain unreclaimed for the full duration of that + critical section. Reference counts may be used in conjunction + with RCU to maintain longer-term references to data structures. rcu_read_unlock() ^^^^^^^^^^^^^^^^^ void rcu_read_unlock(void); - Used by a reader to inform the reclaimer that the reader is - exiting an RCU read-side critical section. Note that RCU - read-side critical sections may be nested and/or overlapping. + This temporal primitives is used by a reader to inform the + reclaimer that the reader is exiting an RCU read-side critical + section. Note that RCU read-side critical sections may be nested + and/or overlapping. synchronize_rcu() ^^^^^^^^^^^^^^^^^ void synchronize_rcu(void); - Marks the end of updater code and the beginning of reclaimer - code. It does this by blocking until all pre-existing RCU - read-side critical sections on all CPUs have completed. - Note that synchronize_rcu() will **not** necessarily wait for - any subsequent RCU read-side critical sections to complete. - For example, consider the following sequence of events:: + This temporal primitive marks the end of updater code and the + beginning of reclaimer code. It does this by blocking until + all pre-existing RCU read-side critical sections on all CPUs + have completed. Note that synchronize_rcu() will **not** + necessarily wait for any subsequent RCU read-side critical + sections to complete. For example, consider the following + sequence of events:: CPU 0 CPU 1 CPU 2 ----------------- ------------------------- --------------- @@ -211,13 +218,13 @@ synchronize_rcu() to be useful in all but the most read-intensive situations, synchronize_rcu()'s overhead must also be quite small. - The call_rcu() API is a callback form of synchronize_rcu(), - and is described in more detail in a later section. Instead of - blocking, it registers a function and argument which are invoked - after all ongoing RCU read-side critical sections have completed. - This callback variant is particularly useful in situations where - it is illegal to block or where update-side performance is - critically important. + The call_rcu() API is an asynchronous callback form of + synchronize_rcu(), and is described in more detail in a later + section. Instead of blocking, it registers a function and + argument which are invoked after all ongoing RCU read-side + critical sections have completed. This callback variant is + particularly useful in situations where it is illegal to block + or where update-side performance is critically important. However, the call_rcu() API should not be used lightly, as use of the synchronize_rcu() API generally results in simpler code. @@ -236,11 +243,13 @@ rcu_assign_pointer() would be cool to be able to declare a function in this manner. (Compiler experts will no doubt disagree.) - The updater uses this function to assign a new value to an + The updater uses this spatial macro to assign a new value to an RCU-protected pointer, in order to safely communicate the change - in value from the updater to the reader. This macro does not - evaluate to an rvalue, but it does execute any memory-barrier - instructions required for a given CPU architecture. + in value from the updater to the reader. This is a spatial (as + opposed to temporal) macro. It does not evaluate to an rvalue, + but it does execute any memory-barrier instructions required + for a given CPU architecture. Its ordering properties are that + of a store-release operation. Perhaps just as important, it serves to document (1) which pointers are protected by RCU and (2) the point at which a @@ -255,14 +264,15 @@ rcu_dereference() Like rcu_assign_pointer(), rcu_dereference() must be implemented as a macro. - The reader uses rcu_dereference() to fetch an RCU-protected - pointer, which returns a value that may then be safely - dereferenced. Note that rcu_dereference() does not actually - dereference the pointer, instead, it protects the pointer for - later dereferencing. It also executes any needed memory-barrier - instructions for a given CPU architecture. Currently, only Alpha - needs memory barriers within rcu_dereference() -- on other CPUs, - it compiles to nothing, not even a compiler directive. + The reader uses the spatial rcu_dereference() macro to fetch + an RCU-protected pointer, which returns a value that may + then be safely dereferenced. Note that rcu_dereference() + does not actually dereference the pointer, instead, it + protects the pointer for later dereferencing. It also + executes any needed memory-barrier instructions for a given + CPU architecture. Currently, only Alpha needs memory barriers + within rcu_dereference() -- on other CPUs, it compiles to a + volatile load. Common coding practice uses rcu_dereference() to copy an RCU-protected pointer to a local variable, then dereferences @@ -355,12 +365,15 @@ reader, updater, and reclaimer. synchronize_rcu() & call_rcu() -The RCU infrastructure observes the time sequence of rcu_read_lock(), +The RCU infrastructure observes the temporal sequence of rcu_read_lock(), rcu_read_unlock(), synchronize_rcu(), and call_rcu() invocations in order to determine when (1) synchronize_rcu() invocations may return to their callers and (2) call_rcu() callbacks may be invoked. Efficient implementations of the RCU infrastructure make heavy use of batching in order to amortize their overhead over many uses of the corresponding APIs. +The rcu_assign_pointer() and rcu_dereference() invocations communicate +spatial changes via stores to and loads from the RCU-protected pointer in +question. There are at least three flavors of RCU usage in the Linux kernel. The diagram above shows the most common one. On the updater side, the rcu_assign_pointer(), @@ -392,7 +405,9 @@ b. RCU applied to networking data structures that may be subjected c. RCU applied to scheduler and interrupt/NMI-handler tasks. Again, most uses will be of (a). The (b) and (c) cases are important -for specialized uses, but are relatively uncommon. +for specialized uses, but are relatively uncommon. The SRCU, RCU-Tasks, +RCU-Tasks-Rude, and RCU-Tasks-Trace have similar relationships among +their assorted primitives. .. _3_whatisRCU: @@ -468,7 +483,7 @@ So, to sum up: - Within an RCU read-side critical section, use rcu_dereference() to dereference RCU-protected pointers. -- Use some solid scheme (such as locks or semaphores) to +- Use some solid design (such as locks or semaphores) to keep concurrent updates from interfering with each other. - Use rcu_assign_pointer() to update an RCU-protected pointer. @@ -579,6 +594,14 @@ to avoid having to write your own callback:: kfree_rcu(old_fp, rcu); +If the occasional sleep is permitted, the single-argument form may +be used, omitting the rcu_head structure from struct foo. + + kfree_rcu(old_fp); + +This variant of kfree_rcu() almost never blocks, but might do so by +invoking synchronize_rcu() in response to memory-allocation failure. + Again, see checklist.rst for additional rules governing the use of RCU. .. _5_whatisRCU: @@ -596,7 +619,7 @@ lacking both functionality and performance. However, they are useful in getting a feel for how RCU works. See kernel/rcu/update.c for a production-quality implementation, and see: - http://www.rdrop.com/users/paulmck/RCU + https://docs.google.com/document/d/1X0lThx8OK0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit for papers describing the Linux kernel RCU implementation. The OLS'01 and OLS'02 papers are a good introduction, and the dissertation provides @@ -929,6 +952,8 @@ unfortunately any spinlock in a ``SLAB_TYPESAFE_BY_RCU`` object must be initialized after each and every call to kmem_cache_alloc(), which renders reference-free spinlock acquisition completely unsafe. Therefore, when using ``SLAB_TYPESAFE_BY_RCU``, make proper use of a reference counter. +(Those willing to use a kmem_cache constructor may also use locking, +including cache-friendly sequence locking.) With traditional reference counting -- such as that implemented by the kref library in Linux -- there is typically code that runs when the last @@ -1047,6 +1072,30 @@ sched:: rcu_read_lock_sched_held +RCU-Tasks:: + + Critical sections Grace period Barrier + + N/A call_rcu_tasks rcu_barrier_tasks + synchronize_rcu_tasks + + +RCU-Tasks-Rude:: + + Critical sections Grace period Barrier + + N/A call_rcu_tasks_rude rcu_barrier_tasks_rude + synchronize_rcu_tasks_rude + + +RCU-Tasks-Trace:: + + Critical sections Grace period Barrier + + rcu_read_lock_trace call_rcu_tasks_trace rcu_barrier_tasks_trace + rcu_read_unlock_trace synchronize_rcu_tasks_trace + + SRCU:: Critical sections Grace period Barrier @@ -1087,35 +1136,43 @@ list can be helpful: a. Will readers need to block? If so, you need SRCU. -b. What about the -rt patchset? If readers would need to block - in an non-rt kernel, you need SRCU. If readers would block - in a -rt kernel, but not in a non-rt kernel, SRCU is not - necessary. (The -rt patchset turns spinlocks into sleeplocks, - hence this distinction.) +b. Will readers need to block and are you doing tracing, for + example, ftrace or BPF? If so, you need RCU-tasks, + RCU-tasks-rude, and/or RCU-tasks-trace. + +c. What about the -rt patchset? If readers would need to block in + an non-rt kernel, you need SRCU. If readers would block when + acquiring spinlocks in a -rt kernel, but not in a non-rt kernel, + SRCU is not necessary. (The -rt patchset turns spinlocks into + sleeplocks, hence this distinction.) -c. Do you need to treat NMI handlers, hardirq handlers, +d. Do you need to treat NMI handlers, hardirq handlers, and code segments with preemption disabled (whether via preempt_disable(), local_irq_save(), local_bh_disable(), or some other mechanism) as if they were explicit RCU readers? - If so, RCU-sched is the only choice that will work for you. - -d. Do you need RCU grace periods to complete even in the face - of softirq monopolization of one or more of the CPUs? For - example, is your code subject to network-based denial-of-service - attacks? If so, you should disable softirq across your readers, - for example, by using rcu_read_lock_bh(). - -e. Is your workload too update-intensive for normal use of + If so, RCU-sched readers are the only choice that will work + for you, but since about v4.20 you use can use the vanilla RCU + update primitives. + +e. Do you need RCU grace periods to complete even in the face of + softirq monopolization of one or more of the CPUs? For example, + is your code subject to network-based denial-of-service attacks? + If so, you should disable softirq across your readers, for + example, by using rcu_read_lock_bh(). Since about v4.20 you + use can use the vanilla RCU update primitives. + +f. Is your workload too update-intensive for normal use of RCU, but inappropriate for other synchronization mechanisms? If so, consider SLAB_TYPESAFE_BY_RCU (which was originally named SLAB_DESTROY_BY_RCU). But please be careful! -f. Do you need read-side critical sections that are respected - even though they are in the middle of the idle loop, during - user-mode execution, or on an offlined CPU? If so, SRCU is the - only choice that will work for you. +g. Do you need read-side critical sections that are respected even + on CPUs that are deep in the idle loop, during entry to or exit + from user-mode execution, or on an offlined CPU? If so, SRCU + and RCU Tasks Trace are the only choices that will work for you, + with SRCU being strongly preferred in almost all cases. -g. Otherwise, use RCU. +h. Otherwise, use RCU. Of course, this all assumes that you have determined that RCU is in fact the right tool for your job. diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index b642b8143fce..2b0692a642a7 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -5113,6 +5113,17 @@ rcupdate.rcu_cpu_stall_timeout to be used (after conversion from seconds to milliseconds). + rcupdate.rcu_cpu_stall_cputime= [KNL] + Provide statistics on the cputime and count of + interrupts and tasks during the sampling period. For + multiple continuous RCU stalls, all sampling periods + begin at half of the first RCU stall timeout. + + rcupdate.rcu_exp_stall_task_details= [KNL] + Print stack dumps of any tasks blocking the + current expedited RCU grace period during an + expedited RCU CPU stall warning. + rcupdate.rcu_expedited= [KNL] Use expedited grace-period primitives, for example, synchronize_rcu_expedited() instead diff --git a/drivers/base/core.c b/drivers/base/core.c index a3e14143ec0c..bb36aca8d1b7 100644 --- a/drivers/base/core.c +++ b/drivers/base/core.c @@ -181,7 +181,6 @@ void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) } EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); -#ifdef CONFIG_SRCU static DEFINE_MUTEX(device_links_lock); DEFINE_STATIC_SRCU(device_links_srcu); @@ -220,47 +219,6 @@ static void device_link_remove_from_lists(struct device_link *link) list_del_rcu(&link->s_node); list_del_rcu(&link->c_node); } -#else /* !CONFIG_SRCU */ -static DECLARE_RWSEM(device_links_lock); - -static inline void device_links_write_lock(void) -{ - down_write(&device_links_lock); -} - -static inline void device_links_write_unlock(void) -{ - up_write(&device_links_lock); -} - -int device_links_read_lock(void) -{ - down_read(&device_links_lock); - return 0; -} - -void device_links_read_unlock(int not_used) -{ - up_read(&device_links_lock); -} - -#ifdef CONFIG_DEBUG_LOCK_ALLOC -int device_links_read_lock_held(void) -{ - return lockdep_is_held(&device_links_lock); -} -#endif - -static inline void device_link_synchronize_removal(void) -{ -} - -static void device_link_remove_from_lists(struct device_link *link) -{ - list_del(&link->s_node); - list_del(&link->c_node); -} -#endif /* !CONFIG_SRCU */ static bool device_is_ancestor(struct device *dev, struct device *target) { diff --git a/drivers/dax/Kconfig b/drivers/dax/Kconfig index 5fdf269a822e..2bf5123e4827 100644 --- a/drivers/dax/Kconfig +++ b/drivers/dax/Kconfig @@ -1,7 +1,6 @@ # SPDX-License-Identifier: GPL-2.0-only menuconfig DAX tristate "DAX: direct access to differentiated memory" - select SRCU default m if NVDIMM_DAX if DAX diff --git a/drivers/hwtracing/stm/Kconfig b/drivers/hwtracing/stm/Kconfig index aad594fe79cc..eda6b11d40a1 100644 --- a/drivers/hwtracing/stm/Kconfig +++ b/drivers/hwtracing/stm/Kconfig @@ -2,7 +2,6 @@ config STM tristate "System Trace Module devices" select CONFIGFS_FS - select SRCU help A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. diff --git a/drivers/md/Kconfig b/drivers/md/Kconfig index 998a5cfdbc4e..5f1e2593fad7 100644 --- a/drivers/md/Kconfig +++ b/drivers/md/Kconfig @@ -6,7 +6,6 @@ menuconfig MD bool "Multiple devices driver support (RAID and LVM)" depends on BLOCK - select SRCU help Support multiple physical spindles through a single logical device. Required for RAID and logical volume management. diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig index 9e63b8c43f3e..12910338ea1a 100644 --- a/drivers/net/Kconfig +++ b/drivers/net/Kconfig @@ -334,7 +334,6 @@ config NETCONSOLE_DYNAMIC config NETPOLL def_bool NETCONSOLE - select SRCU config NET_POLL_CONTROLLER def_bool NETPOLL diff --git a/drivers/pci/controller/Kconfig b/drivers/pci/controller/Kconfig index 1569d9a3ada0..b09cdc59bfd0 100644 --- a/drivers/pci/controller/Kconfig +++ b/drivers/pci/controller/Kconfig @@ -258,7 +258,7 @@ config PCIE_MEDIATEK_GEN3 MediaTek SoCs. config VMD - depends on PCI_MSI && X86_64 && SRCU && !UML + depends on PCI_MSI && X86_64 && !UML tristate "Intel Volume Management Device Driver" help Adds support for the Intel Volume Management Device (VMD). VMD is a diff --git a/fs/btrfs/Kconfig b/fs/btrfs/Kconfig index 183e5c4aed34..37b6bab90c83 100644 --- a/fs/btrfs/Kconfig +++ b/fs/btrfs/Kconfig @@ -17,7 +17,6 @@ config BTRFS_FS select FS_IOMAP select RAID6_PQ select XOR_BLOCKS - select SRCU depends on PAGE_SIZE_LESS_THAN_256KB help diff --git a/fs/locks.c b/fs/locks.c index 624c6ac92ede..66b4eef09db5 100644 --- a/fs/locks.c +++ b/fs/locks.c @@ -1890,7 +1890,6 @@ int generic_setlease(struct file *filp, long arg, struct file_lock **flp, } EXPORT_SYMBOL(generic_setlease); -#if IS_ENABLED(CONFIG_SRCU) /* * Kernel subsystems can register to be notified on any attempt to set * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd @@ -1924,30 +1923,6 @@ void lease_unregister_notifier(struct notifier_block *nb) } EXPORT_SYMBOL_GPL(lease_unregister_notifier); -#else /* !IS_ENABLED(CONFIG_SRCU) */ -static inline void -lease_notifier_chain_init(void) -{ -} - -static inline void -setlease_notifier(long arg, struct file_lock *lease) -{ -} - -int lease_register_notifier(struct notifier_block *nb) -{ - return 0; -} -EXPORT_SYMBOL_GPL(lease_register_notifier); - -void lease_unregister_notifier(struct notifier_block *nb) -{ -} -EXPORT_SYMBOL_GPL(lease_unregister_notifier); - -#endif /* IS_ENABLED(CONFIG_SRCU) */ - /** * vfs_setlease - sets a lease on an open file * @filp: file pointer diff --git a/fs/notify/Kconfig b/fs/notify/Kconfig index c020d26ba223..c6c72c90fd25 100644 --- a/fs/notify/Kconfig +++ b/fs/notify/Kconfig @@ -1,7 +1,6 @@ # SPDX-License-Identifier: GPL-2.0-only config FSNOTIFY def_bool n - select SRCU source "fs/notify/dnotify/Kconfig" source "fs/notify/inotify/Kconfig" diff --git a/fs/quota/Kconfig b/fs/quota/Kconfig index b59cd172b5f9..d5a85a8062d0 100644 --- a/fs/quota/Kconfig +++ b/fs/quota/Kconfig @@ -6,7 +6,6 @@ config QUOTA bool "Quota support" select QUOTACTL - select SRCU help If you say Y here, you will be able to set per user limits for disk usage (also called disk quotas). Currently, it works for the diff --git a/include/linux/kernel_stat.h b/include/linux/kernel_stat.h index ddb5a358fd82..9935f7ecbfb9 100644 --- a/include/linux/kernel_stat.h +++ b/include/linux/kernel_stat.h @@ -52,6 +52,7 @@ DECLARE_PER_CPU(struct kernel_cpustat, kernel_cpustat); #define kstat_cpu(cpu) per_cpu(kstat, cpu) #define kcpustat_cpu(cpu) per_cpu(kernel_cpustat, cpu) +extern unsigned long long nr_context_switches_cpu(int cpu); extern unsigned long long nr_context_switches(void); extern unsigned int kstat_irqs_cpu(unsigned int irq, int cpu); @@ -67,6 +68,17 @@ static inline unsigned int kstat_softirqs_cpu(unsigned int irq, int cpu) return kstat_cpu(cpu).softirqs[irq]; } +static inline unsigned int kstat_cpu_softirqs_sum(int cpu) +{ + int i; + unsigned int sum = 0; + + for (i = 0; i < NR_SOFTIRQS; i++) + sum += kstat_softirqs_cpu(i, cpu); + + return sum; +} + /* * Number of interrupts per specific IRQ source, since bootup */ @@ -75,7 +87,7 @@ extern unsigned int kstat_irqs_usr(unsigned int irq); /* * Number of interrupts per cpu, since bootup */ -static inline unsigned int kstat_cpu_irqs_sum(unsigned int cpu) +static inline unsigned long kstat_cpu_irqs_sum(unsigned int cpu) { return kstat_cpu(cpu).irqs_sum; } diff --git a/include/linux/rculist_nulls.h b/include/linux/rculist_nulls.h index d8afdb8784c1..ba4c00dd8005 100644 --- a/include/linux/rculist_nulls.h +++ b/include/linux/rculist_nulls.h @@ -139,7 +139,7 @@ static inline void hlist_nulls_add_tail_rcu(struct hlist_nulls_node *n, if (last) { n->next = last->next; n->pprev = &last->next; - rcu_assign_pointer(hlist_next_rcu(last), n); + rcu_assign_pointer(hlist_nulls_next_rcu(last), n); } else { hlist_nulls_add_head_rcu(n, h); } diff --git a/include/linux/rcupdate.h b/include/linux/rcupdate.h index 03abf883a281..094321c17e48 100644 --- a/include/linux/rcupdate.h +++ b/include/linux/rcupdate.h @@ -238,6 +238,7 @@ void synchronize_rcu_tasks_rude(void); #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) void exit_tasks_rcu_start(void); +void exit_tasks_rcu_stop(void); void exit_tasks_rcu_finish(void); #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ #define rcu_tasks_classic_qs(t, preempt) do { } while (0) @@ -246,6 +247,7 @@ void exit_tasks_rcu_finish(void); #define call_rcu_tasks call_rcu #define synchronize_rcu_tasks synchronize_rcu static inline void exit_tasks_rcu_start(void) { } +static inline void exit_tasks_rcu_stop(void) { } static inline void exit_tasks_rcu_finish(void) { } #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ @@ -374,11 +376,18 @@ static inline int debug_lockdep_rcu_enabled(void) * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met * @c: condition to check * @s: informative message + * + * This checks debug_lockdep_rcu_enabled() before checking (c) to + * prevent early boot splats due to lockdep not yet being initialized, + * and rechecks it after checking (c) to prevent false-positive splats + * due to races with lockdep being disabled. See commit 3066820034b5dd + * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail. */ #define RCU_LOCKDEP_WARN(c, s) \ do { \ static bool __section(".data.unlikely") __warned; \ - if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \ + if (debug_lockdep_rcu_enabled() && (c) && \ + debug_lockdep_rcu_enabled() && !__warned) { \ __warned = true; \ lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ } \ @@ -1004,6 +1013,9 @@ static inline notrace void rcu_read_unlock_sched_notrace(void) #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) +#define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) +#define kfree_rcu_mightsleep(ptr) kvfree_rcu_mightsleep(ptr) + #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME #define kvfree_rcu_arg_2(ptr, rhf) \ do { \ @@ -1011,8 +1023,7 @@ do { \ \ if (___p) { \ BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ - kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \ - (offsetof(typeof(*(ptr)), rhf))); \ + kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \ } \ } while (0) @@ -1021,7 +1032,7 @@ do { \ typeof(ptr) ___p = (ptr); \ \ if (___p) \ - kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ + kvfree_call_rcu(NULL, (void *) (___p)); \ } while (0) /* diff --git a/include/linux/rcutiny.h b/include/linux/rcutiny.h index 68f9070aa111..7f17acf29dda 100644 --- a/include/linux/rcutiny.h +++ b/include/linux/rcutiny.h @@ -98,25 +98,25 @@ static inline void synchronize_rcu_expedited(void) */ extern void kvfree(const void *addr); -static inline void __kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) +static inline void __kvfree_call_rcu(struct rcu_head *head, void *ptr) { if (head) { - call_rcu(head, func); + call_rcu(head, (rcu_callback_t) ((void *) head - ptr)); return; } // kvfree_rcu(one_arg) call. might_sleep(); synchronize_rcu(); - kvfree((void *) func); + kvfree(ptr); } #ifdef CONFIG_KASAN_GENERIC -void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func); +void kvfree_call_rcu(struct rcu_head *head, void *ptr); #else -static inline void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) +static inline void kvfree_call_rcu(struct rcu_head *head, void *ptr) { - __kvfree_call_rcu(head, func); + __kvfree_call_rcu(head, ptr); } #endif diff --git a/include/linux/rcutree.h b/include/linux/rcutree.h index 4003bf6cfa1c..56bccb5a8fde 100644 --- a/include/linux/rcutree.h +++ b/include/linux/rcutree.h @@ -33,7 +33,7 @@ static inline void rcu_virt_note_context_switch(void) } void synchronize_rcu_expedited(void); -void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func); +void kvfree_call_rcu(struct rcu_head *head, void *ptr); void rcu_barrier(void); bool rcu_eqs_special_set(int cpu); diff --git a/include/linux/srcu.h b/include/linux/srcu.h index 9b9d0bbf1d3c..74796cd7e7a9 100644 --- a/include/linux/srcu.h +++ b/include/linux/srcu.h @@ -215,6 +215,34 @@ srcu_read_lock_notrace(struct srcu_struct *ssp) __acquires(ssp) } /** + * srcu_down_read - register a new reader for an SRCU-protected structure. + * @ssp: srcu_struct in which to register the new reader. + * + * Enter a semaphore-like SRCU read-side critical section. Note that + * SRCU read-side critical sections may be nested. However, it is + * illegal to call anything that waits on an SRCU grace period for the + * same srcu_struct, whether directly or indirectly. Please note that + * one way to indirectly wait on an SRCU grace period is to acquire + * a mutex that is held elsewhere while calling synchronize_srcu() or + * synchronize_srcu_expedited(). But if you want lockdep to help you + * keep this stuff straight, you should instead use srcu_read_lock(). + * + * The semaphore-like nature of srcu_down_read() means that the matching + * srcu_up_read() can be invoked from some other context, for example, + * from some other task or from an irq handler. However, neither + * srcu_down_read() nor srcu_up_read() may be invoked from an NMI handler. + * + * Calls to srcu_down_read() may be nested, similar to the manner in + * which calls to down_read() may be nested. + */ +static inline int srcu_down_read(struct srcu_struct *ssp) __acquires(ssp) +{ + WARN_ON_ONCE(in_nmi()); + srcu_check_nmi_safety(ssp, false); + return __srcu_read_lock(ssp); +} + +/** * srcu_read_unlock - unregister a old reader from an SRCU-protected structure. * @ssp: srcu_struct in which to unregister the old reader. * @idx: return value from corresponding srcu_read_lock(). @@ -255,6 +283,23 @@ srcu_read_unlock_notrace(struct srcu_struct *ssp, int idx) __releases(ssp) } /** + * srcu_up_read - unregister a old reader from an SRCU-protected structure. + * @ssp: srcu_struct in which to unregister the old reader. + * @idx: return value from corresponding srcu_read_lock(). + * + * Exit an SRCU read-side critical section, but not necessarily from + * the same context as the maching srcu_down_read(). + */ +static inline void srcu_up_read(struct srcu_struct *ssp, int idx) + __releases(ssp) +{ + WARN_ON_ONCE(idx & ~0x1); + WARN_ON_ONCE(in_nmi()); + srcu_check_nmi_safety(ssp, false); + __srcu_read_unlock(ssp, idx); +} + +/** * smp_mb__after_srcu_read_unlock - ensure full ordering after srcu_read_unlock * * Converts the preceding srcu_read_unlock into a two-way memory barrier. diff --git a/include/linux/srcutree.h b/include/linux/srcutree.h index c689a81752c9..558057b517b7 100644 --- a/include/linux/srcutree.h +++ b/include/linux/srcutree.h @@ -49,7 +49,7 @@ struct srcu_data { struct srcu_node { spinlock_t __private lock; unsigned long srcu_have_cbs[4]; /* GP seq for children having CBs, but only */ - /* if greater than ->srcu_gq_seq. */ + /* if greater than ->srcu_gp_seq. */ unsigned long srcu_data_have_cbs[4]; /* Which srcu_data structs have CBs for given GP? */ unsigned long srcu_gp_seq_needed_exp; /* Furthest future exp GP. */ struct srcu_node *srcu_parent; /* Next up in tree. */ diff --git a/init/Kconfig b/init/Kconfig index e76dc579cfa2..18f0bf50c468 100644 --- a/init/Kconfig +++ b/init/Kconfig @@ -1873,7 +1873,6 @@ config PERF_EVENTS default y if PROFILING depends on HAVE_PERF_EVENTS select IRQ_WORK - select SRCU help Enable kernel support for various performance events provided by software and hardware. diff --git a/kernel/locking/locktorture.c b/kernel/locking/locktorture.c index 9c2fb613a55d..f04b1978899d 100644 --- a/kernel/locking/locktorture.c +++ b/kernel/locking/locktorture.c @@ -46,6 +46,9 @@ torture_param(int, shutdown_secs, 0, "Shutdown time (j), <= zero to disable."); torture_param(int, stat_interval, 60, "Number of seconds between stats printk()s"); torture_param(int, stutter, 5, "Number of jiffies to run/halt test, 0=disable"); +torture_param(int, rt_boost, 2, + "Do periodic rt-boost. 0=Disable, 1=Only for rt_mutex, 2=For all lock types."); +torture_param(int, rt_boost_factor, 50, "A factor determining how often rt-boost happens."); torture_param(int, verbose, 1, "Enable verbose debugging printk()s"); @@ -127,15 +130,50 @@ static void torture_lock_busted_write_unlock(int tid __maybe_unused) /* BUGGY, do not use in real life!!! */ } -static void torture_boost_dummy(struct torture_random_state *trsp) +static void __torture_rt_boost(struct torture_random_state *trsp) { - /* Only rtmutexes care about priority */ + const unsigned int factor = rt_boost_factor; + + if (!rt_task(current)) { + /* + * Boost priority once every rt_boost_factor operations. When + * the task tries to take the lock, the rtmutex it will account + * for the new priority, and do any corresponding pi-dance. + */ + if (trsp && !(torture_random(trsp) % + (cxt.nrealwriters_stress * factor))) { + sched_set_fifo(current); + } else /* common case, do nothing */ + return; + } else { + /* + * The task will remain boosted for another 10 * rt_boost_factor + * operations, then restored back to its original prio, and so + * forth. + * + * When @trsp is nil, we want to force-reset the task for + * stopping the kthread. + */ + if (!trsp || !