summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-bus-usb18
-rw-r--r--Documentation/DocBook/mtdnand.tmpl12
-rw-r--r--Documentation/IO-mapping.txt2
-rw-r--r--Documentation/PCI/PCI-DMA-mapping.txt (renamed from Documentation/DMA-mapping.txt)0
-rw-r--r--Documentation/block/00-INDEX2
-rw-r--r--Documentation/block/as-iosched.txt172
-rw-r--r--Documentation/block/biodoc.txt2
-rw-r--r--Documentation/cpu-hotplug.txt49
-rw-r--r--Documentation/dontdiff1
-rw-r--r--Documentation/driver-model/driver.txt4
-rw-r--r--Documentation/filesystems/ext4.txt2
-rw-r--r--Documentation/filesystems/nilfs2.txt2
-rw-r--r--Documentation/filesystems/proc.txt2
-rw-r--r--Documentation/filesystems/sysfs.txt12
-rw-r--r--Documentation/hwmon/amc6821102
-rw-r--r--Documentation/hwmon/k10temp65
-rw-r--r--Documentation/ioctl/ioctl-number.txt203
-rw-r--r--Documentation/kbuild/kbuild.txt14
-rw-r--r--Documentation/kbuild/kconfig.txt8
-rw-r--r--Documentation/kernel-doc-nano-HOWTO.txt12
-rw-r--r--Documentation/kernel-parameters.txt5
-rw-r--r--Documentation/kvm/api.txt10
-rw-r--r--Documentation/laptops/thinkpad-acpi.txt58
-rw-r--r--Documentation/networking/3c509.txt12
-rw-r--r--Documentation/power/runtime_pm.txt223
-rw-r--r--Documentation/powerpc/dts-bindings/fsl/mpic.txt42
-rw-r--r--Documentation/sound/alsa/HD-Audio-Models.txt1
-rw-r--r--Documentation/sound/alsa/Procfile.txt2
-rw-r--r--Documentation/stable_kernel_rules.txt24
-rw-r--r--Documentation/trace/events-kmem.txt14
-rw-r--r--Documentation/trace/ftrace-design.txt14
-rw-r--r--Documentation/trace/mmiotrace.txt15
-rw-r--r--Documentation/trace/ring-buffer-design.txt56
-rw-r--r--Documentation/trace/tracepoint-analysis.txt60
-rw-r--r--Documentation/usb/power-management.txt41
-rw-r--r--Documentation/vgaarbiter.txt2
36 files changed, 770 insertions, 493 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-usb b/Documentation/ABI/testing/sysfs-bus-usb
index deb6b489e4e5..a07c0f366f91 100644
--- a/Documentation/ABI/testing/sysfs-bus-usb
+++ b/Documentation/ABI/testing/sysfs-bus-usb
@@ -21,25 +21,27 @@ Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
Each USB device directory will contain a file named
power/level. This file holds a power-level setting for
- the device, one of "on", "auto", or "suspend".
+ the device, either "on" or "auto".
"on" means that the device is not allowed to autosuspend,
although normal suspends for system sleep will still
be honored. "auto" means the device will autosuspend
and autoresume in the usual manner, according to the
- capabilities of its driver. "suspend" means the device
- is forced into a suspended state and it will not autoresume
- in response to I/O requests. However remote-wakeup requests
- from the device may still be enabled (the remote-wakeup
- setting is controlled separately by the power/wakeup
- attribute).
+ capabilities of its driver.
During normal use, devices should be left in the "auto"
- level. The other levels are meant for administrative uses.
+ level. The "on" level is meant for administrative uses.
If you want to suspend a device immediately but leave it
free to wake up in response to I/O requests, you should
write "0" to power/autosuspend.
+ Device not capable of proper suspend and resume should be
+ left in the "on" level. Although the USB spec requires
+ devices to support suspend/resume, many of them do not.
+ In fact so many don't that by default, the USB core
+ initializes all non-hub devices in the "on" level. Some
+ drivers may change this setting when they are bound.
+
What: /sys/bus/usb/devices/.../power/persist
Date: May 2007
KernelVersion: 2.6.23
diff --git a/Documentation/DocBook/mtdnand.tmpl b/Documentation/DocBook/mtdnand.tmpl
index f508a8a27fea..5e7d84b48505 100644
--- a/Documentation/DocBook/mtdnand.tmpl
+++ b/Documentation/DocBook/mtdnand.tmpl
@@ -174,7 +174,7 @@
</para>
<programlisting>
static struct mtd_info *board_mtd;
-static unsigned long baseaddr;
+static void __iomem *baseaddr;
</programlisting>
<para>
Static example
@@ -182,7 +182,7 @@ static unsigned long baseaddr;
<programlisting>
static struct mtd_info board_mtd;
static struct nand_chip board_chip;
-static unsigned long baseaddr;
+static void __iomem *baseaddr;
</programlisting>
</sect1>
<sect1 id="Partition_defines">
@@ -283,8 +283,8 @@ int __init board_init (void)
}
/* map physical address */
- baseaddr = (unsigned long)ioremap(CHIP_PHYSICAL_ADDRESS, 1024);
- if(!baseaddr){
+ baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024);
+ if (!baseaddr) {
printk("Ioremap to access NAND chip failed\n");
err = -EIO;
goto out_mtd;
@@ -316,7 +316,7 @@ int __init board_init (void)
goto out;
out_ior:
- iounmap((void *)baseaddr);
+ iounmap(baseaddr);
out_mtd:
kfree (board_mtd);
out:
@@ -341,7 +341,7 @@ static void __exit board_cleanup (void)
nand_release (board_mtd);
/* unmap physical address */
- iounmap((void *)baseaddr);
+ iounmap(baseaddr);
/* Free the MTD device structure */
kfree (board_mtd);
diff --git a/Documentation/IO-mapping.txt b/Documentation/IO-mapping.txt
index 78a440695e11..1b5aa10df845 100644
--- a/Documentation/IO-mapping.txt
+++ b/Documentation/IO-mapping.txt
@@ -157,7 +157,7 @@ For such memory, you can do things like
* access only the 640k-1MB area, so anything else
* has to be remapped.
*/
- char * baseptr = ioremap(0xFC000000, 1024*1024);
+ void __iomem *baseptr = ioremap(0xFC000000, 1024*1024);
/* write a 'A' to the offset 10 of the area */
writeb('A',baseptr+10);
diff --git a/Documentation/DMA-mapping.txt b/Documentation/PCI/PCI-DMA-mapping.txt
index ecad88d9fe59..ecad88d9fe59 100644
--- a/Documentation/DMA-mapping.txt
+++ b/Documentation/PCI/PCI-DMA-mapping.txt
diff --git a/Documentation/block/00-INDEX b/Documentation/block/00-INDEX
index 961a0513f8c3..a406286f6f3e 100644
--- a/Documentation/block/00-INDEX
+++ b/Documentation/block/00-INDEX
@@ -1,7 +1,5 @@
00-INDEX
- This file
-as-iosched.txt
- - Anticipatory IO scheduler
barrier.txt
- I/O Barriers
biodoc.txt
diff --git a/Documentation/block/as-iosched.txt b/Documentation/block/as-iosched.txt
deleted file mode 100644
index 738b72be128e..000000000000
--- a/Documentation/block/as-iosched.txt
+++ /dev/null
@@ -1,172 +0,0 @@
-Anticipatory IO scheduler
--------------------------
-Nick Piggin <piggin@cyberone.com.au> 13 Sep 2003
-
-Attention! Database servers, especially those using "TCQ" disks should
-investigate performance with the 'deadline' IO scheduler. Any system with high
-disk performance requirements should do so, in fact.
-
-If you see unusual performance characteristics of your disk systems, or you
-see big performance regressions versus the deadline scheduler, please email
-me. Database users don't bother unless you're willing to test a lot of patches
-from me ;) its a known issue.
-
-Also, users with hardware RAID controllers, doing striping, may find
-highly variable performance results with using the as-iosched. The
-as-iosched anticipatory implementation is based on the notion that a disk
-device has only one physical seeking head. A striped RAID controller
-actually has a head for each physical device in the logical RAID device.
-
-However, setting the antic_expire (see tunable parameters below) produces
-very similar behavior to the deadline IO scheduler.
-
-Selecting IO schedulers
------------------------
-Refer to Documentation/block/switching-sched.txt for information on
-selecting an io scheduler on a per-device basis.
-
-Anticipatory IO scheduler Policies
-----------------------------------
-The as-iosched implementation implements several layers of policies
-to determine when an IO request is dispatched to the disk controller.
-Here are the policies outlined, in order of application.
-
-1. one-way Elevator algorithm.
-
-The elevator algorithm is similar to that used in deadline scheduler, with
-the addition that it allows limited backward movement of the elevator
-(i.e. seeks backwards). A seek backwards can occur when choosing between
-two IO requests where one is behind the elevator's current position, and
-the other is in front of the elevator's position. If the seek distance to
-the request in back of the elevator is less than half the seek distance to
-the request in front of the elevator, then the request in back can be chosen.
-Backward seeks are also limited to a maximum of MAXBACK (1024*1024) sectors.
-This favors forward movement of the elevator, while allowing opportunistic
-"short" backward seeks.
-
-2. FIFO expiration times for reads and for writes.
-
-This is again very similar to the deadline IO scheduler. The expiration
-times for requests on these lists is tunable using the parameters read_expire
-and write_expire discussed below. When a read or a write expires in this way,
-the IO scheduler will interrupt its current elevator sweep or read anticipation
-to service the expired request.
-
-3. Read and write request batching
-
-A batch is a collection of read requests or a collection of write
-requests. The as scheduler alternates dispatching read and write batches
-to the driver. In the case a read batch, the scheduler submits read
-requests to the driver as long as there are read requests to submit, and
-the read batch time limit has not been exceeded (read_batch_expire).
-The read batch time limit begins counting down only when there are
-competing write requests pending.
-
-In the case of a write batch, the scheduler submits write requests to
-the driver as long as there are write requests available, and the
-write batch time limit has not been exceeded (write_batch_expire).
-However, the length of write batches will be gradually shortened
-when read batches frequently exceed their time limit.
-
-When changing between batch types, the scheduler waits for all requests
-from the previous batch to complete before scheduling requests for the
-next batch.
-
-The read and write fifo expiration times described in policy 2 above
-are checked only when in scheduling IO of a batch for the corresponding
-(read/write) type. So for example, the read FIFO timeout values are
-tested only during read batches. Likewise, the write FIFO timeout
-values are tested only during write batches. For this reason,
-it is generally not recommended for the read batch time
-to be longer than the write expiration time, nor for the write batch
-time to exceed the read expiration time (see tunable parameters below).
-
-When the IO scheduler changes from a read to a write batch,
-it begins the elevator from the request that is on the head of the
-write expiration FIFO. Likewise, when changing from a write batch to
-a read batch, scheduler begins the elevator from the first entry
-on the read expiration FIFO.
-
-4. Read anticipation.
-
-Read anticipation occurs only when scheduling a read batch.
-This implementation of read anticipation allows only one read request
-to be dispatched to the disk controller at a time. In
-contrast, many write requests may be dispatched to the disk controller
-at a time during a write batch. It is this characteristic that can make
-the anticipatory scheduler perform anomalously with controllers supporting
-TCQ, or with hardware striped RAID devices. Setting the antic_expire
-queue parameter (see below) to zero disables this behavior, and the
-anticipatory scheduler behaves essentially like the deadline scheduler.
-
-When read anticipation is enabled (antic_expire is not zero), reads
-are dispatched to the disk controller one at a time.