(torture_random(trsp) % + (cxt.nrealwriters_stress * factor * 2))) { + sched_set_normal(current, 0); + } else /* common case, do nothing */ + return; + } +} + +static void torture_rt_boost(struct torture_random_state *trsp) +{ + if (rt_boost != 2) + return; + + __torture_rt_boost(trsp); } static struct lock_torture_ops lock_busted_ops = { .writelock = torture_lock_busted_write_lock, .write_delay = torture_lock_busted_write_delay, - .task_boost = torture_boost_dummy, + .task_boost = torture_rt_boost, .writeunlock = torture_lock_busted_write_unlock, .readlock = NULL, .read_delay = NULL, @@ -179,7 +217,7 @@ __releases(torture_spinlock) static struct lock_torture_ops spin_lock_ops = { .writelock = torture_spin_lock_write_lock, .write_delay = torture_spin_lock_write_delay, - .task_boost = torture_boost_dummy, + .task_boost = torture_rt_boost, .writeunlock = torture_spin_lock_write_unlock, .readlock = NULL, .read_delay = NULL, @@ -206,7 +244,7 @@ __releases(torture_spinlock) static struct lock_torture_ops spin_lock_irq_ops = { .writelock = torture_spin_lock_write_lock_irq, .write_delay = torture_spin_lock_write_delay, - .task_boost = torture_boost_dummy, + .task_boost = torture_rt_boost, .writeunlock = torture_lock_spin_write_unlock_irq, .readlock = NULL, .read_delay = NULL, @@ -275,7 +313,7 @@ __releases(torture_rwlock) static struct lock_torture_ops rw_lock_ops = { .writelock = torture_rwlock_write_lock, .write_delay = torture_rwlock_write_delay, - .task_boost = torture_boost_dummy, + .task_boost = torture_rt_boost, .writeunlock = torture_rwlock_write_unlock, .readlock = torture_rwlock_read_lock, .read_delay = torture_rwlock_read_delay, @@ -318,7 +356,7 @@ __releases(torture_rwlock) static struct lock_torture_ops rw_lock_irq_ops = { .writelock = torture_rwlock_write_lock_irq, .write_delay = torture_rwlock_write_delay, - .task_boost = torture_boost_dummy, + .task_boost = torture_rt_boost, .writeunlock = torture_rwlock_write_unlock_irq, .readlock = torture_rwlock_read_lock_irq, .read_delay = torture_rwlock_read_delay, @@ -358,7 +396,7 @@ __releases(torture_mutex) static struct lock_torture_ops mutex_lock_ops = { .writelock = torture_mutex_lock, .write_delay = torture_mutex_delay, - .task_boost = torture_boost_dummy, + .task_boost = torture_rt_boost, .writeunlock = torture_mutex_unlock, .readlock = NULL, .read_delay = NULL, @@ -456,7 +494,7 @@ static struct lock_torture_ops ww_mutex_lock_ops = { .exit = torture_ww_mutex_exit, .writelock = torture_ww_mutex_lock, .write_delay = torture_mutex_delay, - .task_boost = torture_boost_dummy, + .task_boost = torture_rt_boost, .writeunlock = torture_ww_mutex_unlock, .readlock = NULL, .read_delay = NULL, @@ -474,37 +512,6 @@ __acquires(torture_rtmutex) return 0; } -static void torture_rtmutex_boost(struct torture_random_state *trsp) -{ - const unsigned int factor = 50000; /* yes, quite arbitrary */ - - if (!rt_task(current)) { - /* - * Boost priority once every ~50k operations. When the - * task tries to take the lock, the rtmutex it will account - * for the new priority, and do any corresponding pi-dance. - */ - if (trsp && !(torture_random(trsp) % - (cxt.nrealwriters_stress * factor))) { - sched_set_fifo(current); - } else /* common case, do nothing */ - return; - } else { - /* - * The task will remain boosted for another ~500k operations, - * then restored back to its original prio, and so forth. - * - * When @trsp is nil, we want to force-reset the task for - * stopping the kthread. - */ - if (!trsp || !(torture_random(trsp) % - (cxt.nrealwriters_stress * factor * 2))) { - sched_set_normal(current, 0); - } else /* common case, do nothing */ - return; - } -} - static void torture_rtmutex_delay(struct torture_random_state *trsp) { const unsigned long shortdelay_us = 2; @@ -530,10 +537,18 @@ __releases(torture_rtmutex) rt_mutex_unlock(&torture_rtmutex); } +static void torture_rt_boost_rtmutex(struct torture_random_state *trsp) +{ + if (!rt_boost) + return; + + __torture_rt_boost(trsp); +} + static struct lock_torture_ops rtmutex_lock_ops = { .writelock = torture_rtmutex_lock, .write_delay = torture_rtmutex_delay, - .task_boost = torture_rtmutex_boost, + .task_boost = torture_rt_boost_rtmutex, .writeunlock = torture_rtmutex_unlock, .readlock = NULL, .read_delay = NULL, @@ -600,7 +615,7 @@ __releases(torture_rwsem) static struct lock_torture_ops rwsem_lock_ops = { .writelock = torture_rwsem_down_write, .write_delay = torture_rwsem_write_delay, - .task_boost = torture_boost_dummy, + .task_boost = torture_rt_boost, .writeunlock = torture_rwsem_up_write, .readlock = torture_rwsem_down_read, .read_delay = torture_rwsem_read_delay, @@ -652,7 +667,7 @@ static struct lock_torture_ops percpu_rwsem_lock_ops = { .exit = torture_percpu_rwsem_exit, .writelock = torture_percpu_rwsem_down_write, .write_delay = torture_rwsem_write_delay, - .task_boost = torture_boost_dummy, + .task_boost = torture_rt_boost, .writeunlock = torture_percpu_rwsem_up_write, .readlock = torture_percpu_rwsem_down_read, .read_delay = torture_rwsem_read_delay, diff --git a/kernel/notifier.c b/kernel/notifier.c index ab75637fd904..d353e4b5402d 100644 --- a/kernel/notifier.c +++ b/kernel/notifier.c @@ -456,7 +456,6 @@ int raw_notifier_call_chain(struct raw_notifier_head *nh, } EXPORT_SYMBOL_GPL(raw_notifier_call_chain); -#ifdef CONFIG_SRCU /* * SRCU notifier chain routines. Registration and unregistration * use a mutex, and call_chain is synchronized by SRCU (no locks). @@ -573,8 +572,6 @@ void srcu_init_notifier_head(struct srcu_notifier_head *nh) } EXPORT_SYMBOL_GPL(srcu_init_notifier_head); -#endif /* CONFIG_SRCU */ - static ATOMIC_NOTIFIER_HEAD(die_chain); int notrace notify_die(enum die_val val, const char *str, diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c index f4f8cb0435b4..fc21c5d5fd5d 100644 --- a/kernel/pid_namespace.c +++ b/kernel/pid_namespace.c @@ -244,7 +244,24 @@ void zap_pid_ns_processes(struct pid_namespace *pid_ns) set_current_state(TASK_INTERRUPTIBLE); if (pid_ns->pid_allocated == init_pids) break; + /* + * Release tasks_rcu_exit_srcu to avoid following deadlock: + * + * 1) TASK A unshare(CLONE_NEWPID) + * 2) TASK A fork() twice -> TASK B (child reaper for new ns) + * and TASK C + * 3) TASK B exits, kills TASK C, waits for TASK A to reap it + * 4) TASK A calls synchronize_rcu_tasks() + * -> synchronize_srcu(tasks_rcu_exit_srcu) + * 5) *DEADLOCK* + * + * It is considered safe to release tasks_rcu_exit_srcu here + * because we assume the current task can not be concurrently + * reaped at this point. + */ + exit_tasks_rcu_stop(); schedule(); + exit_tasks_rcu_start(); } __set_current_state(TASK_RUNNING); diff --git a/kernel/rcu/Kconfig.debug b/kernel/rcu/Kconfig.debug index 232e29fe3e5e..2984de629f74 100644 --- a/kernel/rcu/Kconfig.debug +++ b/kernel/rcu/Kconfig.debug @@ -82,7 +82,7 @@ config RCU_CPU_STALL_TIMEOUT config RCU_EXP_CPU_STALL_TIMEOUT int "Expedited RCU CPU stall timeout in milliseconds" depends on RCU_STALL_COMMON - range 0 21000 + range 0 300000 default 0 help If a given expedited RCU grace period extends more than the @@ -92,6 +92,19 @@ config RCU_EXP_CPU_STALL_TIMEOUT says to use the RCU_CPU_STALL_TIMEOUT value converted from seconds to milliseconds. +config RCU_CPU_STALL_CPUTIME + bool "Provide additional RCU stall debug information" + depends on RCU_STALL_COMMON + default n + help + Collect statistics during the sampling period, such as the number of + (hard interrupts, soft interrupts, task switches) and the cputime of + (hard interrupts, soft interrupts, kernel tasks) are added to the + RCU stall report. For multiple continuous RCU stalls, all sampling + periods begin at half of the first RCU stall timeout. + The boot option rcupdate.rcu_cpu_stall_cputime has the same function + as this one, but will override this if it exists. + config RCU_TRACE bool "Enable tracing for RCU" depends on DEBUG_KERNEL diff --git a/kernel/rcu/rcu.h b/kernel/rcu/rcu.h index c5aa934de59b..115616ac3bfa 100644 --- a/kernel/rcu/rcu.h +++ b/kernel/rcu/rcu.h @@ -224,6 +224,8 @@ extern int rcu_cpu_stall_ftrace_dump; extern int rcu_cpu_stall_suppress; extern int rcu_cpu_stall_timeout; extern int rcu_exp_cpu_stall_timeout; +extern int rcu_cpu_stall_cputime; +extern bool rcu_exp_stall_task_details __read_mostly; int rcu_jiffies_till_stall_check(void); int rcu_exp_jiffies_till_stall_check(void); @@ -447,14 +449,20 @@ do { \ /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ static inline bool rcu_gp_is_normal(void) { return true; } static inline bool rcu_gp_is_expedited(void) { return false; } +static inline bool rcu_async_should_hurry(void) { return false; } static inline void rcu_expedite_gp(void) { } static inline void rcu_unexpedite_gp(void) { } +static inline void rcu_async_hurry(void) { } +static inline void rcu_async_relax(void) { } static inline void rcu_request_urgent_qs_task(struct task_struct *t) { } #else /* #ifdef CONFIG_TINY_RCU */ bool rcu_gp_is_normal(void); /* Internal RCU use. */ bool rcu_gp_is_expedited(void); /* Internal RCU use. */ +bool rcu_async_should_hurry(void); /* Internal RCU use. */ void rcu_expedite_gp(void); void rcu_unexpedite_gp(void); +void rcu_async_hurry(void); +void rcu_async_relax(void); void rcupdate_announce_bootup_oddness(void); #ifdef CONFIG_TASKS_RCU_GENERIC void show_rcu_tasks_gp_kthreads(void); diff --git a/kernel/rcu/rcu_segcblist.c b/kernel/rcu/rcu_segcblist.c index c54ea2b6a36b..f71fac422c8f 100644 --- a/kernel/rcu/rcu_segcblist.c +++ b/kernel/rcu/rcu_segcblist.c @@ -89,7 +89,7 @@ static void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v) } /* Get the length of a segment of the rcu_segcblist structure. */ -static long rcu_segcblist_get_seglen(struct rcu_segcblist *rsclp, int seg) +long rcu_segcblist_get_seglen(struct rcu_segcblist *rsclp, int seg) { return READ_ONCE(rsclp->seglen[seg]); } diff --git a/kernel/rcu/rcu_segcblist.h b/kernel/rcu/rcu_segcblist.h index 431cee212467..4fe877f5f654 100644 --- a/kernel/rcu/rcu_segcblist.h +++ b/kernel/rcu/rcu_segcblist.h @@ -15,6 +15,8 @@ static inline long rcu_cblist_n_cbs(struct rcu_cblist *rclp) return READ_ONCE(rclp->len); } +long rcu_segcblist_get_seglen(struct rcu_segcblist *rsclp, int seg); + /* Return number of callbacks in segmented callback list by summing seglen. */ long rcu_segcblist_n_segment_cbs(struct rcu_segcblist *rsclp); diff --git a/kernel/rcu/rcutorture.c b/kernel/rcu/rcutorture.c index 634df26a2c27..8e6c023212cb 100644 --- a/kernel/rcu/rcutorture.c +++ b/kernel/rcu/rcutorture.c @@ -399,7 +399,7 @@ static int torture_readlock_not_held(void) return rcu_read_lock_bh_held() || rcu_read_lock_sched_held(); } -static int rcu_torture_read_lock(void) __acquires(RCU) +static int rcu_torture_read_lock(void) { rcu_read_lock(); return 0; @@ -441,7 +441,7 @@ rcu_read_delay(struct torture_random_state *rrsp, struct rt_read_seg *rtrsp) } } -static void rcu_torture_read_unlock(int idx) __releases(RCU) +static void rcu_torture_read_unlock(int idx) { rcu_read_unlock(); } @@ -625,7 +625,7 @@ static struct srcu_struct srcu_ctld; static struct srcu_struct *srcu_ctlp = &srcu_ctl; static struct rcu_torture_ops srcud_ops; -static int srcu_torture_read_lock(void) __acquires(srcu_ctlp) +static int srcu_torture_read_lock(void) { if (cur_ops == &srcud_ops) return srcu_read_lock_nmisafe(srcu_ctlp); @@ -652,7 +652,7 @@ srcu_read_delay(struct torture_random_state *rrsp, struct rt_read_seg *rtrsp) } } -static void srcu_torture_read_unlock(int idx) __releases(srcu_ctlp) +static void srcu_torture_read_unlock(int idx) { if (cur_ops == &srcud_ops) srcu_read_unlock_nmisafe(srcu_ctlp, idx); @@ -814,13 +814,13 @@ static void synchronize_rcu_trivial(void) } } -static int rcu_torture_read_lock_trivial(void) __acquires(RCU) +static int rcu_torture_read_lock_trivial(void) { preempt_disable(); return 0; } -static void rcu_torture_read_unlock_trivial(int idx) __releases(RCU) +static void rcu_torture_read_unlock_trivial(int idx) { preempt_enable(); } diff --git a/kernel/rcu/refscale.c b/kernel/rcu/refscale.c index 435c884c02b5..afa3e1a2f690 100644 --- a/kernel/rcu/refscale.c +++ b/kernel/rcu/refscale.c @@ -76,6 +76,8 @@ torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s"); // Wait until there are multiple CPUs before starting test. torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0, "Holdoff time before test start (s)"); +// Number of typesafe_lookup structures, that is, the degree of concurrency. +torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures."); // Number of loops per experiment, all readers execute operations concurrently. torture_param(long, loops, 10000, "Number of loops per experiment."); // Number of readers, with -1 defaulting to about 75% of the CPUs. @@ -124,7 +126,7 @@ static int exp_idx; // Operations vector for selecting different types of tests. struct ref_scale_ops { - void (*init)(void); + bool (*init)(void); void (*cleanup)(void); void (*readsection)(const int nloops); void (*delaysection)(const int nloops, const int udl, const int ndl); @@ -162,8 +164,9 @@ static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl } } -static void rcu_sync_scale_init(void) +static bool rcu_sync_scale_init(void) { + return true; } static struct ref_scale_ops rcu_ops = { @@ -315,9 +318,10 @@ static struct ref_scale_ops refcnt_ops = { // Definitions for rwlock static rwlock_t test_rwlock; -static void ref_rwlock_init(void) +static bool ref_rwlock_init(void) { rwlock_init(&test_rwlock); + return true; } static void ref_rwlock_section(const int nloops) @@ -351,9 +355,10 @@ static struct ref_scale_ops rwlock_ops = { // Definitions for rwsem static struct rw_semaphore test_rwsem; -static void ref_rwsem_init(void) +static bool ref_rwsem_init(void) { init_rwsem(&test_rwsem); + return true; } static void ref_rwsem_section(const int nloops) @@ -523,6 +528,237 @@ static struct ref_scale_ops clock_ops = { .name = "clock" }; +//////////////////////////////////////////////////////////////////////// +// +// Methods leveraging SLAB_TYPESAFE_BY_RCU. +// + +// Item to look up in a typesafe manner. Array of pointers to these. +struct refscale_typesafe { + atomic_t rts_refctr; // Used by all flavors + spinlock_t rts_lock; + seqlock_t rts_seqlock; + unsigned int a; + unsigned int b; +}; + +static struct kmem_cache *typesafe_kmem_cachep; +static struct refscale_typesafe **rtsarray; +static long rtsarray_size; +static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand); +static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start); +static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start); + +// Conditionally acquire an explicit in-structure reference count. +static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start) +{ + return atomic_inc_not_zero(&rtsp->rts_refctr); +} + +// Unconditionally release an explicit in-structure reference count. +static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start) +{ + if (!atomic_dec_return(&rtsp->rts_refctr)) { + WRITE_ONCE(rtsp->a, rtsp->a + 1); + kmem_cache_free(typesafe_kmem_cachep, rtsp); + } + return true; +} + +// Unconditionally acquire an explicit in-structure spinlock. +static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start) +{ + spin_lock(&rtsp->rts_lock); + return true; +} + +// Unconditionally release an explicit in-structure spinlock. +static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start) +{ + spin_unlock(&rtsp->rts_lock); + return true; +} + +// Unconditionally acquire an explicit in-structure sequence lock. +static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start) +{ + *start = read_seqbegin(&rtsp->rts_seqlock); + return true; +} + +// Conditionally release an explicit in-structure sequence lock. Return +// true if this release was successful, that is, if no retry is required. +static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start) +{ + return !read_seqretry(&rtsp->rts_seqlock, start); +} + +// Do a read-side critical section with the specified delay in +// microseconds and nanoseconds inserted so as to increase probability +// of failure. +static void typesafe_delay_section(const int nloops, const int udl, const int ndl) +{ + unsigned int a; + unsigned int b; + int i; + long idx; + struct refscale_typesafe *rtsp; + unsigned int start; + + for (i = nloops; i >= 0; i--) { + preempt_disable(); + idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size; + preempt_enable(); +retry: + rcu_read_lock(); + rtsp = rcu_dereference(rtsarray[idx]); + a = READ_ONCE(rtsp->a); + if (!rts_acquire(rtsp, &start)) { + rcu_read_unlock(); + goto retry; + } + if (a != READ_ONCE(rtsp->a)) { + (void)rts_release(rtsp, start); + rcu_read_unlock(); + goto retry; + } + un_delay(udl, ndl); + // Remember, seqlock read-side release can fail. + if (!rts_release(rtsp, start)) { + rcu_read_unlock(); + goto retry; + } + b = READ_ONCE(rtsp->a); + WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b); + b = rtsp->b; + rcu_read_unlock(); + WARN_ON_ONCE(a * a != b); + } +} + +// Because the acquisition and release methods are expensive, there +// is no point in optimizing away the un_delay() function's two checks. +// Thus simply define typesafe_read_section() as a simple wrapper around +// typesafe_delay_section(). +static void typesafe_read_section(const int nloops) +{ + typesafe_delay_section(nloops, 0, 0); +} + +// Allocate and initialize one refscale_typesafe structure. +static struct refscale_typesafe *typesafe_alloc_one(void) +{ + struct refscale_typesafe *rtsp; + + rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL); + if (!rtsp) + return NULL; + atomic_set(&rtsp->rts_refctr, 1); + WRITE_ONCE(rtsp->a, rtsp->a + 1); + WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a); + return rtsp; +} + +// Slab-allocator constructor for refscale_typesafe structures created +// out of a new slab of system memory. +static void refscale_typesafe_ctor(void *rtsp_in) +{ + struct refscale_typesafe *rtsp = rtsp_in; + + spin_lock_init(&rtsp->rts_lock); + seqlock_init(&rtsp->rts_seqlock); + preempt_disable(); + rtsp->a = torture_random(this_cpu_ptr(&refscale_rand)); + preempt_enable(); +} + +static struct ref_scale_ops typesafe_ref_ops; +static struct ref_scale_ops typesafe_lock_ops; +static struct ref_scale_ops typesafe_seqlock_ops; + +// Initialize for a typesafe test. +static bool typesafe_init(void) +{ + long idx; + long si = lookup_instances; + + typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe", + sizeof(struct refscale_typesafe), sizeof(void *), + SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor); + if (!typesafe_kmem_cachep) + return false; + if (si < 0) + si = -si * nr_cpu_ids; + else if (si == 0) + si = nr_cpu_ids; + rtsarray_size = si; + rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL); + if (!rtsarray) + return false; + for (idx = 0; idx < rtsarray_size; idx++) { + rtsarray[idx] = typesafe_alloc_one(); + if (!rtsarray[idx]) + return false; + } + if (cur_ops == &typesafe_ref_ops) { + rts_acquire = typesafe_ref_acquire; + rts_release = typesafe_ref_release; + } else if (cur_ops == &typesafe_lock_ops) { + rts_acquire = typesafe_lock_acquire; + rts_release = typesafe_lock_release; + } else if (cur_ops == &typesafe_seqlock_ops) { + rts_acquire = typesafe_seqlock_acquire; + rts_release = typesafe_seqlock_release; + } else { + WARN_ON_ONCE(1); + return false; + } + return true; +} + +// Clean up after a typesafe test. +static void typesafe_cleanup(void) +{ + long idx; + + if (rtsarray) { + for (idx = 0; idx < rtsarray_size; idx++) + kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]); + kfree(rtsarray); + rtsarray = NULL; + rtsarray_size = 0; + } + kmem_cache_destroy(typesafe_kmem_cachep); + typesafe_kmem_cachep = NULL; + rts_acquire = NULL; + rts_release = NULL; +} + +// The typesafe_init() function distinguishes these structures by address. +static struct ref_scale_ops typesafe_ref_ops = { + .init = typesafe_init, + .cleanup = typesafe_cleanup, + .readsection = typesafe_read_section, + .delaysection = typesafe_delay_section, + .name = "typesafe_ref" +}; + +static struct ref_scale_ops typesafe_lock_ops = { + .init = typesafe_init, + .cleanup = typesafe_cleanup, + .readsection = typesafe_read_section, + .delaysection = typesafe_delay_section, + .name = "typesafe_lock" +}; + +static struct ref_scale_ops typesafe_seqlock_ops = { + .init = typesafe_init, + .cleanup = typesafe_cleanup, + .readsection = typesafe_read_section, + .delaysection = typesafe_delay_section, + .name = "typesafe_seqlock" +}; + static void rcu_scale_one_reader(void) { if (readdelay <= 0) @@ -812,6 +1048,7 @@ ref_scale_init(void) static struct ref_scale_ops *scale_ops[] = { &rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops, &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, + &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops, }; if (!torture_init_begin(scale_type, verbose)) @@ -833,7 +1070,10 @@ ref_scale_init(void) goto unwind; } if (cur_ops->init) - cur_ops->init(); + if (!cur_ops->init()) { + firsterr = -EUCLEAN; + goto unwind; + } ref_scale_print_module_parms(cur_ops, "Start of test"); diff --git a/kernel/rcu/srcutree.c b/kernel/rcu/srcutree.c index ca4b5dcec675..ab4ee58af84b 100644 --- a/kernel/rcu/srcutree.c +++ b/kernel/rcu/srcutree.c @@ -154,7 +154,7 @@ static void init_srcu_struct_data(struct srcu_struct *ssp) */ static inline bool srcu_invl_snp_seq(unsigned long s) { - return rcu_seq_state(s) == SRCU_SNP_INIT_SEQ; + return s == SRCU_SNP_INIT_SEQ; } /* @@ -469,24 +469,59 @@ static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) /* * If the locks are the same as the unlocks, then there must have - * been no readers on this index at some time in between. This does - * not mean that there are no more readers, as one could have read - * the current index but not have incremented the lock counter yet. + * been no readers on this index at some point in this function. + * But there might be more readers, as a task might have read + * the current ->srcu_idx but not yet have incremented its CPU's + * ->srcu_lock_count[idx] counter. In fact, it is possible + * that most of the tasks have been preempted between fetching + * ->srcu_idx and incrementing ->srcu_lock_count[idx]. And there + * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks + * in a system whose address space was fully populated with memory. + * Call this quantity Nt. * - * So suppose that the updater is preempted here for so long - * that more than ULONG_MAX non-nested readers come and go in - * the meantime. It turns out that this cannot result in overflow - * because if a reader modifies its unlock count after we read it - * above, then that reader's next load of ->srcu_idx is guaranteed - * to get the new value, which will cause it to operate on the - * other bank of counters, where it cannot contribute to the - * overflow of these counters. This means that there is a maximum - * of 2*NR_CPUS increments, which cannot overflow given current - * systems, especially not on 64-bit systems. + * So suppose that the updater is preempted at this point in the + * code for a long time. That now-preempted updater has already + * flipped ->srcu_idx (possibly during the preceding grace period), + * done an smp_mb() (again, possibly during the preceding grace + * period), and summed up the ->srcu_unlock_count[idx] counters. + * How many times can a given one of the aforementioned Nt tasks + * increment the old ->srcu_idx value's ->srcu_lock_count[idx] + * counter, in the absence of nesting? * - * OK, how about nesting? This does impose a limit on nesting - * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, - * especially on 64-bit systems. + * It can clearly do so once, given that it has already fetched + * the old value of ->srcu_idx and is just about to use that value + * to index its increment of ->srcu_lock_count[idx]. But as soon as + * it leaves that SRCU read-side critical section, it will increment + * ->srcu_unlock_count[idx], which must follow the updater's above + * read from that same value. Thus, as soon the reading task does + * an smp_mb() and a later fetch from ->srcu_idx, that task will be + * guaranteed to get the new index. Except that the increment of + * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the + * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock() + * is before the smp_mb(). Thus, that task might not see the new + * value of ->srcu_idx until the -second- __srcu_read_lock(), + * which in turn means that this task might well increment + * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice, + * not just once. + * + * However, it is important to note that a given smp_mb() takes + * effect not just for the task executing it, but also for any + * later task running on that same CPU. + * + * That is, there can be almost Nt + Nc further increments of + * ->srcu_lock_count[idx] for the old index, where Nc is the number + * of CPUs. But this is OK because the size of the task_struct + * structure limits the value of Nt and current systems limit Nc + * to a few thousand. + * + * OK, but what about nesting? This does impose a limit on + * nesting of half of the size of the task_struct structure + * (measured in bytes), which should be sufficient. A late 2022 + * TREE01 rcutorture run reported this size to be no less than + * 9408 bytes, allowing up to 4704 levels of nesting, which is + * comfortably beyond excessive. Especially on 64-bit systems, + * which are unlikely to be configured with an address space fully + * populated with memory, at least not anytime soon. */ return srcu_readers_lock_idx(ssp, idx) == unlocks; } @@ -726,7 +761,7 @@ static void srcu_gp_start(struct srcu_struct *ssp) int state; if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) - sdp = per_cpu_ptr(ssp->sda, 0); + sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); else sdp = this_cpu_ptr(ssp->sda); lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); @@ -837,7 +872,8 @@ static void srcu_gp_end(struct srcu_struct *ssp) /* Initiate callback invocation as needed. */ ss_state = smp_load_acquire(&ssp->srcu_size_state); if (ss_state < SRCU_SIZE_WAIT_BARRIER) { - srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, 0), cbdelay); + srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()), + cbdelay); } else { idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); srcu_for_each_node_breadth_first(ssp, snp) { @@ -914,7 +950,7 @@ static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp if (snp) for (; snp != NULL; snp = snp->srcu_parent) { sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); - if (rcu_seq_done(&ssp->srcu_gp_seq, s) || + if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_gp_seq, s)) || (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) return; spin_lock_irqsave_rcu_node(snp, flags); @@ -941,6 +977,9 @@ static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp * * Note that this function also does the work of srcu_funnel_exp_start(), * in some cases by directly invoking it. + * + * The srcu read lock should be hold around this function. And s is a seq snap + * after holding that lock. */ static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, unsigned long s, bool do_norm) @@ -961,7 +1000,7 @@ static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, if (snp_leaf) /* Each pass through the loop does one level of the srcu_node tree. */ for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { - if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != snp_leaf) + if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_gp_seq, s)) && snp != snp_leaf) return; /* GP already done and CBs recorded. */ spin_lock_irqsave_rcu_node(snp, flags); snp_seq = snp->srcu_have_cbs[idx]; @@ -998,8 +1037,8 @@ static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); - /* If grace period not already done and none in progress, start it. */ - if (!rcu_seq_done(&ssp->srcu_gp_seq, s) && + /* If grace period not already in progress, start it. */ + if (!WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_gp_seq, s)) && rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) { WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); srcu_gp_start(ssp); @@ -1059,10 +1098,11 @@ static void srcu_flip(struct srcu_struct *ssp) /* * Ensure that if the updater misses an __srcu_read_unlock() - * increment, that task's next __srcu_read_lock() will see the - * above counter update. Note that both this memory barrier - * and the one in srcu_readers_active_idx_check() provide the - * guarantee for __srcu_read_lock(). + * increment, that task's __srcu_read_lock() following its next + * __srcu_read_lock() or __srcu_read_unlock() will see the above + * counter update. Note that both this memory barrier and the + * one in srcu_readers_active_idx_check() provide the guarantee + * for __srcu_read_lock(). */ smp_mb(); /* D */ /* Pairs with C. */ } @@ -1161,7 +1201,7 @@ static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, idx = __srcu_read_lock_nmisafe(ssp); ss_state = smp_load_acquire(&ssp->srcu_size_state); if (ss_state < SRCU_SIZE_WAIT_CALL) - sdp = per_cpu_ptr(ssp->sda, 0); + sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); else sdp = raw_cpu_ptr(ssp->sda); spin_lock_irqsave_sdp_contention(sdp, &flags); @@ -1497,7 +1537,7 @@ void srcu_barrier(struct srcu_struct *ssp) idx = __srcu_read_lock_nmisafe(ssp); if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) - srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, 0)); + srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id())); else for_each_possible_cpu(cpu) srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); diff --git a/kernel/rcu/tasks.h b/kernel/rcu/tasks.h index fe9840d90e96..bfb5e1549f2b 100644 --- a/kernel/rcu/tasks.h +++ b/kernel/rcu/tasks.h @@ -384,6 +384,7 @@ static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) { int cpu; unsigned long flags; + bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); long n; long ncbs = 0; long ncbsnz = 0; @@ -425,21 +426,23 @@ static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); smp_store_release(&rtp->percpu_enqueue_lim, 1); rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); + gpdone = false; pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); } raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); } - if (rcu_task_cb_adjust && !ncbsnz && - poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) { + if (rcu_task_cb_adjust && !ncbsnz && gpdone) { raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { WRITE_ONCE(rtp->percpu_dequeue_lim, 1); pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); } - for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { - struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); + if (rtp->percpu_dequeue_lim == 1) { + for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { + struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); - WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); + WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); + } } raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); } @@ -560,8 +563,9 @@ static int __noreturn rcu_tasks_kthread(void *arg) static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) { /* Complain if the scheduler has not started. */ - WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, - "synchronize_rcu_tasks called too soon"); + if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, + "synchronize_%s() called too soon", rtp->name)) + return; // If the grace-period kthread is running, use it. if (READ_ONCE(rtp->kthread_ptr)) { @@ -827,11 +831,21 @@ static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) static void rcu_tasks_postscan(struct list_head *hop) { /* - * Wait for tasks that are in the process of exiting. This - * does only part of the job, ensuring that all tasks that were - * previously exiting reach the point where they have disabled - * preemption, allowing the later synchronize_rcu() to finish - * the job. + * Exiting tasks may escape the tasklist scan. Those are vulnerable + * until their final schedule() with TASK_DEAD state. To cope with + * this, divide the fragile exit path part in two intersecting + * read side critical sections: + * + * 1) An _SRCU_ read side starting before calling exit_notify(), + * which may remove the task from the tasklist, and ending after + * the final preempt_disable() call in do_exit(). + * + * 2) An _RCU_ read side starting with the final preempt_disable() + * call in do_exit() and ending with the final call to schedule() + * with TASK_DEAD state. + * + * This handles the part 1). And postgp will handle part 2) with a + * call to synchronize_rcu(). */ synchronize_srcu(&tasks_rcu_exit_srcu); } @@ -898,7 +912,10 @@ static void rcu_tasks_postgp(struct rcu_tasks *rtp) * * In addition, this synchronize_rcu() waits for exiting tasks * to complete their final preempt_disable() region of execution, - * cleaning up after the synchronize_srcu() above. + * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu), + * enforcing the whole region before tasklist removal until + * the final schedule() with TASK_DEAD state to be an RCU TASKS + * read side critical section. */ synchronize_rcu(); } @@ -988,27 +1005,42 @@ void show_rcu_tasks_classic_gp_kthread(void) EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); #endif // !defined(CONFIG_TINY_RCU) -/* Do the srcu_read_lock() for the above synchronize_srcu(). */ +/* + * Contribute to protect against tasklist scan blind spot while the + * task is exiting and may be removed from the tasklist. See + * corresponding synchronize_srcu() for further details. + */ void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) { - preempt_disable(); current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); - preempt_enable(); } -/* Do the srcu_read_unlock() for the above synchronize_srcu(). */ -void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) +/* + * Contribute to protect against tasklist scan blind spot while the + * task is exiting and may be removed from the tasklist. See + * corresponding synchronize_srcu() for further details. + */ +void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu) { struct task_struct *t = current; - preempt_disable(); __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); - preempt_enable(); - exit_tasks_rcu_finish_trace(t); +} + +/* + * Contribute to protect against tasklist scan blind spot while the + * task is exiting and may be removed from the tasklist. See + * corresponding synchronize_srcu() for further details. + */ +void exit_tasks_rcu_finish(void) +{ + exit_tasks_rcu_stop(); + exit_tasks_rcu_finish_trace(current); } #else /* #ifdef CONFIG_TASKS_RCU */ void exit_tasks_rcu_start(void) { } +void exit_tasks_rcu_stop(void) { } void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } #endif /* #else #ifdef CONFIG_TASKS_RCU */ @@ -1036,9 +1068,6 @@ static void rcu_tasks_be_rude(struct work_struct *work) // Wait for one rude RCU-tasks grace period. static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) { - if (num_online_cpus() <= 1) - return; // Fastpath for only one CPU. - rtp->n_ipis += cpumask_weight(cpu_online_mask); schedule_on_each_cpu(rcu_tasks_be_rude); } @@ -1815,23 +1844,21 @@ static void test_rcu_tasks_callback(struct rcu_head *rhp) static void rcu_tasks_initiate_self_tests(void) { - unsigned long j = jiffies; - pr_info("Running RCU-tasks wait API self tests\n"); #ifdef CONFIG_TASKS_RCU - tests[0].runstart = j; + tests[0].runstart = jiffies; synchronize_rcu_tasks(); call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); #endif #ifdef CONFIG_TASKS_RUDE_RCU - tests[1].runstart = j; + tests[1].runstart = jiffies; synchronize_rcu_tasks_rude(); call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); #endif #ifdef CONFIG_TASKS_TRACE_RCU - tests[2].runstart = j; + tests[2].runstart = jiffies; synchronize_rcu_tasks_trace(); call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); #endif diff --git a/kernel/rcu/tiny.c b/kernel/rcu/tiny.c index 72913ce21258..42f7589e51e0 100644 --- a/kernel/rcu/tiny.c +++ b/kernel/rcu/tiny.c @@ -246,15 +246,12 @@ bool poll_state_synchronize_rcu(unsigned long oldstate) EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); #ifdef CONFIG_KASAN_GENERIC -void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) +void kvfree_call_rcu(struct rcu_head *head, void *ptr) { - if (head) { - void *ptr = (void *) head - (unsigned long) func; - + if (head) kasan_record_aux_stack_noalloc(ptr); - } - __kvfree_call_rcu(head, func); + __kvfree_call_rcu(head, ptr); } EXPORT_SYMBOL_GPL(kvfree_call_rcu); #endif diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c index cf34a961821a..8e880c09ab59 100644 --- a/kernel/rcu/tree.c +++ b/kernel/rcu/tree.c @@ -144,14 +144,16 @@ static int rcu_scheduler_fully_active __read_mostly; static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, unsigned long gps, unsigned long flags); -static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); -static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); static void invoke_rcu_core(void); static void rcu_report_exp_rdp(struct rcu_data *rdp); static void sync_sched_exp_online_cleanup(int cpu); static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); +static bool rcu_rdp_cpu_online(struct rcu_data *rdp); +static bool rcu_init_invoked(void); +static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); +static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); /* * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" @@ -215,27 +217,6 @@ EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ /* - * Compute the mask of online CPUs for the specified rcu_node structure. - * This will not be stable unless the rcu_node structure's ->lock is - * held, but the bit corresponding to the current CPU will be stable - * in most contexts. - */ -static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) -{ - return READ_ONCE(rnp->qsmaskinitnext); -} - -/* - * Is the CPU corresponding to the specified rcu_data structure online - * from RCU's perspective? This perspective is given by that structure's - * ->qsmaskinitnext field rather than by the global cpu_online_mask. - */ -static bool rcu_rdp_cpu_online(struct rcu_data *rdp) -{ - return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); -} - -/* * Return true if an RCU grace period is in progress. The READ_ONCE()s * permit this function to be invoked without holding the root rcu_node * structure's ->lock, but of course results can be subject to change. @@ -734,46 +715,6 @@ void rcu_request_urgent_qs_task(struct task_struct *t) smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); } -#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) - -/* - * Is the current CPU online as far as RCU is concerned? - * - * Disable preemption to avoid false positives that could otherwise - * happen due to the current CPU number being sampled, this task being - * preempted, its old CPU being taken offline, resuming on some other CPU, - * then determining that its old CPU is now offline. - * - * Disable checking if in an NMI handler because we cannot safely - * report errors from NMI handlers anyway. In addition, it is OK to use - * RCU on an offline processor during initial boot, hence the check for - * rcu_scheduler_fully_active. - */ -bool rcu_lockdep_current_cpu_online(void) -{ - struct rcu_data *rdp; - bool ret = false; - - if (in_nmi() || !rcu_scheduler_fully_active) - return true; - preempt_disable_notrace(); - rdp = this_cpu_ptr(&rcu_data); - /* - * Strictly, we care here about the case where the current CPU is - * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask - * not being up to date. So arch_spin_is_locked() might have a - * false positive if it's held by some *other* CPU, but that's - * OK because that just means a false *negative* on the warning. - */ - if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) - ret = true; - preempt_enable_notrace(); - return ret; -} -EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); - -#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ - /* * When trying to report a quiescent state on behalf of some other CPU, * it is our responsibility to check for and handle potential overflow @@ -925,6 +866,24 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) rdp->rcu_iw_gp_seq = rnp->gp_seq; irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); } + + if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { + int cpu = rdp->cpu; + struct rcu_snap_record *rsrp; + struct kernel_cpustat *kcsp; + + kcsp = &kcpustat_cpu(cpu); + + rsrp = &rdp->snap_record; + rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); + rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); + rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); + rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); + rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); + rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); + rsrp->jiffies = jiffies; + rsrp->gp_seq = rdp->gp_seq; + } } return 0; @@ -1350,13 +1309,6 @@ static void rcu_strict_gp_boundary(void *unused) invoke_rcu_core(); } -// Has rcu_init() been invoked? This is used (for example) to determine -// whether spinlocks may be acquired safely. -static bool rcu_init_invoked(void) -{ - return !!rcu_state.n_online_cpus; -} - // Make the polled API aware of the beginning of a grace period. static void rcu_poll_gp_seq_start(unsigned long *snap) { @@ -2092,92 +2044,6 @@ rcu_check_quiescent_state(struct rcu_data *rdp) } /* - * Near the end of the offline process. Trace the fact that this CPU - * is going offline. - */ -int rcutree_dying_cpu(unsigned int cpu) -{ - bool blkd; - struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); - struct rcu_node *rnp = rdp->mynode; - - if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) - return 0; - - blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); - trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), - blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); - return 0; -} - -/* - * All CPUs for the specified rcu_node structure have gone offline, - * and all tasks that were preempted within an RCU read-side critical - * section while running on one of those CPUs have since exited their RCU - * read-side critical section. Some other CPU is reporting this fact with - * the specified rcu_node structure's ->lock held and interrupts disabled. - * This function therefore goes up the tree of rcu_node structures, - * clearing the corresponding bits in the ->qsmaskinit fields. Note that - * the leaf rcu_node structure's ->qsmaskinit field has already been - * updated. - * - * This function does check that the specified rcu_node structure has - * all CPUs offline and no blocked tasks, so it is OK to invoke it - * prematurely. That said, invoking it after the fact will cost you - * a needless lock acquisition. So once it has done its work, don't - * invoke it again. - */ -static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) -{ - long mask; - struct rcu_node *rnp = rnp_leaf; - - raw_lockdep_assert_held_rcu_node(rnp_leaf); - if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || - WARN_ON_ONCE(rnp_leaf->qsmaskinit) || - WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) - return; - for (;;) { - mask = rnp->grpmask; - rnp = rnp->parent; - if (!rnp) - break; - raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ - rnp->qsmaskinit &= ~mask; - /* Between grace periods, so better already be zero! */ - WARN_ON_ONCE(rnp->qsmask); - if (rnp->qsmaskinit) { - raw_spin_unlock_rcu_node(rnp); - /* irqs remain disabled. */ - return; - } - raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ - } -} - -/* - * The CPU has been completely removed, and some other CPU is reporting - * this fact from process context. Do the remainder of the cleanup. - * There can only be one CPU hotplug operation at a time, so no need for - * explicit locking. - */ -int rcutree_dead_cpu(unsigned int cpu) -{ - struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); - struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ - - if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) - return 0; - - WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); - /* Adjust any no-longer-needed kthreads. */ - rcu_boost_kthread_setaffinity(rnp, -1); - // Stop-machine done, so allow nohz_full to disable tick. - tick_dep_clear(TICK_DEP_BIT_RCU); - return 0; -} - -/* * Invoke any RCU callbacks that have made it to the end of their grace * period. Throttle as specified by rdp->blimit. */ @@ -2209,7 +2075,7 @@ static void rcu_do_batch(struct rcu_data *rdp) */ rcu_nocb_lock_irqsave(rdp, flags); WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); - pending = rcu_segcblist_n_cbs(&rdp->cblist); + pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); div = READ_ONCE(rcu_divisor); div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; bl = max(rdp->blimit, pending >> div); @@ -2727,10 +2593,11 @@ static void check_cb_ovld(struct rcu_data *rdp) } static void -__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy) +__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) { static atomic_t doublefrees; unsigned long flags; + bool lazy; struct rcu_data *rdp; bool was_alldone; @@ -2755,6 +2622,7 @@ __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy) kasan_record_aux_stack_noalloc(head); local_irq_save(flags); rdp = this_cpu_ptr(&rcu_data); + lazy = lazy_in && !rcu_async_should_hurry(); /* Add the callback to our list. */ if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { @@ -2876,13 +2744,15 @@ EXPORT_SYMBOL_GPL(call_rcu); /** * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers + * @list: List node. All blocks are linked between each other + * @gp_snap: Snapshot of RCU state for objects placed to this bulk * @nr_records: Number of active pointers in the array - * @next: Next bulk object in the block chain * @records: Array of the kvfree_rcu() pointers */ struct kvfree_rcu_bulk_data { + struct list_head list; + unsigned long gp_snap; unsigned long nr_records; - struct kvfree_rcu_bulk_data *next; void *records[]; }; @@ -2898,26 +2768,28 @@ struct kvfree_rcu_bulk_data { * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period * @head_free: List of kfree_rcu() objects waiting for a grace period - * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period + * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period * @krcp: Pointer to @kfree_rcu_cpu structure */ struct kfree_rcu_cpu_work { struct rcu_work rcu_work; struct rcu_head *head_free; - struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; + struct list_head bulk_head_free[FREE_N_CHANNELS]; struct kfree_rcu_cpu *krcp; }; /** * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period * @head: List of kfree_rcu() objects not yet waiting for a grace period - * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period + * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" + * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period * @lock: Synchronize access to this structure * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES * @initialized: The @rcu_work fields have been initialized - * @count: Number of objects for which GP not started + * @head_count: Number of objects in rcu_head singular list + * @bulk_count: Number of objects in bulk-list * @bkvcache: * A simple cache list that contains objects for reuse purpose. * In order to save some per-cpu space the list is singular. @@ -2935,13 +2807,20 @@ struct kfree_rcu_cpu_work { * the interactions with the slab allocators. */ struct kfree_rcu_cpu { + // Objects queued on a linked list + // through their rcu_head structures. struct rcu_head *head; - struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; + unsigned long head_gp_snap; + atomic_t head_count; + + // Objects queued on a bulk-list. + struct list_head bulk_head[FREE_N_CHANNELS]; + atomic_t bulk_count[FREE_N_CHANNELS]; + struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; raw_spinlock_t lock; struct delayed_work monitor_work; bool initialized; - int count; struct delayed_work page_cache_work; atomic_t backoff_page_cache_fill; @@ -3029,29 +2908,87 @@ drain_page_cache(struct kfree_rcu_cpu *krcp) return freed; } +static void +kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, + struct kvfree_rcu_bulk_data *bnode, int idx) +{ + unsigned long flags; + int i; + + debug_rcu_bhead_unqueue(bnode); + + rcu_lock_acquire(&rcu_callback_map); + if (idx == 0) { // kmalloc() / kfree(). + trace_rcu_invoke_kfree_bulk_callback( + rcu_state.name, bnode->nr_records, + bnode->records); + + kfree_bulk(bnode->nr_records, bnode->records); + } else { // vmalloc() / vfree(). + for (i = 0; i < bnode->nr_records; i++) { + trace_rcu_invoke_kvfree_callback( + rcu_state.name, bnode->records[i], 0); + + vfree(bnode->records[i]); + } + } + rcu_lock_release(&rcu_callback_map); + + raw_spin_lock_irqsave(&krcp->lock, flags); + if (put_cached_bnode(krcp, bnode)) + bnode = NULL; + raw_spin_unlock_irqrestore(&krcp->lock, flags); + + if (bnode) + free_page((unsigned long) bnode); + + cond_resched_tasks_rcu_qs(); +} + +static void +kvfree_rcu_list(struct rcu_head *head) +{ + struct rcu_head *next; + + for (; head; head = next) { + void *ptr = (void *) head->func; + unsigned long offset = (void *) head - ptr; + + next = head->next; + debug_rcu_head_unqueue((struct rcu_head *)ptr); + rcu_lock_acquire(&rcu_callback_map); + trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); + + if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) + kvfree(ptr); + + rcu_lock_release(&rcu_callback_map); + cond_resched_tasks_rcu_qs(); + } +} + /* * This function is invoked in workqueue context after a grace period. - * It frees all the objects queued on ->bkvhead_free or ->head_free. + * It frees all the objects queued on ->bulk_head_free or ->head_free. */ static void kfree_rcu_work(struct work_struct *work) { unsigned long flags; - struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; - struct rcu_head *head, *next; + struct kvfree_rcu_bulk_data *bnode, *n; + struct list_head bulk_head[FREE_N_CHANNELS]; + struct rcu_head *head; struct kfree_rcu_cpu *krcp; struct kfree_rcu_cpu_work *krwp; - int i, j; + int i; krwp = container_of(to_rcu_work(work), - struct kfree_rcu_cpu_work, rcu_work); + struct kfree_rcu_cpu_work, rcu_work); krcp = krwp->krcp; raw_spin_lock_irqsave(&krcp->lock, flags); // Channels 1 and 2. - for (i = 0; i < FREE_N_CHANNELS; i++) { - bkvhead[i] = krwp->bkvhead_free[i]; - krwp->bkvhead_free[i] = NULL; - } + for (i = 0; i < FREE_N_CHANNELS; i++) + list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); // Channel 3. head = krwp->head_free; @@ -3060,39 +2997,9 @@ static void kfree_rcu_work(struct work_struct *work) // Handle the first two channels. for (i = 0; i < FREE_N_CHANNELS; i++) { - for (; bkvhead[i]; bkvhead[i] = bnext) { - bnext = bkvhead[i]->next; - debug_rcu_bhead_unqueue(bkvhead[i]); - - rcu_lock_acquire(&rcu_callback_map); - if (i == 0) { // kmalloc() / kfree(). - trace_rcu_invoke_kfree_bulk_callback( - rcu_state.name, bkvhead[i]->nr_records, - bkvhead[i]->records); - - kfree_bulk(bkvhead[i]->nr_records, - bkvhead[i]->records); - } else { // vmalloc() / vfree(). - for (j = 0; j < bkvhead[i]->nr_records; j++) { - trace_rcu_invoke_kvfree_callback( - rcu_state.name, - bkvhead[i]->records[j], 0); - - vfree(bkvhead[i]->records[j]); - } - } - rcu_lock_release(&rcu_callback_map); - - raw_spin_lock_irqsave(&krcp->lock, flags); - if (put_cached_bnode(krcp, bkvhead[i])) - bkvhead[i] = NULL; - raw_spin_unlock_irqrestore(&krcp->lock, flags); - - if (bkvhead[i]) - free_page((unsigned long) bkvhead[i]); - - cond_resched_tasks_rcu_qs(); - } + // Start from the tail page, so a GP is likely passed for it. + list_for_each_entry_safe(bnode, n, &bulk_head[i], list) + kvfree_rcu_bulk(krcp, bnode, i); } /* @@ -3102,21 +3009,7 @@ static void kfree_rcu_work(struct work_struct *work) * queued on a linked list through their rcu_head structures. * This list is named "Channel 3". */ - for (; head; head = next) { - unsigned long offset = (unsigned long)head->func; - void *ptr = (void *)head - offset; - - next = head->next; - debug_rcu_head_unqueue((struct rcu_head *)ptr); - rcu_lock_acquire(&rcu_callback_map); - trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); - - if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) - kvfree(ptr); - - rcu_lock_release(&rcu_callback_map); - cond_resched_tasks_rcu_qs(); - } + kvfree_rcu_list(head); } static bool @@ -3125,10 +3018,21 @@ need_offload_krc(struct kfree_rcu_cpu *krcp) int i; for (i = 0; i < FREE_N_CHANNELS; i++) - if (krcp->bkvhead[i]) + if (!list_empty(&krcp->bulk_head[i])) return true; - return !!krcp->head; + return !!READ_ONCE(krcp->head); +} + +static int krc_count(struct kfree_rcu_cpu *krcp) +{ + int sum = atomic_read(&krcp->head_count); + int i; + + for (i = 0; i < FREE_N_CHANNELS; i++) + sum += atomic_read(&krcp->bulk_count[i]); + + return sum; } static void @@ -3136,7 +3040,7 @@ schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) { long delay, delay_left; - delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; + delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; if (delayed_work_pending(&krcp->monitor_work)) { delay_left = krcp->monitor_work.timer.expires - jiffies; if (delay < delay_left) @@ -3146,6 +3050,44 @@ schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) queue_delayed_work(system_wq, &krcp->monitor_work, delay); } +static void +kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) +{ + struct list_head bulk_ready[FREE_N_CHANNELS]; + struct kvfree_rcu_bulk_data *bnode, *n; + struct rcu_head *head_ready = NULL; + unsigned long flags; + int i; + + raw_spin_lock_irqsave(&krcp->lock, flags); + for (i = 0; i < FREE_N_CHANNELS; i++) { + INIT_LIST_HEAD(&bulk_ready[i]); + + list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { + if (!poll_state_synchronize_rcu(bnode->gp_snap)) + break; + + atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); + list_move(&bnode->list, &bulk_ready[i]); + } + } + + if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { + head_ready = krcp->head; + atomic_set(&krcp->head_count, 0); + WRITE_ONCE(krcp->head, NULL); + } + raw_spin_unlock_irqrestore(&krcp->lock, flags); + + for (i = 0; i < FREE_N_CHANNELS; i++) { + list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) + kvfree_rcu_bulk(krcp, bnode, i); + } + + if (head_ready) + kvfree_rcu_list(head_ready); +} + /* * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. */ @@ -3156,26 +3098,31 @@ static void kfree_rcu_monitor(struct work_struct *work) unsigned long flags; int i, j; + // Drain ready for reclaim. + kvfree_rcu_drain_ready(krcp); + raw_spin_lock_irqsave(&krcp->lock, flags); // Attempt to start a new batch. for (i = 0; i < KFREE_N_BATCHES; i++) { struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); - // Try to detach bkvhead or head and attach it over any + // Try to detach bulk_head or head and attach it over any // available corresponding free channel. It can be that // a previous RCU batch is in progress, it means that // immediately to queue another one is not possible so // in that case the monitor work is rearmed. - if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || - (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || - (krcp->head && !krwp->head_free)) { + if ((!list_empty(&krcp->bulk_head[0]) && list_empty(&krwp->bulk_head_free[0])) || + (!list_empty(&krcp->bulk_head[1]) && list_empty(&krwp->bulk_head_free[1])) || + (READ_ONCE(krcp->head) && !krwp->head_free)) { + // Channel 1 corresponds to the SLAB-pointer bulk path. // Channel 2 corresponds to vmalloc-pointer bulk path. for (j = 0; j < FREE_N_CHANNELS; j++) { - if (!krwp->bkvhead_free[j]) { - krwp->bkvhead_free[j] = krcp->bkvhead[j]; - krcp->bkvhead[j] = NULL; + if (list_empty(&krwp->bulk_head_free[j])) { + atomic_set(&krcp->bulk_count[j], 0); + list_replace_init(&krcp->bulk_head[j], + &krwp->bulk_head_free[j]); } } @@ -3183,11 +3130,10 @@ static void kfree_rcu_monitor(struct work_struct *work) // objects queued on the linked list. if (!krwp->head_free) { krwp->head_free = krcp->head; - krcp->head = NULL; + atomic_set(&krcp->head_count, 0); + WRITE_ONCE(krcp->head, NULL); } - WRITE_ONCE(krcp->count, 0); - // One work is per one batch, so there are three // "free channels", the batch can handle. It can // be that the work is in the pending state when @@ -3197,6 +3143,8 @@ static void kfree_rcu_monitor(struct work_struct *work) } } + raw_spin_unlock_irqrestore(&krcp->lock, flags); + // If there is nothing to detach, it means that our job is // successfully done here. In case of having at least one // of the channels that is still busy we should rearm the @@ -3204,8 +3152,6 @@ static void kfree_rcu_monitor(struct work_struct *work) // still in progress. if (need_offload_krc(krcp)) schedule_delayed_monitor_work(krcp); - - raw_spin_unlock_irqrestore(&krcp->lock, flags); } static enum hrtimer_restart @@ -3288,10 +3234,11 @@ add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, return false; idx = !!is_vmalloc_addr(ptr); + bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], + struct kvfree_rcu_bulk_data, list); /* Check if a new block is required. */ - if (!