-At the end of each read request, the IO scheduler examines its next
-candidate read request from its sorted read list. If that next request
-is from the same process as the request that just completed,
-or if the next request in the queue is "very close" to the
-just completed request, it is dispatched immediately. Otherwise,
-statistics (average think time, average seek distance) on the process
-that submitted the just completed request are examined. If it seems
-likely that that process will submit another request soon, and that
-request is likely to be near the just completed request, then the IO
-scheduler will stop dispatching more read requests for up to (antic_expire)
-milliseconds, hoping that process will submit a new request near the one
-that just completed. If such a request is made, then it is dispatched
-immediately. If the antic_expire wait time expires, then the IO scheduler
-will dispatch the next read request from the sorted read queue.
-
-To decide whether an anticipatory wait is worthwhile, the scheduler
-maintains statistics for each process that can be used to compute
-mean "think time" (the time between read requests), and mean seek
-distance for that process. One observation is that these statistics
-are associated with each process, but those statistics are not associated
-with a specific IO device. So for example, if a process is doing IO
-on several file systems on separate devices, the statistics will be
-a combination of IO behavior from all those devices.
-
-
-Tuning the anticipatory IO scheduler
-------------------------------------
-When using 'as', the anticipatory IO scheduler there are 5 parameters under
-/sys/block/*/queue/iosched/. All are units of milliseconds.
-
-The parameters are:
-* read_expire
- Controls how long until a read request becomes "expired". It also controls the
- interval between which expired requests are served, so set to 50, a request
- might take anywhere < 100ms to be serviced _if_ it is the next on the
- expired list. Obviously request expiration strategies won't make the disk
- go faster. The result basically equates to the timeslice a single reader
- gets in the presence of other IO. 100*((seek time / read_expire) + 1) is
- very roughly the % streaming read efficiency your disk should get with
- multiple readers.
-
-* read_batch_expire
- Controls how much time a batch of reads is given before pending writes are
- served. A higher value is more efficient. This might be set below read_expire
- if writes are to be given higher priority than reads, but reads are to be
- as efficient as possible when there are no writes. Generally though, it
- should be some multiple of read_expire.
-
-* write_expire, and
-* write_batch_expire are equivalent to the above, for writes.
-
-* antic_expire
- Controls the maximum amount of time we can anticipate a good read (one
- with a short seek distance from the most recently completed request) before
- giving up. Many other factors may cause anticipation to be stopped early,
- or some processes will not be "anticipated" at all. Should be a bit higher
- for big seek time devices though not a linear correspondence - most
- processes have only a few ms thinktime.
-
-In addition to the tunables above there is a read-only file named est_time
-which, when read, will show:
-
- - The probability of a task exiting without a cooperating task
- submitting an anticipated IO.
-
- - The current mean think time.
-
- - The seek distance used to determine if an incoming IO is better.
-
diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt
index 8d2158a1c6aa..6fab97ea7e6b 100644
--- a/Documentation/block/biodoc.txt
+++ b/Documentation/block/biodoc.txt
@@ -186,7 +186,7 @@ a virtual address mapping (unlike the earlier scheme of virtual address
do not have a corresponding kernel virtual address space mapping) and
low-memory pages.
-Note: Please refer to Documentation/DMA-mapping.txt for a discussion
+Note: Please refer to Documentation/PCI/PCI-DMA-mapping.txt for a discussion
on PCI high mem DMA aspects and mapping of scatter gather lists, and support
for 64 bit PCI.
diff --git a/Documentation/cpu-hotplug.txt b/Documentation/cpu-hotplug.txt
index 4d4a644b505e..a99d7031cdf9 100644
--- a/Documentation/cpu-hotplug.txt
+++ b/Documentation/cpu-hotplug.txt
@@ -315,41 +315,26 @@ A: The following are what is required for CPU hotplug infrastructure to work
Q: I need to ensure that a particular cpu is not removed when there is some
work specific to this cpu is in progress.
-A: First switch the current thread context to preferred cpu
+A: There are two ways. If your code can be run in interrupt context, use
+ smp_call_function_single(), otherwise use work_on_cpu(). Note that
+ work_on_cpu() is slow, and can fail due to out of memory:
int my_func_on_cpu(int cpu)
{
- cpumask_t saved_mask, new_mask = CPU_MASK_NONE;
- int curr_cpu, err = 0;
-
- saved_mask = current->cpus_allowed;
- cpu_set(cpu, new_mask);
- err = set_cpus_allowed(current, new_mask);
-
- if (err)
- return err;
-
- /*
- * If we got scheduled out just after the return from
- * set_cpus_allowed() before running the work, this ensures
- * we stay locked.
- */
- curr_cpu = get_cpu();
-
- if (curr_cpu != cpu) {
- err = -EAGAIN;
- goto ret;
- } else {
- /*
- * Do work : But cant sleep, since get_cpu() disables preempt
- */
- }
- ret:
- put_cpu();
- set_cpus_allowed(current, saved_mask);
- return err;
- }
-
+ int err;
+ get_online_cpus();
+ if (!cpu_online(cpu))
+ err = -EINVAL;
+ else
+#if NEEDS_BLOCKING
+ err = work_on_cpu(cpu, __my_func_on_cpu, NULL);
+#else
+ smp_call_function_single(cpu, __my_func_on_cpu, &err,
+ true);
+#endif
+ put_online_cpus();
+ return err;
+ }
Q: How do we determine how many CPUs are available for hotplug.
A: There is no clear spec defined way from ACPI that can give us that
diff --git a/Documentation/dontdiff b/Documentation/dontdiff
index e151b2a36267..3ad6acead949 100644
--- a/Documentation/dontdiff
+++ b/Documentation/dontdiff
@@ -103,6 +103,7 @@ gconf
gen-devlist
gen_crc32table
gen_init_cpio
+generated
genheaders
genksyms
*_gray256.c
diff --git a/Documentation/driver-model/driver.txt b/Documentation/driver-model/driver.txt
index 60120fb3b961..d2cd6fb8ba9e 100644
--- a/Documentation/driver-model/driver.txt
+++ b/Documentation/driver-model/driver.txt
@@ -226,5 +226,5 @@ struct driver_attribute driver_attr_debug;
This can then be used to add and remove the attribute from the
driver's directory using:
-int driver_create_file(struct device_driver *, struct driver_attribute *);
-void driver_remove_file(struct device_driver *, struct driver_attribute *);
+int driver_create_file(struct device_driver *, const struct driver_attribute *);
+void driver_remove_file(struct device_driver *, const struct driver_attribute *);
diff --git a/Documentation/filesystems/ext4.txt b/Documentation/filesystems/ext4.txt
index af6885c3c821..e1def1786e50 100644
--- a/Documentation/filesystems/ext4.txt
+++ b/Documentation/filesystems/ext4.txt
@@ -196,7 +196,7 @@ nobarrier This also requires an IO stack which can support
also be used to enable or disable barriers, for
consistency with other ext4 mount options.
-inode_readahead=n This tuning parameter controls the maximum
+inode_readahead_blks=n This tuning parameter controls the maximum
number of inode table blocks that ext4's inode
table readahead algorithm will pre-read into
the buffer cache. The default value is 32 blocks.
diff --git a/Documentation/filesystems/nilfs2.txt b/Documentation/filesystems/nilfs2.txt
index 4949fcaa6b6a..839efd8a8a8c 100644
--- a/Documentation/filesystems/nilfs2.txt
+++ b/Documentation/filesystems/nilfs2.txt
@@ -28,7 +28,7 @@ described in the man pages included in the package.
Project web page: http://www.nilfs.org/en/
Download page: http://www.nilfs.org/en/download.html
Git tree web page: http://www.nilfs.org/git/
-NILFS mailing lists: http://www.nilfs.org/mailman/listinfo/users
+List info: http://vger.kernel.org/vger-lists.html#linux-nilfs
Caveats
=======
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 220cc6376ef8..0d07513a67a6 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -177,7 +177,6 @@ read the file /proc/PID/status:
CapBnd: ffffffffffffffff
voluntary_ctxt_switches: 0
nonvoluntary_ctxt_switches: 1
- Stack usage: 12 kB
This shows you nearly the same information you would get if you viewed it with
the ps command. In fact, ps uses the proc file system to obtain its
@@ -231,7 +230,6 @@ Table 1-2: Contents of the statm files (as of 2.6.30-rc7)
Mems_allowed_list Same as previous, but in "list format"
voluntary_ctxt_switches number of voluntary context switches
nonvoluntary_ctxt_switches number of non voluntary context switches
- Stack usage: stack usage high water mark (round up to page size)
..............................................................................
Table 1-3: Contents of the statm files (as of 2.6.8-rc3)
diff --git a/Documentation/filesystems/sysfs.txt b/Documentation/filesystems/sysfs.txt
index b245d524d568..931c806642c5 100644
--- a/Documentation/filesystems/sysfs.txt
+++ b/Documentation/filesystems/sysfs.txt
@@ -91,8 +91,8 @@ struct device_attribute {
const char *buf, size_t count);
};
-int device_create_file(struct device *, struct device_attribute *);
-void device_remove_file(struct device *, struct device_attribute *);
+int device_create_file(struct device *, const struct device_attribute *);
+void device_remove_file(struct device *, const struct device_attribute *);
It also defines this helper for defining device attributes:
@@ -316,8 +316,8 @@ DEVICE_ATTR(_name, _mode, _show, _store);
Creation/Removal:
-int device_create_file(struct device *device, struct device_attribute * attr);
-void device_remove_file(struct device * dev, struct device_attribute * attr);
+int device_create_file(struct device *dev, const struct device_attribute * attr);
+void device_remove_file(struct device *dev, const struct device_attribute * attr);
- bus drivers (include/linux/device.h)
@@ -358,7 +358,7 @@ DRIVER_ATTR(_name, _mode, _show, _store)
Creation/Removal:
-int driver_create_file(struct device_driver *, struct driver_attribute *);
-void driver_remove_file(struct device_driver *, struct driver_attribute *);
+int driver_create_file(struct device_driver *, const struct driver_attribute *);
+void driver_remove_file(struct device_driver *, const struct driver_attribute *);
diff --git a/Documentation/hwmon/amc6821 b/Documentation/hwmon/amc6821
new file mode 100644
index 000000000000..ced8359c50f8
--- /dev/null
+++ b/Documentation/hwmon/amc6821
@@ -0,0 +1,102 @@
+Kernel driver amc6821
+=====================
+
+Supported chips:
+ Texas Instruments AMC6821
+ Prefix: 'amc6821'
+ Addresses scanned: 0x18, 0x19, 0x1a, 0x2c, 0x2d, 0x2e, 0x4c, 0x4d, 0x4e
+ Datasheet: http://focus.ti.com/docs/prod/folders/print/amc6821.html
+
+Authors:
+ Tomaz Mertelj <tomaz.mertelj@guest.arnes.si>
+
+
+Description
+-----------
+
+This driver implements support for the Texas Instruments amc6821 chip.
+The chip has one on-chip and one remote temperature sensor and one pwm fan
+regulator.
+The pwm can be controlled either from software or automatically.
+
+The driver provides the following sensor accesses in sysfs:
+
+temp1_input ro on-chip temperature
+temp1_min rw "
+temp1_max rw "
+temp1_crit rw "
+temp1_min_alarm ro "
+temp1_max_alarm ro "
+temp1_crit_alarm ro "
+
+temp2_input ro remote temperature
+temp2_min rw "
+temp2_max rw "
+temp2_crit rw "
+temp2_min_alarm ro "
+temp2_max_alarm ro "
+temp2_crit_alarm ro "
+temp2_fault ro "
+
+fan1_input ro tachometer speed
+fan1_min rw "
+fan1_max rw "
+fan1_fault ro "
+fan1_div rw Fan divisor can be either 2 or 4.