(*krcp)->bkvhead[idx] || - (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { + if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { bnode = get_cached_bnode(*krcp); if (!bnode && can_alloc) { krc_this_cpu_unlock(*krcp, *flags); @@ -3315,17 +3262,15 @@ add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, if (!bnode) return false; - /* Initialize the new block. */ + // Initialize the new block and attach it. bnode->nr_records = 0; - bnode->next = (*krcp)->bkvhead[idx]; - - /* Attach it to the head. */ - (*krcp)->bkvhead[idx] = bnode; + list_add(&bnode->list, &(*krcp)->bulk_head[idx]); } - /* Finally insert. */ - (*krcp)->bkvhead[idx]->records - [(*krcp)->bkvhead[idx]->nr_records++] = ptr; + // Finally insert and update the GP for this page. + bnode->records[bnode->nr_records++] = ptr; + bnode->gp_snap = get_state_synchronize_rcu(); + atomic_inc(&(*krcp)->bulk_count[idx]); return true; } @@ -3342,26 +3287,21 @@ add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, * be free'd in workqueue context. This allows us to: batch requests together to * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. */ -void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) +void kvfree_call_rcu(struct rcu_head *head, void *ptr) { unsigned long flags; struct kfree_rcu_cpu *krcp; bool success; - void *ptr; - if (head) { - ptr = (void *) head - (unsigned long) func; - } else { - /* - * Please note there is a limitation for the head-less - * variant, that is why there is a clear rule for such - * objects: it can be used from might_sleep() context - * only. For other places please embed an rcu_head to - * your data. - */ + /* + * Please note there is a limitation for the head-less + * variant, that is why there is a clear rule for such + * objects: it can be used from might_sleep() context + * only. For other places please embed an rcu_head to + * your data. + */ + if (!head) might_sleep(); - ptr = (unsigned long *) func; - } // Queue the object but don't yet schedule the batch. if (debug_rcu_head_queue(ptr)) { @@ -3382,14 +3322,16 @@ void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) // Inline if kvfree_rcu(one_arg) call. goto unlock_return; - head->func = func; + head->func = ptr; head->next = krcp->head; - krcp->head = head; + WRITE_ONCE(krcp->head, head); + atomic_inc(&krcp->head_count); + + // Take a snapshot for this krcp. + krcp->head_gp_snap = get_state_synchronize_rcu(); success = true; } - WRITE_ONCE(krcp->count, krcp->count + 1); - // Set timer to drain after KFREE_DRAIN_JIFFIES. if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) schedule_delayed_monitor_work(krcp); @@ -3420,7 +3362,7 @@ kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) for_each_possible_cpu(cpu) { struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); - count += READ_ONCE(krcp->count); + count += krc_count(krcp); count += READ_ONCE(krcp->nr_bkv_objs); atomic_set(&krcp->backoff_page_cache_fill, 1); } @@ -3437,7 +3379,7 @@ kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) int count; struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); - count = krcp->count; + count = krc_count(krcp); count += drain_page_cache(krcp); kfree_rcu_monitor(&krcp->monitor_work.work); @@ -3461,15 +3403,12 @@ static struct shrinker kfree_rcu_shrinker = { void __init kfree_rcu_scheduler_running(void) { int cpu; - unsigned long flags; for_each_possible_cpu(cpu) { struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); - raw_spin_lock_irqsave(&krcp->lock, flags); if (need_offload_krc(krcp)) schedule_delayed_monitor_work(krcp); - raw_spin_unlock_irqrestore(&krcp->lock, flags); } } @@ -3485,9 +3424,10 @@ void __init kfree_rcu_scheduler_running(void) */ static int rcu_blocking_is_gp(void) { - if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) + if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { + might_sleep(); return false; - might_sleep(); /* Check for RCU read-side critical section. */ + } return true; } @@ -3711,7 +3651,9 @@ EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); * If @false is returned, it is the caller's responsibility to invoke this * function later on until it does return @true. Alternatively, the caller * can explicitly wait for a grace period, for example, by passing @oldstate - * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). + * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() + * on the one hand or by directly invoking either synchronize_rcu() or + * synchronize_rcu_expedited() on the other. * * Yes, this function does not take counter wrap into account. * But counter wrap is harmless. If the counter wraps, we have waited for @@ -3722,6 +3664,12 @@ EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); * completed. Alternatively, they can use get_completed_synchronize_rcu() * to get a guaranteed-completed grace-period state. * + * In addition, because oldstate compresses the grace-period state for + * both normal and expedited grace periods into a single unsigned long, + * it can miss a grace period when synchronize_rcu() runs concurrently + * with synchronize_rcu_expedited(). If this is unacceptable, please + * instead use the _full() variant of these polling APIs. + * * This function provides the same memory-ordering guarantees that * would be provided by a synchronize_rcu() that was invoked at the call * to the function that provided @oldstate, and that returned at the end @@ -4080,6 +4028,155 @@ retry: EXPORT_SYMBOL_GPL(rcu_barrier); /* + * Compute the mask of online CPUs for the specified rcu_node structure. + * This will not be stable unless the rcu_node structure's ->lock is + * held, but the bit corresponding to the current CPU will be stable + * in most contexts. + */ +static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) +{ + return READ_ONCE(rnp->qsmaskinitnext); +} + +/* + * Is the CPU corresponding to the specified rcu_data structure online + * from RCU's perspective? This perspective is given by that structure's + * ->qsmaskinitnext field rather than by the global cpu_online_mask. + */ +static bool rcu_rdp_cpu_online(struct rcu_data *rdp) +{ + return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); +} + +#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) + +/* + * Is the current CPU online as far as RCU is concerned? + * + * Disable preemption to avoid false positives that could otherwise + * happen due to the current CPU number being sampled, this task being + * preempted, its old CPU being taken offline, resuming on some other CPU, + * then determining that its old CPU is now offline. + * + * Disable checking if in an NMI handler because we cannot safely + * report errors from NMI handlers anyway. In addition, it is OK to use + * RCU on an offline processor during initial boot, hence the check for + * rcu_scheduler_fully_active. + */ +bool rcu_lockdep_current_cpu_online(void) +{ + struct rcu_data *rdp; + bool ret = false; + + if (in_nmi() || !rcu_scheduler_fully_active) + return true; + preempt_disable_notrace(); + rdp = this_cpu_ptr(&rcu_data); + /* + * Strictly, we care here about the case where the current CPU is + * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask + * not being up to date. So arch_spin_is_locked() might have a + * false positive if it's held by some *other* CPU, but that's + * OK because that just means a false *negative* on the warning. + */ + if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) + ret = true; + preempt_enable_notrace(); + return ret; +} +EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); + +#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ + +// Has rcu_init() been invoked? This is used (for example) to determine +// whether spinlocks may be acquired safely. +static bool rcu_init_invoked(void) +{ + return !!rcu_state.n_online_cpus; +} + +/* + * Near the end of the offline process. Trace the fact that this CPU + * is going offline. + */ +int rcutree_dying_cpu(unsigned int cpu) +{ + bool blkd; + struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); + struct rcu_node *rnp = rdp->mynode; + + if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) + return 0; + + blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); + trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), + blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); + return 0; +} + +/* + * All CPUs for the specified rcu_node structure have gone offline, + * and all tasks that were preempted within an RCU read-side critical + * section while running on one of those CPUs have since exited their RCU + * read-side critical section. Some other CPU is reporting this fact with + * the specified rcu_node structure's ->lock held and interrupts disabled. + * This function therefore goes up the tree of rcu_node structures, + * clearing the corresponding bits in the ->qsmaskinit fields. Note that + * the leaf rcu_node structure's ->qsmaskinit field has already been + * updated. + * + * This function does check that the specified rcu_node structure has + * all CPUs offline and no blocked tasks, so it is OK to invoke it + * prematurely. That said, invoking it after the fact will cost you + * a needless lock acquisition. So once it has done its work, don't + * invoke it again. + */ +static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) +{ + long mask; + struct rcu_node *rnp = rnp_leaf; + + raw_lockdep_assert_held_rcu_node(rnp_leaf); + if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || + WARN_ON_ONCE(rnp_leaf->qsmaskinit) || + WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) + return; + for (;;) { + mask = rnp->grpmask; + rnp = rnp->parent; + if (!rnp) + break; + raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ + rnp->qsmaskinit &= ~mask; + /* Between grace periods, so better already be zero! */ + WARN_ON_ONCE(rnp->qsmask); + if (rnp->qsmaskinit) { + raw_spin_unlock_rcu_node(rnp); + /* irqs remain disabled. */ + return; + } + raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ + } +} + +/* + * The CPU has been completely removed, and some other CPU is reporting + * this fact from process context. Do the remainder of the cleanup. + * There can only be one CPU hotplug operation at a time, so no need for + * explicit locking. + */ +int rcutree_dead_cpu(unsigned int cpu) +{ + if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) + return 0; + + WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); + // Stop-machine done, so allow nohz_full to disable tick. + tick_dep_clear(TICK_DEP_BIT_RCU); + return 0; +} + +/* * Propagate ->qsinitmask bits up the rcu_node tree to account for the * first CPU in a given leaf rcu_node structure coming online. The caller * must hold the corresponding leaf rcu_node ->lock with interrupts @@ -4408,11 +4505,13 @@ static int rcu_pm_notify(struct notifier_block *self, switch (action) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: + rcu_async_hurry(); rcu_expedite_gp(); break; case PM_POST_HIBERNATION: case PM_POST_SUSPEND: rcu_unexpedite_gp(); + rcu_async_relax(); break; default: break; @@ -4766,7 +4865,7 @@ struct workqueue_struct *rcu_gp_wq; static void __init kfree_rcu_batch_init(void) { int cpu; - int i; + int i, j; /* Clamp it to [0:100] seconds interval. */ if (rcu_delay_page_cache_fill_msec < 0 || @@ -4786,8 +4885,14 @@ static void __init kfree_rcu_batch_init(void) for (i = 0; i < KFREE_N_BATCHES; i++) { INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); krcp->krw_arr[i].krcp = krcp; + + for (j = 0; j < FREE_N_CHANNELS; j++) + INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); } + for (i = 0; i < FREE_N_CHANNELS; i++) + INIT_LIST_HEAD(&krcp->bulk_head[i]); + INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); krcp->initialized = true; @@ -4838,6 +4943,8 @@ void __init rcu_init(void) // Kick-start any polled grace periods that started early. if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1)) (void)start_poll_synchronize_rcu_expedited(); + + rcu_test_sync_prims(); } #include "tree_stall.h" diff --git a/kernel/rcu/tree.h b/kernel/rcu/tree.h index fcb5d696eb17..192536916f9a 100644 --- a/kernel/rcu/tree.h +++ b/kernel/rcu/tree.h @@ -158,6 +158,23 @@ union rcu_noqs { u16 s; /* Set of bits, aggregate OR here. */ }; +/* + * Record the snapshot of the core stats at half of the first RCU stall timeout. + * The member gp_seq is used to ensure that all members are updated only once + * during the sampling period. The snapshot is taken only if this gp_seq is not + * equal to rdp->gp_seq. + */ +struct rcu_snap_record { + unsigned long gp_seq; /* Track rdp->gp_seq counter */ + u64 cputime_irq; /* Accumulated cputime of hard irqs */ + u64 cputime_softirq;/* Accumulated cputime of soft irqs */ + u64 cputime_system; /* Accumulated cputime of kernel tasks */ + unsigned long nr_hardirqs; /* Accumulated number of hard irqs */ + unsigned int nr_softirqs; /* Accumulated number of soft irqs */ + unsigned long long nr_csw; /* Accumulated number of task switches */ + unsigned long jiffies; /* Track jiffies value */ +}; + /* Per-CPU data for read-copy update. */ struct rcu_data { /* 1) quiescent-state and grace-period handling : */ @@ -262,6 +279,8 @@ struct rcu_data { short rcu_onl_gp_flags; /* ->gp_flags at last online. */ unsigned long last_fqs_resched; /* Time of last rcu_resched(). */ unsigned long last_sched_clock; /* Jiffies of last rcu_sched_clock_irq(). */ + struct rcu_snap_record snap_record; /* Snapshot of core stats at half of */ + /* the first RCU stall timeout */ long lazy_len; /* Length of buffered lazy callbacks. */ int cpu; diff --git a/kernel/rcu/tree_exp.h b/kernel/rcu/tree_exp.h index ed6c3cce28f2..249c2967d9e6 100644 --- a/kernel/rcu/tree_exp.h +++ b/kernel/rcu/tree_exp.h @@ -11,6 +11,7 @@ static void rcu_exp_handler(void *unused); static int rcu_print_task_exp_stall(struct rcu_node *rnp); +static void rcu_exp_print_detail_task_stall_rnp(struct rcu_node *rnp); /* * Record the start of an expedited grace period. @@ -667,8 +668,11 @@ static void synchronize_rcu_expedited_wait(void) mask = leaf_node_cpu_bit(rnp, cpu); if (!