+
+pwm1 rw pwm1
+pwm1_enable rw regulator mode, 1=open loop, 2=fan controlled
+ by remote temperature, 3=fan controlled by
+ combination of the on-chip temperature and
+ remote-sensor temperature,
+pwm1_auto_channels_temp ro 1 if pwm_enable==2, 3 if pwm_enable==3
+pwm1_auto_point1_pwm ro Hardwired to 0, shared for both
+ temperature channels.
+pwm1_auto_point2_pwm rw This value is shared for both temperature
+ channels.
+pwm1_auto_point3_pwm rw Hardwired to 255, shared for both
+ temperature channels.
+
+temp1_auto_point1_temp ro Hardwired to temp2_auto_point1_temp
+ which is rw. Below this temperature fan stops.
+temp1_auto_point2_temp rw The low-temperature limit of the proportional
+ range. Below this temperature
+ pwm1 = pwm1_auto_point2_pwm. It can go from
+ 0 degree C to 124 degree C in steps of
+ 4 degree C. Read it out after writing to get
+ the actual value.
+temp1_auto_point3_temp rw Above this temperature fan runs at maximum
+ speed. It can go from temp1_auto_point2_temp.
+ It can only have certain discrete values
+ which depend on temp1_auto_point2_temp and
+ pwm1_auto_point2_pwm. Read it out after
+ writing to get the actual value.
+
+temp2_auto_point1_temp rw Must be between 0 degree C and 63 degree C and
+ it defines the passive cooling temperature.
+ Below this temperature the fan stops in
+ the closed loop mode.
+temp2_auto_point2_temp rw The low-temperature limit of the proportional
+ range. Below this temperature
+ pwm1 = pwm1_auto_point2_pwm. It can go from
+ 0 degree C to 124 degree C in steps
+ of 4 degree C.
+
+temp2_auto_point3_temp rw Above this temperature fan runs at maximum
+ speed. It can only have certain discrete
+ values which depend on temp2_auto_point2_temp
+ and pwm1_auto_point2_pwm. Read it out after
+ writing to get actual value.
+
+
+Module parameters
+-----------------
+
+If your board has a BIOS that initializes the amc6821 correctly, you should
+load the module with: init=0.
+
+If your board BIOS doesn't initialize the chip, or you want
+different settings, you can set the following parameters:
+init=1,
+pwminv: 0 default pwm output, 1 inverts pwm output.
+
diff --git a/Documentation/hwmon/k10temp b/Documentation/hwmon/k10temp
new file mode 100644
index 000000000000..6526eee525a6
--- /dev/null
+++ b/Documentation/hwmon/k10temp
@@ -0,0 +1,65 @@
+Kernel driver k10temp
+=====================
+
+Supported chips:
+* AMD Family 10h processors:
+ Socket F: Quad-Core/Six-Core/Embedded Opteron (but see below)
+ Socket AM2+: Quad-Core Opteron, Phenom (II) X3/X4, Athlon X2 (but see below)
+ Socket AM3: Quad-Core Opteron, Athlon/Phenom II X2/X3/X4, Sempron II
+ Socket S1G3: Athlon II, Sempron, Turion II
+* AMD Family 11h processors:
+ Socket S1G2: Athlon (X2), Sempron (X2), Turion X2 (Ultra)
+
+ Prefix: 'k10temp'
+ Addresses scanned: PCI space
+ Datasheets:
+ BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h Processors:
+ http://support.amd.com/us/Processor_TechDocs/31116.pdf
+ BIOS and Kernel Developer's Guide (BKDG) for AMD Family 11h Processors:
+ http://support.amd.com/us/Processor_TechDocs/41256.pdf
+ Revision Guide for AMD Family 10h Processors:
+ http://support.amd.com/us/Processor_TechDocs/41322.pdf
+ Revision Guide for AMD Family 11h Processors:
+ http://support.amd.com/us/Processor_TechDocs/41788.pdf
+ AMD Family 11h Processor Power and Thermal Data Sheet for Notebooks:
+ http://support.amd.com/us/Processor_TechDocs/43373.pdf
+ AMD Family 10h Server and Workstation Processor Power and Thermal Data Sheet:
+ http://support.amd.com/us/Processor_TechDocs/43374.pdf
+ AMD Family 10h Desktop Processor Power and Thermal Data Sheet:
+ http://support.amd.com/us/Processor_TechDocs/43375.pdf
+
+Author: Clemens Ladisch <clemens@ladisch.de>
+
+Description
+-----------
+
+This driver permits reading of the internal temperature sensor of AMD
+Family 10h and 11h processors.
+
+All these processors have a sensor, but on those for Socket F or AM2+,
+the sensor may return inconsistent values (erratum 319). The driver
+will refuse to load on these revisions unless you specify the "force=1"
+module parameter.
+
+Due to technical reasons, the driver can detect only the mainboard's
+socket type, not the processor's actual capabilities. Therefore, if you
+are using an AM3 processor on an AM2+ mainboard, you can safely use the
+"force=1" parameter.
+
+There is one temperature measurement value, available as temp1_input in
+sysfs. It is measured in degrees Celsius with a resolution of 1/8th degree.
+Please note that it is defined as a relative value; to quote the AMD manual:
+
+ Tctl is the processor temperature control value, used by the platform to
+ control cooling systems. Tctl is a non-physical temperature on an
+ arbitrary scale measured in degrees. It does _not_ represent an actual
+ physical temperature like die or case temperature. Instead, it specifies
+ the processor temperature relative to the point at which the system must
+ supply the maximum cooling for the processor's specified maximum case
+ temperature and maximum thermal power dissipation.
+
+The maximum value for Tctl is available in the file temp1_max.
+
+If the BIOS has enabled hardware temperature control, the threshold at
+which the processor will throttle itself to avoid damage is available in
+temp1_crit and temp1_crit_hyst.
diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt
index 947374977ca5..35cf64d4436d 100644
--- a/Documentation/ioctl/ioctl-number.txt
+++ b/Documentation/ioctl/ioctl-number.txt
@@ -56,10 +56,11 @@ Following this convention is good because:
(5) When following the convention, the driver code can use generic
code to copy the parameters between user and kernel space.
-This table lists ioctls visible from user land for Linux/i386. It contains
-most drivers up to 2.3.14, but I know I am missing some.
+This table lists ioctls visible from user land for Linux/x86. It contains
+most drivers up to 2.6.31, but I know I am missing some. There has been
+no attempt to list non-X86 architectures or ioctls from drivers/staging/.
-Code Seq# Include File Comments
+Code Seq#(hex) Include File Comments
========================================================
0x00 00-1F linux/fs.h conflict!
0x00 00-1F scsi/scsi_ioctl.h conflict!
@@ -69,119 +70,228 @@ Code Seq# Include File Comments
0x03 all linux/hdreg.h
0x04 D2-DC linux/umsdos_fs.h Dead since 2.6.11, but don't reuse these.
0x06 all linux/lp.h
-0x09 all linux/md.h
+0x09 all linux/raid/md_u.h
+0x10 00-0F drivers/char/s390/vmcp.h
0x12 all linux/fs.h
linux/blkpg.h
0x1b all InfiniBand Subsystem <http://www.openib.org/>
0x20 all drivers/cdrom/cm206.h
0x22 all scsi/sg.h
'#' 00-3F IEEE 1394 Subsystem Block for the entire subsystem
+'$' 00-0F linux/perf_counter.h, linux/perf_event.h
'1' 00-1F <linux/timepps.h> PPS kit from Ulrich Windl
<ftp://ftp.de.kernel.org/pub/linux/daemons/ntp/PPS/>
+'2' 01-04 linux/i2o.h
+'3' 00-0F drivers/s390/char/raw3270.h conflict!
+'3' 00-1F linux/suspend_ioctls.h conflict!
+ and kernel/power/user.c
'8' all SNP8023 advanced NIC card
<mailto:mcr@solidum.com>
-'A' 00-1F linux/apm_bios.h
+'@' 00-0F linux/radeonfb.h conflict!
+'@' 00-0F drivers/video/aty/aty128fb.c conflict!
+'A' 00-1F linux/apm_bios.h conflict!
+'A' 00-0F linux/agpgart.h conflict!
+ and drivers/char/agp/compat_ioctl.h
+'A' 00-7F sound/asound.h conflict!
+'B' 00-1F linux/cciss_ioctl.h conflict!
+'B' 00-0F include/linux/pmu.h conflict!
'B' C0-FF advanced bbus
<mailto:maassen@uni-freiburg.de>
-'C' all linux/soundcard.h
+'C' all linux/soundcard.h conflict!
+'C' 01-2F linux/capi.h conflict!
+'C' F0-FF drivers/net/wan/cosa.h conflict!
'D' all arch/s390/include/asm/dasd.h
-'E' all linux/input.h
-'F' all linux/fb.h
-'H' all linux/hiddev.h
-'I' all linux/isdn.h
+'D' 40-5F drivers/scsi/dpt/dtpi_ioctl.h
+'D' 05 drivers/scsi/pmcraid.h
+'E' all linux/input.h conflict!
+'E' 00-0F xen/evtchn.h conflict!
+'F' all linux/fb.h conflict!
+'F' 01-02 drivers/scsi/pmcraid.h conflict!
+'F' 20 drivers/video/fsl-diu-fb.h conflict!
+'F' 20 drivers/video/intelfb/intelfb.h conflict!
+'F' 20 linux/ivtvfb.h conflict!
+'F' 20 linux/matroxfb.h conflict!
+'F' 20 drivers/video/aty/atyfb_base.c conflict!
+'F' 00-0F video/da8xx-fb.h conflict!
+'F' 80-8F linux/arcfb.h conflict!
+'F' DD video/sstfb.h conflict!
+'G' 00-3F drivers/misc/sgi-gru/grulib.h conflict!
+'G' 00-0F linux/gigaset_dev.h conflict!
+'H' 00-7F linux/hiddev.h conflict!
+'H' 00-0F linux/hidraw.h conflict!
+'H' 00-0F sound/asound.h conflict!
+'H' 20-40 sound/asound_fm.h conflict!
+'H' 80-8F sound/sfnt_info.h conflict!
+'H' 10-8F sound/emu10k1.h conflict!
+'H' 10-1F sound/sb16_csp.h conflict!
+'H' 10-1F sound/hda_hwdep.h conflict!
+'H' 40-4F sound/hdspm.h conflict!
+'H' 40-4F sound/hdsp.h conflict!
+'H' 90 sound/usb/usx2y/usb_stream.h
+'H' C0-F0 net/bluetooth/hci.h conflict!
+'H' C0-DF net/bluetooth/hidp/hidp.h conflict!
+'H' C0-DF net/bluetooth/cmtp/cmtp.h conflict!
+'H' C0-DF net/bluetooth/bnep/bnep.h conflict!
+'I' all linux/isdn.h conflict!
+'I' 00-0F drivers/isdn/divert/isdn_divert.h conflict!
+'I' 40-4F linux/mISDNif.h conflict!
'J' 00-1F drivers/scsi/gdth_ioctl.h
'K' all linux/kd.h
-'L' 00-1F linux/loop.h
-'L' 20-2F driver/usb/misc/vstusb.h
+'L' 00-1F linux/loop.h conflict!
+'L' 10-1F drivers/scsi/mpt2sas/mpt2sas_ctl.h conflict!
+'L' 20-2F linux/usb/vstusb.h
'L' E0-FF linux/ppdd.h encrypted disk device driver
<http://linux01.gwdg.de/~alatham/ppdd.html>
-'M' all linux/soundcard.h
+'M' all linux/soundcard.h conflict!
+'M' 01-16 mtd/mtd-abi.h conflict!
+ and drivers/mtd/mtdchar.c
+'M' 01-03 drivers/scsi/megaraid/megaraid_sas.h
+'M' 00-0F drivers/video/fsl-diu-fb.h conflict!
'N' 00-1F drivers/usb/scanner.h
-'O' 00-02 include/mtd/ubi-user.h UBI
-'P' all linux/soundcard.h
+'O' 00-06 mtd/ubi-user.h UBI
+'P' all linux/soundcard.h conflict!
+'P' 60-6F sound/sscape_ioctl.h conflict!
+'P' 00-0F drivers/usb/class/usblp.c conflict!
'Q' all linux/soundcard.h
-'R' 00-1F linux/random.h
+'R' 00-1F linux/random.h conflict!
+'R' 01 linux/rfkill.h conflict!
+'R' 01-0F media/rds.h conflict!
+'R' C0-DF net/bluetooth/rfcomm.h
'S' all linux/cdrom.h conflict!
'S' 80-81 scsi/scsi_ioctl.h conflict!
'S' 82-FF scsi/scsi.h conflict!
+'S' 00-7F sound/asequencer.h conflict!
'T' all linux/soundcard.h conflict!
+'T' 00-AF sound/asound.h conflict!
'T' all arch/x86/include/asm/ioctls.h conflict!
-'U' 00-EF linux/drivers/usb/usb.h
-'V' all linux/vt.h
+'T' C0-DF linux/if_tun.h conflict!
+'U' all sound/asound.h conflict!
+'U' 00-0F drivers/media/video/uvc/uvcvideo.h conflict!
+'U' 00-CF linux/uinput.h conflict!
+'U' 00-EF linux/usbdevice_fs.h
+'U' C0-CF drivers/bluetooth/hci_uart.h
+'V' all linux/vt.h conflict!
+'V' all linux/videodev2.h conflict!
+'V' C0 linux/ivtvfb.h conflict!
+'V' C0 linux/ivtv.h conflict!
+'V' C0 media/davinci/vpfe_capture.h conflict!
+'V' C0 media/si4713.h conflict!
+'V' C0-CF drivers/media/video/mxb.h conflict!
'W' 00-1F linux/watchdog.h conflict!
'W' 00-1F linux/wanrouter.h conflict!
-'X' all linux/xfs_fs.h
+'W' 00-3F sound/asound.h conflict!
+'X' all fs/xfs/xfs_fs.h conflict!
+ and fs/xfs/linux-2.6/xfs_ioctl32.h
+ and include/linux/falloc.h
+ and linux/fs.h
+'X' all fs/ocfs2/ocfs_fs.h conflict!
+'X' 01 linux/pktcdvd.h conflict!
'Y' all linux/cyclades.h
-'[' 00-07 linux/usb/usbtmc.h USB Test and Measurement Devices
+'Z' 14-15 drivers/message/fusion/mptctl.h
+'[' 00-07 linux/usb/tmc.h USB Test and Measurement Devices
<mailto:gregkh@suse.de>
-'a' all ATM on linux
+'a' all linux/atm*.h, linux/sonet.h ATM on linux
<http://lrcwww.epfl.ch/linux-atm/magic.html>
-'b' 00-FF bit3 vme host bridge
+'b' 00-FF conflict! bit3 vme host bridge
<mailto:natalia@nikhefk.nikhef.nl>
+'b' 00-0F media/bt819.h conflict!
+'c' all linux/cm4000_cs.h conflict!
'c' 00-7F linux/comstats.h conflict!
'c' 00-7F linux/coda.h conflict!
-'c' 80-9F arch/s390/include/asm/chsc.h
-'c' A0-AF arch/x86/include/asm/msr.h
+'c' 00-1F linux/chio.h conflict!
+'c' 80-9F arch/s390/include/asm/chsc.h conflict!
+'c' A0-AF arch/x86/include/asm/msr.h conflict!
'd' 00-FF linux/char/drm/drm/h conflict!
+'d' 02-40 pcmcia/ds.h conflict!
+'d' 10-3F drivers/media/video/dabusb.h conflict!
+'d' C0-CF drivers/media/video/saa7191.h conflict!
'd' F0-FF linux/digi1.h
'e' all linux/digi1.h conflict!
-'e' 00-1F net/irda/irtty.h conflict!
-'f' 00-1F linux/ext2_fs.h
-'h' 00-7F Charon filesystem
+'e' 00-1F drivers/net/irda/irtty-sir.h conflict!
+'f' 00-1F linux/ext2_fs.h conflict!
+'f' 00-1F linux/ext3_fs.h conflict!
+'f' 00-0F fs/jfs/jfs_dinode.h conflict!
+'f' 00-0F fs/ext4/ext4.h conflict!
+'f' 00-0F linux/fs.h conflict!
+'f' 00-0F fs/ocfs2/ocfs2_fs.h conflict!
+'g' 00-0F linux/usb/gadgetfs.h
+'g' 20-2F linux/usb/g_printer.h
+'h' 00-7F conflict! Charon filesystem
<mailto:zapman@interlan.net>
-'i' 00-3F linux/i2o.h
+'h' 00-1F linux/hpet.h conflict!
+'i' 00-3F linux/i2o-dev.h conflict!
+'i' 0B-1F linux/ipmi.h conflict!
+'i' 80-8F linux/i8k.h
'j' 00-3F linux/joystick.h
+'k' 00-0F linux/spi/spidev.h conflict!
+'k' 00-05 video/kyro.h conflict!
'l' 00-3F linux/tcfs_fs.h transparent cryptographic file system
<http://mikonos.dia.unisa.it/tcfs>
'l' 40-7F linux/udf_fs_i.h in development:
<http://sourceforge.net/projects/linux-udf/>
-'m' 00-09 linux/mmtimer.h
+'m' 00-09 linux/mmtimer.h conflict!
'm' all linux/mtio.h conflict!
'm' all linux/soundcard.h conflict!
'm' all linux/synclink.h conflict!
+'m' 00-19 drivers/message/fusion/mptctl.h conflict!
+'m' 00 drivers/scsi/megaraid/megaraid_ioctl.h conflict!
'm' 00-1F net/irda/irmod.h conflict!
-'n' 00-7F linux/ncp_fs.h
+'n' 00-7F linux/ncp_fs.h and fs/ncpfs/ioctl.c
'n' 80-8F linux/nilfs2_fs.h NILFS2
-'n' E0-FF video/matrox.h matroxfb
+'n' E0-FF linux/matroxfb.h matroxfb
'o' 00-1F fs/ocfs2/ocfs2_fs.h OCFS2
-'o' 00-03 include/mtd/ubi-user.h conflict! (OCFS2 and UBI overlaps)
-'o' 40-41 include/mtd/ubi-user.h UBI
-'o' 01-A1 include/linux/dvb/*.h DVB
+'o' 00-03 mtd/ubi-user.h conflict! (OCFS2 and UBI overlaps)
+'o' 40-41 mtd/ubi-user.h UBI
+'o' 01-A1 linux/dvb/*.h DVB
'p' 00-0F linux/phantom.h conflict! (OpenHaptics needs this)
+'p' 00-1F linux/rtc.h conflict!
'p' 00-3F linux/mc146818rtc.h conflict!
'p' 40-7F linux/nvram.h
-'p' 80-9F user-space parport
+'p' 80-9F linux/ppdev.h user-space parport
<mailto:tim@cyberelk.net>
-'p' a1-a4 linux/pps.h LinuxPPS
+'p' A1-A4 linux/pps.h LinuxPPS
<mailto:giometti@linux.it>
'q' 00-1F linux/serio.h
-'q' 80-FF Internet PhoneJACK, Internet LineJACK
- <http://www.quicknet.net>
-'r' 00-1F linux/msdos_fs.h
+'q' 80-FF linux/telephony.h Internet PhoneJACK, Internet LineJACK
+ linux/ixjuser.h <http://www.quicknet.net>
+'r' 00-1F linux/msdos_fs.h and fs/fat/dir.c
's' all linux/cdk.h
't' 00-7F linux/if_ppp.h
't' 80-8F linux/isdn_ppp.h
+'t' 90 linux/toshiba.h
'u' 00-1F linux/smb_fs.h
-'v' 00-1F linux/ext2_fs.h conflict!
'v' all linux/videodev.h conflict!
+'v' 00-1F linux/ext2_fs.h conflict!
+'v' 00-1F linux/fs.h conflict!
+'v' 00-0F linux/sonypi.h conflict!
+'v' C0-CF drivers/media/video/ov511.h conflict!
+'v' C0-DF media/pwc-ioctl.h conflict!
+'v' C0-FF linux/meye.h conflict!
+'v' C0-CF drivers/media/video/zoran/zoran.h conflict!
+'v' D0-DF drivers/media/video/cpia2/cpia2dev.h conflict!
'w' all CERN SCI driver
'y' 00-1F packet based user level communications
<mailto:zapman@interlan.net>
-'z' 00-3F CAN bus card
+'z' 00-3F CAN bus card conflict!
<mailto:hdstich@connectu.ulm.circular.de>
-'z' 40-7F CAN bus card
+'z' 40-7F CAN bus card conflict!
<mailto:oe@port.de>
+'z' 10-4F drivers/s390/crypto/zcrypt_api.h conflict!
0x80 00-1F linux/fb.h
0x81 00-1F linux/videotext.h
+0x88 00-3F media/ovcamchip.h
0x89 00-06 arch/x86/include/asm/sockios.h
0x89 0B-DF linux/sockios.h
0x89 E0-EF linux/sockios.h SIOCPROTOPRIVATE range
+0x89 E0-EF linux/dn.h PROTOPRIVATE range
0x89 F0-FF linux/sockios.h SIOCDEVPRIVATE range
0x8B all linux/wireless.h
0x8C 00-3F WiNRADiO driver
<http://www.proximity.com.au/~brian/winradio/>
0x90 00 drivers/cdrom/sbpcd.h
+0x92 00-0F drivers/usb/mon/mon_bin.c
0x93 60-7F linux/auto_fs.h
+0x94 all fs/btrfs/ioctl.h
0x99 00-0F 537-Addinboard driver
<mailto:buk@buks.ipn.de>
0xA0 all linux/sdp/sdp.h Industrial Device Project
@@ -192,17 +302,22 @@ Code Seq# Include File Comments
0xAB 00-1F linux/nbd.h
0xAC 00-1F linux/raw.h
0xAD 00 Netfilter device in development:
- <mailto:rusty@rustcorp.com.au>
+ <mailto:rusty@rustcorp.com.au>
0xAE all linux/kvm.h Kernel-based Virtual Machine
<mailto:kvm@vger.kernel.org>
0xB0 all RATIO devices in development:
<mailto:vgo@ratio.de>
0xB1 00-1F PPPoX <mailto:mostrows@styx.uwaterloo.ca>
+0xC0 00-0F linux/usb/iowarrior.h
0xCB 00-1F CBM serial IEC bus in development:
<mailto:michael.klein@puffin.lb.shuttle.de>
+0xCD 01 linux/reiserfs_fs.h
+0xCF 02 fs/cifs/ioctl.c
+0xDB 00-0F drivers/char/mwave/mwavepub.h
0xDD 00-3F ZFCP device driver see drivers/s390/scsi/
<mailto:aherrman@de.ibm.com>
-0xF3 00-3F video/sisfb.h sisfb (in development)
+0xF3 00-3F drivers/usb/misc/sisusbvga/sisusb.h sisfb (in development)
<mailto:thomas@winischhofer.net>
0xF4 00-1F video/mbxfb.h mbxfb
<mailto:raph@8d.com>
+0xFD all linux/dm-ioctl.h
diff --git a/Documentation/kbuild/kbuild.txt b/Documentation/kbuild/kbuild.txt
index bb3bf38f03da..6f8c1cabbc5d 100644
--- a/Documentation/kbuild/kbuild.txt
+++ b/Documentation/kbuild/kbuild.txt
@@ -1,3 +1,17 @@
+Output files
+
+modules.order
+--------------------------------------------------
+This file records the order in which modules appear in Makefiles. This
+is used by modprobe to deterministically resolve aliases that match
+multiple modules.