(READ_ONCE(rnp->expmask) & mask)) continue; + preempt_disable(); // For smp_processor_id() in dump_cpu_task(). dump_cpu_task(cpu); + preempt_enable(); } + rcu_exp_print_detail_task_stall_rnp(rnp); } jiffies_stall = 3 * rcu_exp_jiffies_till_stall_check() + 3; panic_on_rcu_stall(); @@ -811,6 +815,36 @@ static int rcu_print_task_exp_stall(struct rcu_node *rnp) return ndetected; } +/* + * Scan the current list of tasks blocked within RCU read-side critical + * sections, dumping the stack of each that is blocking the current + * expedited grace period. + */ +static void rcu_exp_print_detail_task_stall_rnp(struct rcu_node *rnp) +{ + unsigned long flags; + struct task_struct *t; + + if (!rcu_exp_stall_task_details) + return; + raw_spin_lock_irqsave_rcu_node(rnp, flags); + if (!READ_ONCE(rnp->exp_tasks)) { + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); + return; + } + t = list_entry(rnp->exp_tasks->prev, + struct task_struct, rcu_node_entry); + list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { + /* + * We could be printing a lot while holding a spinlock. + * Avoid triggering hard lockup. + */ + touch_nmi_watchdog(); + sched_show_task(t); + } + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); +} + #else /* #ifdef CONFIG_PREEMPT_RCU */ /* Request an expedited quiescent state. */ @@ -883,6 +917,15 @@ static int rcu_print_task_exp_stall(struct rcu_node *rnp) return 0; } +/* + * Because preemptible RCU does not exist, we never have to print out + * tasks blocked within RCU read-side critical sections that are blocking + * the current expedited grace period. + */ +static void rcu_exp_print_detail_task_stall_rnp(struct rcu_node *rnp) +{ +} + #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ /** diff --git a/kernel/rcu/tree_stall.h b/kernel/rcu/tree_stall.h index 5653560573e2..b10b8349bb2a 100644 --- a/kernel/rcu/tree_stall.h +++ b/kernel/rcu/tree_stall.h @@ -39,7 +39,7 @@ int rcu_exp_jiffies_till_stall_check(void) // CONFIG_RCU_EXP_CPU_STALL_TIMEOUT, so check the allowed range. // The minimum clamped value is "2UL", because at least one full // tick has to be guaranteed. - till_stall_check = clamp(msecs_to_jiffies(cpu_stall_timeout), 2UL, 21UL * HZ); + till_stall_check = clamp(msecs_to_jiffies(cpu_stall_timeout), 2UL, 300UL * HZ); if (cpu_stall_timeout && jiffies_to_msecs(till_stall_check) != cpu_stall_timeout) WRITE_ONCE(rcu_exp_cpu_stall_timeout, jiffies_to_msecs(till_stall_check)); @@ -428,6 +428,35 @@ static bool rcu_is_rcuc_kthread_starving(struct rcu_data *rdp, unsigned long *jp return j > 2 * HZ; } +static void print_cpu_stat_info(int cpu) +{ + struct rcu_snap_record rsr, *rsrp; + struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); + struct kernel_cpustat *kcsp = &kcpustat_cpu(cpu); + + if (!rcu_cpu_stall_cputime) + return; + + rsrp = &rdp->snap_record; + if (rsrp->gp_seq != rdp->gp_seq) + return; + + rsr.cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); + rsr.cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); + rsr.cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); + + pr_err("\t hardirqs softirqs csw/system\n"); + pr_err("\t number: %8ld %10d %12lld\n", + kstat_cpu_irqs_sum(cpu) - rsrp->nr_hardirqs, + kstat_cpu_softirqs_sum(cpu) - rsrp->nr_softirqs, + nr_context_switches_cpu(cpu) - rsrp->nr_csw); + pr_err("\tcputime: %8lld %10lld %12lld ==> %d(ms)\n", + div_u64(rsr.cputime_irq - rsrp->cputime_irq, NSEC_PER_MSEC), + div_u64(rsr.cputime_softirq - rsrp->cputime_softirq, NSEC_PER_MSEC), + div_u64(rsr.cputime_system - rsrp->cputime_system, NSEC_PER_MSEC), + jiffies_to_msecs(jiffies - rsrp->jiffies)); +} + /* * Print out diagnostic information for the specified stalled CPU. * @@ -484,6 +513,8 @@ static void print_cpu_stall_info(int cpu) data_race(rcu_state.n_force_qs) - rcu_state.n_force_qs_gpstart, rcuc_starved ? buf : "", falsepositive ? " (false positive?)" : ""); + + print_cpu_stat_info(cpu); } /* Complain about starvation of grace-period kthread. */ @@ -588,7 +619,7 @@ static void print_other_cpu_stall(unsigned long gp_seq, unsigned long gps) for_each_possible_cpu(cpu) totqlen += rcu_get_n_cbs_cpu(cpu); - pr_cont("\t(detected by %d, t=%ld jiffies, g=%ld, q=%lu ncpus=%d)\n", + pr_err("\t(detected by %d, t=%ld jiffies, g=%ld, q=%lu ncpus=%d)\n", smp_processor_id(), (long)(jiffies - gps), (long)rcu_seq_current(&rcu_state.gp_seq), totqlen, rcu_state.n_online_cpus); if (ndetected) { @@ -649,7 +680,7 @@ static void print_cpu_stall(unsigned long gps) raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); for_each_possible_cpu(cpu) totqlen += rcu_get_n_cbs_cpu(cpu); - pr_cont("\t(t=%lu jiffies g=%ld q=%lu ncpus=%d)\n", + pr_err("\t(t=%lu jiffies g=%ld q=%lu ncpus=%d)\n", jiffies - gps, (long)rcu_seq_current(&rcu_state.gp_seq), totqlen, rcu_state.n_online_cpus); diff --git a/kernel/rcu/update.c b/kernel/rcu/update.c index f5e6a2f95a2a..19bf6fa3ee6a 100644 --- a/kernel/rcu/update.c +++ b/kernel/rcu/update.c @@ -144,8 +144,45 @@ bool rcu_gp_is_normal(void) } EXPORT_SYMBOL_GPL(rcu_gp_is_normal); -static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1); +static atomic_t rcu_async_hurry_nesting = ATOMIC_INIT(1); +/* + * Should call_rcu() callbacks be processed with urgency or are + * they OK being executed with arbitrary delays? + */ +bool rcu_async_should_hurry(void) +{ + return !IS_ENABLED(CONFIG_RCU_LAZY) || + atomic_read(&rcu_async_hurry_nesting); +} +EXPORT_SYMBOL_GPL(rcu_async_should_hurry); + +/** + * rcu_async_hurry - Make future async RCU callbacks not lazy. + * + * After a call to this function, future calls to call_rcu() + * will be processed in a timely fashion. + */ +void rcu_async_hurry(void) +{ + if (IS_ENABLED(CONFIG_RCU_LAZY)) + atomic_inc(&rcu_async_hurry_nesting); +} +EXPORT_SYMBOL_GPL(rcu_async_hurry); +/** + * rcu_async_relax - Make future async RCU callbacks lazy. + * + * After a call to this function, future calls to call_rcu() + * will be processed in a lazy fashion. + */ +void rcu_async_relax(void) +{ + if (IS_ENABLED(CONFIG_RCU_LAZY)) + atomic_dec(&rcu_async_hurry_nesting); +} +EXPORT_SYMBOL_GPL(rcu_async_relax); + +static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1); /* * Should normal grace-period primitives be expedited? Intended for * use within RCU. Note that this function takes the rcu_expedited @@ -195,6 +232,7 @@ static bool rcu_boot_ended __read_mostly; void rcu_end_inkernel_boot(void) { rcu_unexpedite_gp(); + rcu_async_relax(); if (rcu_normal_after_boot) WRITE_ONCE(rcu_normal, 1); rcu_boot_ended = true; @@ -220,6 +258,7 @@ void rcu_test_sync_prims(void) { if (!IS_ENABLED(CONFIG_PROVE_RCU)) return; + pr_info("Running RCU synchronous self tests\n"); synchronize_rcu(); synchronize_rcu_expedited(); } @@ -508,6 +547,10 @@ int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; module_param(rcu_cpu_stall_timeout, int, 0644); int rcu_exp_cpu_stall_timeout __read_mostly = CONFIG_RCU_EXP_CPU_STALL_TIMEOUT; module_param(rcu_exp_cpu_stall_timeout, int, 0644); +int rcu_cpu_stall_cputime __read_mostly = IS_ENABLED(CONFIG_RCU_CPU_STALL_CPUTIME); +module_param(rcu_cpu_stall_cputime, int, 0644); +bool rcu_exp_stall_task_details __read_mostly; +module_param(rcu_exp_stall_task_details, bool, 0644); #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ // Suppress boot-time RCU CPU stall warnings and rcutorture writer stall @@ -555,9 +598,12 @@ struct early_boot_kfree_rcu { static void early_boot_test_call_rcu(void) { static struct rcu_head head; + int idx; static struct rcu_head shead; struct early_boot_kfree_rcu *rhp; + idx = srcu_down_read(&early_srcu); + srcu_up_read(&early_srcu, idx); call_rcu(&head, test_callback); early_srcu_cookie = start_poll_synchronize_srcu(&early_srcu); call_srcu(&early_srcu, &shead, test_callback); @@ -586,6 +632,7 @@ static int rcu_verify_early_boot_tests(void) early_boot_test_counter++; srcu_barrier(&early_srcu); WARN_ON_ONCE(!poll_state_synchronize_srcu(&early_srcu, early_srcu_cookie)); + cleanup_srcu_struct(&early_srcu); } if (rcu_self_test_counter != early_boot_test_counter) { WARN_ON(1); diff --git a/kernel/sched/core.c b/kernel/sched/core.c index fb49dbf61273..af017e038b48 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -5342,6 +5342,11 @@ bool single_task_running(void) } EXPORT_SYMBOL(single_task_running); +unsigned long long nr_context_switches_cpu(int cpu) +{ + return cpu_rq(cpu)->nr_switches; +} + unsigned long long nr_context_switches(void) { int i; diff --git a/kernel/torture.c b/kernel/torture.c index 789aeb0e1159..1a0519b836ac 100644 --- a/kernel/torture.c +++ b/kernel/torture.c @@ -450,7 +450,7 @@ unsigned long torture_random(struct torture_random_state *trsp) { if (--trsp->trs_count < 0) { - trsp->trs_state += (unsigned long)local_clock(); + trsp->trs_state += (unsigned long)local_clock() + raw_smp_processor_id(); trsp->trs_count = TORTURE_RANDOM_REFRESH; } trsp->trs_state = trsp->trs_state * TORTURE_RANDOM_MULT + @@ -915,7 +915,7 @@ void torture_kthread_stopping(char *title) VERBOSE_TOROUT_STRING(buf); while (!kthread_should_stop()) { torture_shutdown_absorb(title); - schedule_timeout_uninterruptible(1); + schedule_timeout_uninterruptible(HZ / 20); } } EXPORT_SYMBOL_GPL(torture_kthread_stopping); diff --git a/tools/testing/selftests/rcutorture/bin/configcheck.sh b/tools/testing/selftests/rcutorture/bin/configcheck.sh index 83fac1852ab2..b92dfeb7fbbf 100755 --- a/tools/testing/selftests/rcutorture/bin/configcheck.sh +++ b/tools/testing/selftests/rcutorture/bin/configcheck.sh @@ -10,10 +10,9 @@ T="`mktemp -d ${TMPDIR-/tmp}/configcheck.sh.XXXXXX`" trap 'rm -rf $T' 0 -cat $1 > $T/.config +sed -e 's/"//g' < $1 > $T/.config -cat $2 | sed -e 's/\(.*\)=n/# \1 is not set/' -e 's/^#CHECK#//' | -grep -v '^CONFIG_INITRAMFS_SOURCE' | +sed -e 's/"//g' -e 's/\(.*\)=n/# \1 is not set/' -e 's/^#CHECK#//' < $2 | awk ' { print "if grep -q \"" $0 "\" < '"$T/.config"'"; diff --git a/tools/testing/selftests/rcutorture/bin/console-badness.sh b/tools/testing/selftests/rcutorture/bin/console-badness.sh index 69f8a5958cef..aad51e7c0183 100755 --- a/tools/testing/selftests/rcutorture/bin/console-badness.sh +++ b/tools/testing/selftests/rcutorture/bin/console-badness.sh @@ -10,7 +10,7 @@ # # Authors: Paul E. McKenney <paulmck@kernel.org> -egrep 'Badness|WARNING:|Warn|BUG|===========|BUG: KCSAN:|Call Trace:|Oops:|detected stalls on CPUs/tasks:|self-detected stall on CPU|Stall ended before state dump start|\?\?\? Writer stall state|rcu_.*kthread starved for|!!!' | +grep -E 'Badness|WARNING:|Warn|BUG|===========|BUG: KCSAN:|Call Trace:|Oops:|detected stalls on CPUs/tasks:|self-detected stall on CPU|Stall ended before state dump start|\?\?\? Writer stall state|rcu_.*kthread starved for|!!!' | grep -v 'ODEBUG: ' | grep -v 'This means that this is a DEBUG kernel and it is' | grep -v 'Warning: unable to open an initial console' | diff --git a/tools/testing/selftests/rcutorture/bin/kvm-build.sh b/tools/testing/selftests/rcutorture/bin/kvm-build.sh index e28a82851f7c..11f8d232b0ee 100755 --- a/tools/testing/selftests/rcutorture/bin/kvm-build.sh +++ b/tools/testing/selftests/rcutorture/bin/kvm-build.sh @@ -44,10 +44,10 @@ fi ncpus="`getconf _NPROCESSORS_ONLN`" make -j$((2 * ncpus)) $TORTURE_KMAKE_ARG > $resdir/Make.out 2>&1 retval=$? -if test $retval -ne 0 || grep "rcu[^/]*": < $resdir/Make.out | egrep -q "Stop|Error|error:|warning:" || egrep -q "Stop|Error|error:" < $resdir/Make.out +if test $retval -ne 0 || grep "rcu[^/]*": < $resdir/Make.out | grep -E -q "Stop|Error|error:|warning:" || grep -E -q "Stop|Error|error:" < $resdir/Make.out then echo Kernel build error - egrep "Stop|Error|error:|warning:" < $resdir/Make.out + grep -E "Stop|Error|error:|warning:" < $resdir/Make.out echo Run aborted. exit 3 fi diff --git a/tools/testing/selftests/rcutorture/bin/kvm-find-errors.sh b/tools/testing/selftests/rcutorture/bin/kvm-find-errors.sh index 88983cba7956..28981007465b 100755 --- a/tools/testing/selftests/rcutorture/bin/kvm-find-errors.sh +++ b/tools/testing/selftests/rcutorture/bin/kvm-find-errors.sh @@ -32,11 +32,11 @@ for i in ${rundir}/*/Make.out do scenariodir="`dirname $i`" scenariobasedir="`echo ${scenariodir} | sed -e 's/\.[0-9]*$//'`" - if egrep -q "error:|warning:|^ld: .*undefined reference to" < $i + if grep -E -q "error:|warning:|^ld: .*undefined reference to" < $i then - egrep "error:|warning:|^ld: .*undefined reference to" < $i > $i.diags + grep -E "error:|warning:|^ld: .*undefined reference to" < $i > $i.diags files="$files $i.diags $i" - elif ! test -f ${scenariobasedir}/vmlinux && ! test -f "${rundir}/re-run" + elif ! test -f ${scenariobasedir}/vmlinux && ! test -f ${scenariobasedir}/vmlinux.xz && ! test -f "${rundir}/re-run" then echo No ${scenariobasedir}/vmlinux file > $i.diags files="$files $i.diags $i" diff --git a/tools/testing/selftests/rcutorture/bin/kvm.sh b/tools/testing/selftests/rcutorture/bin/kvm.sh index 7710b1e1cdda..62f3b0f56e4d 100755 --- a/tools/testing/selftests/rcutorture/bin/kvm.sh +++ b/tools/testing/selftests/rcutorture/bin/kvm.sh @@ -186,7 +186,7 @@ do fi ;; --kconfig|--kconfigs) - checkarg --kconfig "(Kconfig options)" $# "$2" '^CONFIG_[A-Z0-9_]\+=\([ynm]\|[0-9]\+\)\( CONFIG_[A-Z0-9_]\+=\([ynm]\|[0-9]\+\)\)*$' '^error$' + checkarg --kconfig "(Kconfig options)" $# "$2" '^CONFIG_[A-Z0-9_]\+=\([ynm]\|[0-9]\+\|"[^"]*"\)\( CONFIG_[A-Z0-9_]\+=\([ynm]\|[0-9]\+\|"[^"]*"\)\)*$' '^error$' TORTURE_KCONFIG_ARG="`echo "$TORTURE_KCONFIG_ARG $2" | sed -e 's/^ *//' -e 's/ *$//'`" shift ;; @@ -585,7 +585,7 @@ awk < $T/cfgcpu.pack \ echo kvm-end-run-stats.sh "$resdir/$ds" "$starttime" >> $T/script # Extract the tests and their batches from the script. -egrep 'Start batch|Starting build\.' $T/script | grep -v ">>" | +grep -E 'Start batch|Starting build\.' $T/script | grep -v ">>" | sed -e 's/:.*$//' -e 's/^echo //' -e 's/-ovf//' | awk ' /^----Start/ { @@ -622,7 +622,7 @@ then elif test "$dryrun" = sched then # Extract the test run schedule from the script. - egrep 'Start batch|Starting build\.' $T/script | grep -v ">>" | + grep -E 'Start batch|Starting build\.' $T/script | grep -v ">>" | sed -e 's/:.*$//' -e 's/^echo //' nbuilds="`grep 'Starting build\.' $T/script | grep -v ">>" | sed -e 's/:.*$//' -e 's/^echo //' | diff --git a/tools/testing/selftests/rcutorture/bin/parse-console.sh b/tools/testing/selftests/rcutorture/bin/parse-console.sh index 822eb037a057..9ab0f6bc172c 100755 --- a/tools/testing/selftests/rcutorture/bin/parse-console.sh +++ b/tools/testing/selftests/rcutorture/bin/parse-console.sh @@ -65,7 +65,7 @@ then fi grep --binary-files=text 'torture:.*ver:' $file | - egrep --binary-files=text -v '\(null\)|rtc: 000000000* ' | + grep -E --binary-files=text -v '\(null\)|rtc: 000000000* ' | sed -e 's/^(initramfs)[^]]*] //' -e 's/^\[[^]]*] //' | sed -e 's/^.*ver: //' | awk ' @@ -128,17 +128,17 @@ then then summary="$summary Badness: $n_badness" fi - n_warn=`grep -v 'Warning: unable to open an initial console' $file | grep -v 'Warning: Failed to add ttynull console. No stdin, stdout, and stderr for the init process' | egrep -c 'WARNING:|Warn'` + n_warn=`grep -v 'Warning: unable to open an initial console' $file | grep -v 'Warning: Failed to add ttynull console. No stdin, stdout, and stderr for the init process' | grep -E -c 'WARNING:|Warn'` if test "$n_warn" -ne 0 then summary="$summary Warnings: $n_warn" fi - n_bugs=`egrep -c '\bBUG|Oops:' $file` + n_bugs=`grep -E -c '\bBUG|Oops:' $file` if test "$n_bugs" -ne 0 then summary="$summary Bugs: $n_bugs" fi - n_kcsan=`egrep -c 'BUG: KCSAN: ' $file` + n_kcsan=`grep -E -c 'BUG: KCSAN: ' $file` if test "$n_kcsan" -ne 0 then if test "$n_bugs" = "$n_kcsan" @@ -158,7 +158,7 @@ then then summary="$summary lockdep: $n_badness" fi - n_stalls=`egrep -c 'detected stalls on CPUs/tasks:|self-detected stall on CPU|Stall ended before state dump start|\?\?\? Writer stall state' $file` + n_stalls=`grep -E -c 'detected stalls on CPUs/tasks:|self-detected stall on CPU|Stall ended before state dump start|\?\?\? Writer stall state' $file` if test "$n_stalls" -ne 0 then summary="$summary Stalls: $n_stalls" |