+
+modules.builtin
+--------------------------------------------------
+This file lists all modules that are built into the kernel. This is used
+by modprobe to not fail when trying to load something builtin.
+
+
Environment variables
KCPPFLAGS
diff --git a/Documentation/kbuild/kconfig.txt b/Documentation/kbuild/kconfig.txt
index 849b5e56d06f..49efae703979 100644
--- a/Documentation/kbuild/kconfig.txt
+++ b/Documentation/kbuild/kconfig.txt
@@ -103,10 +103,16 @@ KCONFIG_AUTOCONFIG
This environment variable can be set to specify the path & name of the
"auto.conf" file. Its default value is "include/config/auto.conf".
+KCONFIG_TRISTATE
+--------------------------------------------------
+This environment variable can be set to specify the path & name of the
+"tristate.conf" file. Its default value is "include/config/tristate.conf".
+
KCONFIG_AUTOHEADER
--------------------------------------------------
This environment variable can be set to specify the path & name of the
-"autoconf.h" (header) file. Its default value is "include/linux/autoconf.h".
+"autoconf.h" (header) file.
+Its default value is "include/generated/autoconf.h".
======================================================================
diff --git a/Documentation/kernel-doc-nano-HOWTO.txt b/Documentation/kernel-doc-nano-HOWTO.txt
index 348b9e5e28fc..27a52b35d55b 100644
--- a/Documentation/kernel-doc-nano-HOWTO.txt
+++ b/Documentation/kernel-doc-nano-HOWTO.txt
@@ -214,11 +214,13 @@ The format of the block comment is like this:
* (section header: (section description)? )*
(*)?*/
-The short function description ***cannot be multiline***, but the other
-descriptions can be (and they can contain blank lines). If you continue
-that initial short description onto a second line, that second line will
-appear further down at the beginning of the description section, which is
-almost certainly not what you had in mind.
+All "description" text can span multiple lines, although the
+function_name & its short description are traditionally on a single line.
+Description text may also contain blank lines (i.e., lines that contain
+only a "*").
+
+"section header:" names must be unique per function (or struct,
+union, typedef, enum).
Avoid putting a spurious blank line after the function name, or else the
description will be repeated!
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 5ba4d9dff113..736d45602886 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -240,7 +240,7 @@ and is between 256 and 4096 characters. It is defined in the file
acpi_sleep= [HW,ACPI] Sleep options
Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig,
- old_ordering, s4_nonvs }
+ old_ordering, s4_nonvs, sci_force_enable }
See Documentation/power/video.txt for information on
s3_bios and s3_mode.
s3_beep is for debugging; it makes the PC's speaker beep
@@ -253,6 +253,9 @@ and is between 256 and 4096 characters. It is defined in the file
of _PTS is used by default).
s4_nonvs prevents the kernel from saving/restoring the
ACPI NVS memory during hibernation.
+ sci_force_enable causes the kernel to set SCI_EN directly
+ on resume from S1/S3 (which is against the ACPI spec,
+ but some broken systems don't work without it).
acpi_use_timer_override [HW,ACPI]
Use timer override. For some broken Nvidia NF5 boards
diff --git a/Documentation/kvm/api.txt b/Documentation/kvm/api.txt
index e1a114161027..2811e452f756 100644
--- a/Documentation/kvm/api.txt
+++ b/Documentation/kvm/api.txt
@@ -685,7 +685,7 @@ struct kvm_vcpu_events {
__u8 pad;
} nmi;
__u32 sipi_vector;
- __u32 flags; /* must be zero */
+ __u32 flags;
};
4.30 KVM_SET_VCPU_EVENTS
@@ -701,6 +701,14 @@ vcpu.
See KVM_GET_VCPU_EVENTS for the data structure.
+Fields that may be modified asynchronously by running VCPUs can be excluded
+from the update. These fields are nmi.pending and sipi_vector. Keep the
+corresponding bits in the flags field cleared to suppress overwriting the
+current in-kernel state. The bits are:
+
+KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
+KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
+
5. The kvm_run structure
diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/laptops/thinkpad-acpi.txt
index 169091f75e6d..75afa1229fd7 100644
--- a/Documentation/laptops/thinkpad-acpi.txt
+++ b/Documentation/laptops/thinkpad-acpi.txt
@@ -1092,8 +1092,8 @@ WARNING:
its level up and down at every change.
-Volume control
---------------
+Volume control (Console Audio control)
+--------------------------------------
procfs: /proc/acpi/ibm/volume
ALSA: "ThinkPad Console Audio Control", default ID: "ThinkPadEC"
@@ -1110,9 +1110,53 @@ the desktop environment to just provide on-screen-display feedback.
Software volume control should be done only in the main AC97/HDA
mixer.
-This feature allows volume control on ThinkPad models with a digital
-volume knob (when available, not all models have it), as well as
-mute/unmute control. The available commands are:
+
+About the ThinkPad Console Audio control:
+
+ThinkPads have a built-in amplifier and muting circuit that drives the
+console headphone and speakers. This circuit is after the main AC97
+or HDA mixer in the audio path, and under exclusive control of the
+firmware.
+
+ThinkPads have three special hotkeys to interact with the console
+audio control: volume up, volume down and mute.
+
+It is worth noting that the normal way the mute function works (on
+ThinkPads that do not have a "mute LED") is:
+
+1. Press mute to mute. It will *always* mute, you can press it as
+ many times as you want, and the sound will remain mute.
+
+2. Press either volume key to unmute the ThinkPad (it will _not_
+ change the volume, it will just unmute).
+
+This is a very superior design when compared to the cheap software-only
+mute-toggle solution found on normal consumer laptops: you can be
+absolutely sure the ThinkPad will not make noise if you press the mute
+button, no matter the previous state.
+
+The IBM ThinkPads, and the earlier Lenovo ThinkPads have variable-gain
+amplifiers driving the speakers and headphone output, and the firmware
+also handles volume control for the headphone and speakers on these
+ThinkPads without any help from the operating system (this volume
+control stage exists after the main AC97 or HDA mixer in the audio
+path).
+
+The newer Lenovo models only have firmware mute control, and depend on
+the main HDA mixer to do volume control (which is done by the operating
+system). In this case, the volume keys are filtered out for unmute
+key press (there are some firmware bugs in this area) and delivered as
+normal key presses to the operating system (thinkpad-acpi is not
+involved).
+
+
+The ThinkPad-ACPI volume control:
+
+The preferred way to interact with the Console Audio control is the
+ALSA interface.
+
+The legacy procfs interface allows one to read the current state,
+and if volume control is enabled, accepts the following commands:
echo up >/proc/acpi/ibm/volume
echo down >/proc/acpi/ibm/volume
@@ -1121,12 +1165,10 @@ mute/unmute control. The available commands are:
echo 'level <level>' >/proc/acpi/ibm/volume
The <level> number range is 0 to 14 although not all of them may be
-distinct. The unmute the volume after the mute command, use either the
+distinct. To unmute the volume after the mute command, use either the
up or down command (the level command will not unmute the volume), or
the unmute command.
-The current volume level and mute state is shown in the file.
-
You can use the volume_capabilities parameter to tell the driver
whether your thinkpad has volume control or mute-only control:
volume_capabilities=1 for mixers with mute and volume control,
diff --git a/Documentation/networking/3c509.txt b/Documentation/networking/3c509.txt
index 0643e3b7168c..3c45d5dcd63b 100644
--- a/Documentation/networking/3c509.txt
+++ b/Documentation/networking/3c509.txt
@@ -48,11 +48,11 @@ for LILO parameters for doing this:
This configures the first found 3c509 card for IRQ 10, base I/O 0x310, and
transceiver type 3 (10base2). The flag "0x3c509" must be set to avoid conflicts
with other card types when overriding the I/O address. When the driver is
-loaded as a module, only the IRQ and transceiver setting may be overridden.
-For example, setting two cards to 10base2/IRQ10 and AUI/IRQ11 is done by using
-the xcvr and irq module options:
+loaded as a module, only the IRQ may be overridden. For example,
+setting two cards to IRQ10 and IRQ11 is done by using the irq module
+option:
- options 3c509 xcvr=3,1 irq=10,11
+ options 3c509 irq=10,11
(2) Full-duplex mode
@@ -77,6 +77,8 @@ operation.
itself full-duplex capable. This is almost certainly one of two things: a full-
duplex-capable Ethernet switch (*not* a hub), or a full-duplex-capable NIC on
another system that's connected directly to the 3c509B via a crossover cable.
+
+Full-duplex mode can be enabled using 'ethtool'.
/////Extremely important caution concerning full-duplex mode/////
Understand that the 3c509B's hardware's full-duplex support is much more
@@ -113,6 +115,8 @@ This insured that merely upgrading the driver from an earlier version would
never automatically enable full-duplex mode in an existing installation;
it must always be explicitly enabled via one of these code in order to be
activated.
+
+The transceiver type can be changed using 'ethtool'.
(4a) Interpretation of error messages and common problems
diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt
index 4a3109b28847..356fd86f4ea8 100644
--- a/Documentation/power/runtime_pm.txt
+++ b/Documentation/power/runtime_pm.txt
@@ -42,80 +42,81 @@ struct dev_pm_ops {
...
};
-The ->runtime_suspend() callback is executed by the PM core for the bus type of
-the device being suspended. The bus type's callback is then _entirely_
-_responsible_ for handling the device as appropriate, which may, but need not
-include executing the device driver's own ->runtime_suspend() callback (from the
+The ->runtime_suspend(), ->runtime_resume() and ->runtime_idle() callbacks are
+executed by the PM core for either the bus type, or device type (if the bus
+type's callback is not defined), or device class (if the bus type's and device
+type's callbacks are not defined) of given device. The bus type, device type
+and device class callbacks are referred to as subsystem-level callbacks in what
+follows.
+
+The subsystem-level suspend callback is _entirely_ _responsible_ for handling
+the suspend of the device as appropriate, which may, but need not include
+executing the device driver's own ->runtime_suspend() callback (from the
PM core's point of view it is not necessary to implement a ->runtime_suspend()
-callback in a device driver as long as the bus type's ->runtime_suspend() knows
-what to do to handle the device).
+callback in a device driver as long as the subsystem-level suspend callback
+knows what to do to handle the device).
- * Once the bus type's ->runtime_suspend() callback has completed successfully
+ * Once the subsystem-level suspend callback has completed successfully
for given device, the PM core regards the device as suspended, which need
not mean that the device has been put into a low power state. It is
supposed to mean, however, that the device will not process data and will
- not communicate with the CPU(s) and RAM until its bus type's
- ->runtime_resume() callback is executed for it. The run-time PM status of
- a device after successful execution of its bus type's ->runtime_suspend()
- callback is 'suspended'.
-
- * If the bus type's ->runtime_suspend() callback returns -EBUSY or -EAGAIN,
- the device's run-time PM status is supposed to be 'active', which means that
- the device _must_ be fully operational afterwards.
-
- * If the bus type's ->runtime_suspend() callback returns an error code
- different from -EBUSY or -EAGAIN, the PM core regards this as a fatal
- error and will refuse to run the helper functions described in Section 4
- for the device, until the status of it is directly set either to 'active'
- or to 'suspended' (the PM core provides special helper functions for this
- purpose).
-
-In particular, if the driver requires remote wakeup capability for proper
-functioning and device_run_wake() returns 'false' for the device, then
-->runtime_suspend() should return -EBUSY. On the other hand, if
-device_run_wake() returns 'true' for the device and the device is put
-into a low power state during the execution of its bus type's
-->runtime_suspend(), it is expected that remote wake-up (i.e. hardware mechanism
-allowing the device to request a change of its power state, such as PCI PME)
-will be enabled for the device. Generally, remote wake-up should be enabled
-for all input devices put into a low power state at run time.
-
-The ->runtime_resume() callback is executed by the PM core for the bus type of
-the device being woken up. The bus type's callback is then _entirely_
-_responsible_ for handling the device as appropriate, which may, but need not
-include executing the device driver's own ->runtime_resume() callback (from the
-PM core's point of view it is not necessary to implement a ->runtime_resume()
-callback in a device driver as long as the bus type's ->runtime_resume() knows
-what to do to handle the device).
-
- * Once the bus type's ->runtime_resume() callback has completed successfully,
- the PM core regards the device as fully operational, which means that the
- device _must_ be able to complete I/O operations as needed. The run-time
- PM status of the device is then 'active'.
-
- * If the bus type's ->runtime_resume() callback returns an error code, the PM
- core regards this as a fatal error and will refuse to run the helper
- functions described in Section 4 for the device, until its status is
- directly set either to 'active' or to 'suspended' (the PM core provides
- special helper functions for this purpose).
-
-The ->runtime_idle() callback is executed by the PM core for the bus type of
-given device whenever the device appears to be idle, which is indicated to the
-PM core by two counters, the device's usage counter and the counter of 'active'
-children of the device.
+ not communicate with the CPU(s) and RAM until the subsystem-level resume
+ callback is executed for it. The run-time PM status of a device after
+ successful execution of the subsystem-level suspend callback is 'suspended'.
+
+ * If the subsystem-level suspend callback returns -EBUSY or -EAGAIN,
+ the device's run-time PM status is 'active', which means that the device
+ _must_ be fully operational afterwards.
+
+ * If the subsystem-level suspend callback returns an error code different
+ from -EBUSY or -EAGAIN, the PM core regards this as a fatal error and will
+ refuse to run the helper functions described in Section 4 for the device,
+ until the status of it is directly set either to 'active', or to 'suspended'
+ (the PM core provides special helper functions for this purpose).
+
+In particular, if the driver requires remote wake-up capability (i.e. hardware
+mechanism allowing the device to request a change of its power state, such as
+PCI PME) for proper functioning and device_run_wake() returns 'false' for the
+device, then ->runtime_suspend() should return -EBUSY. On the other hand, if
+device_run_wake() returns 'true' for the device and the device is put into a low
+power state during the execution of the subsystem-level suspend callback, it is
+expected that remote wake-up will be enabled for the device. Generally, remote
+wake-up should be enabled for all input devices put into a low power state at
+run time.
+
+The subsystem-level resume callback is _entirely_ _responsible_ for handling the
+resume of the device as appropriate, which may, but need not include executing
+the device driver's own ->runtime_resume() callback (from the PM core's point of
+view it is not necessary to implement a ->runtime_resume() callback in a device
+driver as long as the subsystem-level resume callback knows what to do to handle
+the device).
+
+ * Once the subsystem-level resume callback has completed successfully, the PM
+ core regards the device as fully operational, which means that the device
+ _must_ be able to complete I/O operations as needed. The run-time PM status
+ of the device is then 'active'.
+
+ * If the subsystem-level resume callback returns an error code, the PM core
+ regards this as a fatal error and will refuse to run the helper functions
+ described in Section 4 for the device, until its status is directly set
+ either to 'active' or to 'suspended' (the PM core provides special helper
+ functions for this purpose).
+
+The subsystem-level idle callback is executed by the PM core whenever the device
+appears to be idle, which is indicated to the PM core by two counters, the
+device's usage counter and the counter of 'active' children of the device.
* If any of these counters is decreased using a helper function provided by
the PM core and it turns out to be equal to zero, the other counter is
checked. If that counter also is equal to zero, the PM core executes the
- device bus type's ->runtime_idle() callback (with the device as an
- argument).
+ subsystem-level idle callback with the device as an argument.
-The action performed by a bus type's ->runtime_idle() callback is totally
-dependent on the bus type in question, but the expected and recommended action
-is to check if the device can be suspended (i.e. if all of the conditions
-necessary for suspending the device are satisfied) and to queue up a suspend
-request for the device in that case. The value returned by this callback is
-ignored by the PM core.
+The action performed by a subsystem-level idle callback is totally dependent on
+the subsystem in question, but the expected and recommended action is to check
+if the device can be suspended (i.e. if all of the conditions necessary for
+suspending the device are satisfied) and to queue up a suspend request for the
+device in that case. The value returned by this callback is ignored by the PM
+core.
The helper functions provided by the PM core, described in Section 4, guarantee
that the following constraints are met with respect to the bus type's run-time
@@ -238,41 +239,41 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
removing the device from device hierarchy
int pm_runtime_idle(struct device *dev);
- - execute ->runtime_idle() for the device's bus type; returns 0 on success
- or error code on failure, where -EINPROGRESS means that ->runtime_idle()
- is already being executed
+ - execute the subsystem-level idle callback for the device; returns 0 on
+ success or error code on failure, where -EINPROGRESS means that
+ ->runtime_idle() is already being executed
int pm_runtime_suspend(struct device *dev);
- - execute ->runtime_suspend() for the device's bus type; returns 0 on
+ - execute the subsystem-level suspend callback for the device; returns 0 on
success, 1 if the device's run-time PM status was already 'suspended', or
error code on failure, where -EAGAIN or -EBUSY means it is safe to attempt
to suspend the device again in future
int pm_runtime_resume(struct device *dev);
- - execute ->runtime_resume() for the device's bus type; returns 0 on
+ - execute the subsystem-leve resume callback for the device; returns 0 on
success, 1 if the device's run-time PM status was already 'active' or
error code on failure, where -EAGAIN means it may be safe to attempt to
resume the device again in future, but 'power.runtime_error' should be
checked additionally
int pm_request_idle(struct device *dev);
- - submit a request to execute ->runtime_idle() for the device's bus type
- (the request is represented by a work item in pm_wq); returns 0 on success
- or error code if the request has not been queued up
+ - submit a request to execute the subsystem-level idle callback for the
+ device (the request is represented by a work item in pm_wq); returns 0 on
+ success or error code if the request has not been queued up
int pm_schedule_suspend(struct device *dev, unsigned int delay);
- - schedule the execution of ->runtime_suspend() for the device's bus type
- in future, where 'delay' is the time to wait before queuing up a suspend
- work item in pm_wq, in milliseconds (if 'delay' is zero, the work item is
- queued up immediately); returns 0 on success, 1 if the device's PM
+ - schedule the execution of the subsystem-level suspend callback for the
+ device in future, where 'delay' is the time to wait before queuing up a
+ suspend work item in pm_wq, in milliseconds (if 'delay' is zero, the work
+ item is queued up immediately); returns 0 on success, 1 if the device's PM
run-time status was already 'suspended', or error code if the request
hasn't been scheduled (or queued up if 'delay' is 0); if the execution of
->runtime_suspend() is already scheduled and not yet expired, the new
value of 'delay' will be used as the time to wait
int pm_request_resume(struct device *dev);
- - submit a request to execute ->runtime_resume() for the device's bus type
- (the request is represented by a work item in pm_wq); returns 0 on
+ - submit a request to execute the subsystem-level resume callback for the
+ device (the request is represented by a work item in pm_wq); returns 0 on
success, 1 if the device's run-time PM status was already 'active', or
error code if the request hasn't been queued up
@@ -303,12 +304,12 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
run-time PM callbacks described in Section 2
int pm_runtime_disable(struct device *dev);
- - prevent the run-time PM helper functions from running the device bus
- type's run-time PM callbacks, make sure that all of the pending run-time
- PM operations on the device are either completed or canceled; returns
- 1 if there was a resume request pending and it was necessary to execute
- ->runtime_resume() for the device's bus type to satisfy that request,
- otherwise 0 is returned
+ - prevent the run-time PM helper functions from running subsystem-level
+ run-time PM callbacks for the device, make sure that all of the pending
+ run-time PM operations on the device are either completed or canceled;
+ returns 1 if there was a resume request pending and it was necessary to
+ execute the subsystem-level resume callback for the device to satisfy that
+ request, otherwise 0 is returned
void pm_suspend_ignore_children(struct device *dev, bool enable);
- set/unset the power.ignore_children flag of the device
@@ -378,5 +379,55 @@ pm_runtime_suspend() or pm_runtime_idle() or their asynchronous counterparts,
they will fail returning -EAGAIN, because the device's usage counter is
incremented by the core before executing ->probe() and ->remove(). Still, it
may be desirable to suspend the device as soon as ->probe() or ->remove() has
-finished, so the PM core uses pm_runtime_idle_sync() to invoke the device bus
-type's ->runtime_idle() callback at that time.
+finished, so the PM core uses pm_runtime_idle_sync() to invoke the
+subsystem-level idle callback for the device at that time.
+
+6. Run-time PM and System Sleep
+
+Run-time PM and system sleep (i.e., system suspend and hibernation, also known
+as suspend-to-RAM and suspend-to-disk) interact with each other in a couple of
+ways. If a device is active when a system sleep starts, everything is
+straightforward. But what should happen if the device is already suspended?
+
+The device may have different wake-up settings for run-time PM and system sleep.
+For example, remote wake-up may be enabled for run-time suspend but disallowed
+for system sleep (device_may_wakeup(dev) returns 'false'). When this happens,
+the subsystem-level system suspend callback is responsible for changing the
+device's wake-up setting (it may leave that to the device driver's system
+suspend routine). It may be necessary to resume the device and suspend it again
+in order to do so. The same is true if the driver uses different power levels
+or other settings for run-time suspend and system sleep.
+
+During system resume, devices generally should be brought back to full power,
+even if they were suspended before the system sleep began. There are several
+reasons for this, including:
+
+ * The device might need to switch power levels, wake-up settings, etc.
+
+ * Remote wake-up events might have been lost by the firmware.
+
+ * The device's children may need the device to be at full power in order
+ to resume themselves.
+
+ * The driver's idea of the device state may not agree with the device's
+ physical state. This can happen during resume from hibernation.
+
+ * The device might need to be reset.
+
+ * Even though the device was suspended, if its usage counter was > 0 then most
+ likely it would need a run-time resume in the near future anyway.
+
+ * Always going back to full power is simplest.
+
+If the device was suspended before the sleep began, then its run-time PM status
+will have to be updated to reflect the actual post-system sleep status. The way
+to do this is:
+
+ pm_runtime_disable(dev);
+ pm_runtime_set_active(dev);
+ pm_runtime_enable(dev);
+
+The PM core always increments the run-time usage counter before calling the
+->prepare() callback and decrements it after calling the ->complete() callback.
+Hence disabling run-time PM temporarily like this will not cause any run-time
+suspend callbacks to be lost.
diff --git a/Documentation/powerpc/dts-bindings/fsl/mpic.txt b/Documentation/powerpc/dts-bindings/fsl/mpic.txt
new file mode 100644
index 000000000000..71e39cf3215b
--- /dev/null
+++ b/Documentation/powerpc/dts-bindings/fsl/mpic.txt
@@ -0,0 +1,42 @@
+* OpenPIC and its interrupt numbers on Freescale's e500/e600 cores
+
+The OpenPIC specification does not specify which interrupt source has to
+become which interrupt number. This is up to the software implementation
+of the interrupt controller. The only requirement is that every
+interrupt source has to have an unique interrupt number / vector number.
+To accomplish this the current implementation assigns the number zero to
+the first source, the number one to the second source and so on until
+all interrupt sources have their unique number.
+Usually the assigned vector number equals the interrupt number mentioned
+in the documentation for a given core / CPU. This is however not true
+for the e500 cores (MPC85XX CPUs) where the documentation distinguishes
+between internal and external interrupt sources and starts counting at
+zero for both of them.
+
+So what to write for external interrupt source X or internal interrupt
+source Y into the device tree? Here is an example:
+
+The memory map for the interrupt controller in the MPC8544[0] shows,
+that the first interrupt source starts at 0x5_0000 (PIC Register Address
+Map-Interrupt Source Configuration Registers). This source becomes the
+number zero therefore:
+ External interrupt 0 = interrupt number 0
+ External interrupt 1 = interrupt number 1
+ External interrupt 2 = interrupt number 2
+ ...
+Every interrupt number allocates 0x20 bytes register space. So to get
+its number it is sufficient to shift the lower 16bits to right by five.
+So for the external interrupt 10 we have:
+ 0x0140 >> 5 = 10
+
+After the external sources, the internal sources follow. The in core I2C
+controller on the MPC8544 for instance has the internal source number
+27. Oo obtain its interrupt number we take the lower 16bits of its memory
+address (0x5_0560) and shift it right:
+ 0x0560 >> 5 = 43
+
+Therefore the I2C device node for the MPC8544 CPU has to have the
+interrupt number 43 specified in the device tree.
+
+[0] MPC8544E PowerQUICCTM III, Integrated Host Processor Family Reference Manual
+ MPC8544ERM Rev. 1 10/2007
diff --git a/Documentation/sound/alsa/HD-Audio-Models.txt b/Documentation/sound/alsa/HD-Audio-Models.txt
index e93affff3af8..e72cee9e2a71 100644
--- a/Documentation/sound/alsa/HD-Audio-Models.txt
+++ b/Documentation/sound/alsa/HD-Audio-Models.txt
@@ -403,4 +403,5 @@ STAC9872
Cirrus Logic CS4206/4207
========================
mbp55 MacBook Pro 5,5
+ imac27 IMac 27 Inch
auto BIOS setup (default)
diff --git a/Documentation/sound/alsa/Procfile.txt b/Documentation/sound/alsa/Procfile.txt
index 719a819f8cc2..07301de12cc4 100644
--- a/Documentation/sound/alsa/Procfile.txt
+++ b/Documentation/sound/alsa/Procfile.txt
@@ -95,7 +95,7 @@ card*/pcm*/xrun_debug
It takes an integer value, can be changed by writing to this
file, such as
- # cat 5 > /proc/asound/card0/pcm0p/xrun_debug
+ # echo 5 > /proc/asound/card0/pcm0p/xrun_debug
The value consists of the following bit flags:
bit 0 = Enable XRUN/jiffies debug messages
diff --git a/Documentation/stable_kernel_rules.txt b/Documentation/stable_kernel_rules.txt
index a452227361b1..5effa5bd993b 100644
--- a/Documentation/stable_kernel_rules.txt
+++ b/Documentation/stable_kernel_rules.txt
@@ -26,13 +26,33 @@ Procedure for submitting patches to the -stable tree:
- Send the patch, after verifying that it follows the above rules, to
stable@kernel.org.
+ - To have the patch automatically included in the stable tree, add the
+ the tag
+ Cc: stable@kernel.org
+ in the sign-off area. Once the patch is merged it will be applied to
+ the stable tree without anything else needing to be done by the author
+ or subsystem maintainer.
+ - If the patch requires other patches as prerequisites which can be
+ cherry-picked than this can be specified in the following format in
+ the sign-off area:
+
+ Cc: <stable@kernel.org> # .32.x: a1f84a3: sched: Check for idle
+ Cc: <stable@kernel.org> # .32.x: 1b9508f: sched: Rate-limit newidle
+ Cc: <stable@kernel.org> # .32.x: fd21073: sched: Fix affinity logic
+ Cc: <stable@kernel.org> # .32.x
+ Signed-off-by: Ingo Molnar <mingo@elte.hu>
+
+ The tag sequence has the meaning of:
+ git cherry-pick a1f84a3
+ git cherry-pick 1b9508f
+ git cherry-pick fd21073
+ git cherry-pick <this commit>
+
- The sender will receive an ACK when the patch has been accepted into the
queue, or a NAK if the patch is rejected. This response might take a few
days, according to the developer's schedules.
- If accepted, the patch will be added to the -stable queue, for review by
other developers and by the relevant subsystem maintainer.
- - If the stable@kernel.org address is added to a patch, when it goes into
- Linus's tree it will automatically be emailed to the stable team.
- Security patches should not be sent to this alias, but instead to the
documented security@kernel.org address.
diff --git a/Documentation/trace/events-kmem.txt b/Documentation/trace/events-kmem.txt
index 6ef2a8652e17..aa82ee4a5a87 100644
--- a/Documentation/trace/events-kmem.txt
+++ b/Documentation/trace/events-kmem.txt
@@ -1,7 +1,7 @@
Subsystem Trace Points: kmem
-The tracing system kmem captures events related to object and page allocation
-within the kernel. Broadly speaking there are four major subheadings.
+The kmem tracing system captures events related to object and page allocation
+within the kernel. Broadly speaking there are five major subheadings.
o Slab allocation of small objects of unknown type (kmalloc)
o Slab allocation of small objects of known type
@@ -9,7 +9,7 @@ within the kernel. Broadly speaking there are four major subheadings.
o Per-CPU Allocator Activity
o External Fragmentation
-This document will describe what each of the tracepoints are and why they
+This document describes what each of the tracepoints is and why they
might be useful.
1. Slab allocation of small objects of unknown type
@@ -34,7 +34,7 @@ kmem_cache_free call_site=%lx ptr=%p
These events are similar in usage to the kmalloc-related events except that
it is likely easier to pin the event down to a specific cache. At the time
of writing, no information is available on what slab is being allocated from,
-but the call_site can usually be used to extrapolate that information
+but the call_site can usually be used to extrapolate that information.
3. Page allocation
==================
@@ -80,9 +80,9 @@ event indicating whether it is for a percpu_refill or not.
When the per-CPU list is too full, a number of pages are freed, each one
which triggers a mm_page_pcpu_drain event.
-The individual nature of the events are so that pages can be tracked
+The individual nature of the events is so that pages can be tracked
between allocation and freeing. A number of drain or refill pages that occur
-consecutively imply the zone->lock being taken once. Large amounts of PCP
+consecutively imply the zone->lock being taken once. Large amounts of per-CPU
refills and drains could imply an imbalance between CPUs where too much work
is being concentrated in one place. It could also indicate that the per-CPU
lists should be a larger size. Finally, large amounts of refills on one CPU
@@ -102,6 +102,6 @@ is important.
Large numbers of this event implies that memory is fragmenting and
high-order allocations will start failing at some time in the future. One
-means of reducing the occurange of this event is to increase the size of
+means of reducing the occurrence of this event is to increase the size of
min_free_kbytes in increments of 3*pageblock_size*nr_online_nodes where
pageblock_size is usually the size of the default hugepage size.
diff --git a/Documentation/trace/ftrace-design.txt b/Documentation/trace/ftrace-design.txt
index 641a1ef2a7ff..239f14b2b55a 100644
--- a/Documentation/trace/ftrace-design.txt
+++ b/Documentation/trace/ftrace-design.txt
@@ -53,14 +53,14 @@ size of the mcount call that is embedded in the function).
For example, if the function foo() calls bar(), when the bar() function calls
mcount(), the arguments mcount() will pass to the tracer are:
"frompc" - the address bar() will use to return to foo()
- "selfpc" - the address bar() (with _mcount() size adjustment)
+ "selfpc" - the address bar() (with mcount() size adjustment)
Also keep in mind that this mcount function will be called *a lot*, so
optimizing for the default case of no tracer will help the smooth running of
your system when tracing is disabled. So the start of the mcount function is
-typically the bare min with checking things before returning. That also means
-the code flow should usually kept linear (i.e. no branching in the nop case).
-This is of course an optimization and not a hard requirement.
+typically the bare minimum with checking things before returning. That also
+means the code flow should usually be kept linear (i.e. no branching in the nop
+case). This is of course an optimization and not a hard requirement.
Here is some pseudo code that should help (these functions should actually be
implemented in assembly):
@@ -131,10 +131,10 @@ some functions to save (hijack) and restore the return address.
The mcount function should check the function pointers ftrace_graph_return
(compare to ftrace_stub) and ftrace_graph_entry (compare to
-ftrace_graph_entry_stub). If either of those are not set to the relevant stub
+ftrace_graph_entry_stub). If either of those is not set to the relevant stub
function, call the arch-specific function ftrace_graph_caller which in turn
calls the arch-specific function prepare_ftrace_return. Neither of these
-function names are strictly required, but you should use them anyways to stay
+function names is strictly required, but you should use them anyway to stay
consistent across the architecture ports -- easier to compare & contrast
things.
@@ -144,7 +144,7 @@ but the first argument should be a pointer to the "frompc". Typically this is
located on the stack. This allows the function to hijack the return address
temporarily to have it point to the arch-specific function return_to_handler.
That function will simply call the common ftrace_return_to_handler function and
-that will return the original return address with which, you can return to the
+that will return the original return address with which you can return to the
original call site.
Here is the updated mcount pseudo code:
diff --git a/Documentation/trace/mmiotrace.txt b/Documentation/trace/mmiotrace.txt
index 162effbfbdec..664e7386d89e 100644
--- a/Documentation/trace/mmiotrace.txt
+++ b/Documentation/trace/mmiotrace.txt
@@ -44,7 +44,8 @@ Check for lost events.
Usage
-----
-Make sure debugfs is mounted to /sys/kernel/debug. If not, (requires root privileges)
+Make sure debugfs is mounted to /sys/kernel/debug.
+If not (requires root privileges):
$ mount -t debugfs debugfs /sys/kernel/debug
Check that the driver you are about to trace is not loaded.
@@ -91,7 +92,7 @@ $ dmesg > dmesg.txt
$ tar zcf pciid-nick-mmiotrace.tar.gz mydump.txt lspci.txt dmesg.txt
and then send the .tar.gz file. The trace compresses considerably. Replace
"pciid" and "nick" with the PCI ID or model name of your piece of hardware
-under investigation and your nick name.
+under investigation and your nickname.
How Mmiotrace Works
@@ -100,7 +101,7 @@ How Mmiotrace Works
Access to hardware IO-memory is gained by mapping addresses from PCI bus by
calling one of the ioremap_*() functions. Mmiotrace is hooked into the
__ioremap() function and gets called whenever a mapping is created. Mapping is
-an event that is recorded into the trace log. Note, that ISA range mappings
+an event that is recorded into the trace log. Note that ISA range mappings
are not caught, since the mapping always exists and is returned directly.
MMIO accesses are recorded via page faults. Just before __ioremap() returns,
@@ -122,11 +123,11 @@ Trace Log Format
----------------
The raw log is text and easily filtered with e.g. grep and awk. One record is
-one line in the log. A record starts with a keyword, followed by keyword
-dependant arguments. Arguments are separated by a space, or continue until the
+one line in the log. A record starts with a keyword, followed by keyword-
+dependent arguments. Arguments are separated by a space, or continue until the
end of line. The format for version 20070824 is as follows:
-Explanation Keyword Space separated arguments
+Explanation Keyword Space-separated arguments
---------------------------------------------------------------------------
read event R width, timestamp, map id, physical, value, PC, PID
@@ -136,7 +137,7 @@ iounmap event UNMAP timestamp, map id, PC, PID
marker MARK timestamp, text
version VERSION the string "20070824"
info for reader LSPCI one line from lspci -v
-PCI address map PCIDEV space separated /proc/bus/pci/devices data
+PCI address map PCIDEV space-separated /proc/bus/pci/devices data
unk. opcode UNKNOWN timestamp, map id, physical, data, PC, PID
Timestamp is in seconds with decimals. Physical is a PCI bus address, virtual
diff --git a/Documentation/trace/ring-buffer-design.txt b/Documentation/trace/ring-buffer-design.txt
index 5b1d23d604c5..d299ff31df57 100644
--- a/Documentation/trace/ring-buffer-design.txt
+++ b/Documentation/trace/ring-buffer-design.txt
@@ -33,9 +33,9 @@ head_page - a pointer to the page that the reader will use next
tail_page - a pointer to the page that will be written to next
-commit_page - a pointer to the page with the last finished non nested write.
+commit_page - a pointer to the page with the last finished non-nested write.
-cmpxchg - hardware assisted atomic transaction that performs the following:
+cmpxchg - hardware-assisted atomic transaction that performs the following:
A = B iff previous A == C
@@ -52,15 +52,15 @@ The Generic Ring Buffer
The ring buffer can be used in either an overwrite mode or in
producer/consumer mode.
-Producer/consumer mode is where the producer were to fill up the
+Producer/consumer mode is where if the producer were to fill up the
buffer before the consumer could free up anything, the producer
will stop writing to the buffer. This will lose most recent events.
-Overwrite mode is where the produce were to fill up the buffer
+Overwrite mode is where if the producer were to fill up the buffer
before the consumer could free up anything, the producer will
overwrite the older data. This will lose the oldest events.
-No two writers can write at the same time (on the same per cpu buffer),
+No two writers can write at the same time (on the same per-cpu buffer),
but a writer may interrupt another writer, but it must finish writing
before the previous writer may continue. This is very important to the
algorithm. The writers act like a "stack". The way interrupts works
@@ -79,16 +79,16 @@ the interrupt doing a write as well.
Readers can happen at any time. But no two readers may run at the
same time, nor can a reader preempt/interrupt another reader. A reader
-can not preempt/interrupt a writer, but it may read/consume from the
+cannot preempt/interrupt a writer, but it may read/consume from the
buffer at the same time as a writer is writing, but the reader must be
on another processor to do so. A reader may read on its own processor
and can be preempted by a writer.
-A writer can preempt a reader, but a reader can not preempt a writer.
+A writer can preempt a reader, but a reader cannot preempt a writer.
But a reader can read the buffer at the same time (on another processor)
as a writer.
-The ring buffer is made up of a list of pages held together by a link list.
+The ring buffer is made up of a list of pages held together by a linked list.
At initialization a reader page is allocated for the reader that is not
part of the ring buffer.
@@ -102,7 +102,7 @@ the head page.
The reader has its own page to use. At start up time, this page is
allocated but is not attached to the list. When the reader wants
-to read from the buffer, if its page is empty (like it is on start up)
+to read from the buffer, if its page is empty (like it is on start-up),
it will swap its page with the head_page. The old reader page will
become part of the ring buffer and the head_page will be removed.
The page after the inserted page (old reader_page) will become the
@@ -206,7 +206,7 @@ The main pointers:
commit page - the page that last finished a write.
-The commit page only is updated by the outer most writer in the
+The commit page only is updated by the outermost writer in the
writer stack. A writer that preempts another writer will not move the
commit page.
@@ -281,7 +281,7 @@ with the previous write.
The commit pointer points to the last write location that was
committed without preempting another write. When a write that
preempted another write is committed, it only becomes a pending commit
-and will not be a full commit till all writes have been committed.
+and will not be a full commit until all writes have been committed.
The commit page points to the page that has the last full commit.
The tail page points to the page with the last write (before
@@ -292,7 +292,7 @@ be several pages ahead. If the tail page catches up to the commit
page then no more writes may take place (regardless of the mode
of the ring buffer: overwrite and produce/consumer).
-The order of pages are:
+The order of pages is:
head page
commit page
@@ -311,7 +311,7 @@ Possible scenario:
There is a special case that the head page is after either the commit page
and possibly the tail page. That is when the commit (and tail) page has been
swapped with the reader page. This is because the head page is always
-part of the ring buffer, but the reader page is not. When ever there
+part of the ring buffer, but the reader page is not. Whenever there
has been less than a full page that has been committed inside the ring buffer,
and a reader swaps out a page, it will be swapping out the commit page.
@@ -338,7 +338,7 @@ and a reader swaps out a page, it will be swapping out the commit page.
In this case, the head page will not move when the tail and commit
move back into the ring buffer.
-The reader can not swap a page into the ring buffer if the commit page
+The reader cannot swap a page into the ring buffer if the commit page
is still on that page. If the read meets the last commit (real commit
not pending or reserved), then there is nothing more to read.
The buffer is considered empty until another full commit finishes.
@@ -395,7 +395,7 @@ The main idea behind the lockless algorithm is to combine the moving
of the head_page pointer with the swapping of pages with the reader.
State flags are placed inside the pointer to the page. To do this,
each page must be aligned in memory by 4 bytes. This will allow the 2
-least significant bits of the address to be used as flags. Since
+least significant bits of the address to be used as flags, since
they will always be zero for the address. To get the address,
simply mask out the flags.
@@ -460,7 +460,7 @@ When the reader tries to swap the page with the ring buffer, it
will also use cmpxchg. If the flag bit in the pointer to the
head page does not have the HEADER flag set, the compare will fail
and the reader will need to look for the new head page and try again.
-Note, the flag UPDATE and HEADER are never set at the same time.
+Note, the flags UPDATE and HEADER are never set at the same time.
The reader swaps the reader page as follows:
@@ -539,7 +539,7 @@ updated to the reader page.
| +-----------------------------+ |
+------------------------------------+
-Another important point. The page that the reader page points back to
+Another important point: The page that the reader page points back to
by its previous pointer (the one that now points to the new head page)
never points back to the reader page. That is because the reader page is
not part of the ring buffer. Traversing the ring buffer via the next pointers
@@ -572,7 +572,7 @@ not be able to swap the head page from the buffer, nor will it be able to
move the head page, until the writer is finished with the move.
This eliminates any races that the reader can have on the writer. The reader
-must spin, and this is why the reader can not preempt the writer.
+must spin, and this is why the reader cannot preempt the writer.
tail page
|
@@ -659,9 +659,9 @@ before pushing the head page. If it is, then it can be assumed that the
tail page wrapped the buffer, and we must drop new writes.
This is not a race condition, because the commit page can only be moved
-by the outter most writer (the writer that was preempted).
+by the outermost writer (the writer that was preempted).
This means that the commit will not move while a writer is moving the
-tail page. The reader can not swap the reader page if it is also being
+tail page. The reader cannot swap the reader page if it is also being
used as the commit page. The reader can simply check that the commit
is off the reader page. Once the commit page leaves the reader page
it will never go back on it unless a reader does another swap with the
@@ -733,7 +733,7 @@ The write converts the head page pointer to UPDATE.
--->| |<---| |<---| |<---| |<---
+---+ +---+ +---+ +---+
-But if a nested writer preempts here. It will see that the next
+But if a nested writer preempts here, it will see that the next
page is a head page, but it is also nested. It will detect that
it is nested and will save that information. The detection is the
fact that it sees the UPDATE flag instead of a HEADER or NORMAL
@@ -761,7 +761,7 @@ to NORMAL.
--->| |<---| |<---| |<---| |<---
+---+ +---+ +---+ +---+
-After the nested writer finishes, the outer most writer will convert
+After the nested writer finishes, the outermost writer will convert
the UPDATE pointer to NORMAL.
@@ -812,7 +812,7 @@ head page.
+---+ +---+ +---+ +---+
The nested writer moves the tail page forward. But does not set the old
-update page to NORMAL because it is not the outer most writer.
+update page to NORMAL because it is not the outermost writer.
tail page
|
@@ -892,7 +892,7 @@ It will return to the first writer.
--->| |<---| |<---| |<---| |<---
+---+ +---+ +---+ +---+
-The first writer can not know atomically test if the tail page moved
+The first writer cannot know atomically if the tail page moved
while it updates the HEAD page. It will then update the head page to
what it thinks is the new head page.
@@ -923,9 +923,9 @@ if the tail page is either where it use to be or on the next page:
--->| |<---| |<---| |<---| |<---
+---+ +---+ +---+ +---+
-If tail page != A and tail page does not equal B, then it must reset the
-pointer back to NORMAL. The fact that it only needs to worry about
-nested writers, it only needs to check this after setting the HEAD page.
+If tail page != A and tail page != B, then it must reset the pointer
+back to NORMAL. The fact that it only needs to worry about nested
+writers means that it only needs to check this after setting the HEAD page.
(first writer)
@@ -939,7 +939,7 @@ nested writers, it only needs to check this after setting the HEAD page.
+---+ +---+ +---+ +---+
Now the writer can update the head page. This is also why the head page must
-remain in UPDATE and only reset by the outer most writer. This prevents
+remain in UPDATE and only reset by the outermost writer. This prevents
the reader from seeing the incorrect head page.
diff --git a/Documentation/trace/tracepoint-analysis.txt b/Documentation/trace/tracepoint-analysis.txt
index 5eb4e487e667..87bee3c129ba 100644
--- a/Documentation/trace/tracepoint-analysis.txt
+++ b/Documentation/trace/tracepoint-analysis.txt
@@ -10,8 +10,8 @@ Tracepoints (see Documentation/trace/tracepoints.txt) can be used without
creating custom kernel modules to register probe functions using the event
tracing infrastructure.
-Simplistically, tracepoints will represent an important event that when can
-be taken in conjunction with other tracepoints to build a "Big Picture" of
+Simplistically, tracepoints represent important events that can be
+taken in conjunction with other tracepoints to build a "Big Picture" of
what is going on within the system. There are a large number of methods for
gathering and interpreting these events. Lacking any current Best Practises,
this document describes some of the methods that can be used.
@@ -33,12 +33,12 @@ calling
will give a fair indication of the number of events available.
-2.2 PCL
+2.2 PCL (Performance Counters for Linux)
-------
-Discovery and enumeration of all counters and events, including tracepoints
+Discovery and enumeration of all counters and events, including tracepoints,
are available with the perf tool. Getting a list of available events is a
-simple case of
+simple case of:
$ perf list 2>&1 | grep Tracepoint
ext4:ext4_free_inode [Tracepoint event]
@@ -49,19 +49,19 @@ simple case of
[ .... remaining output snipped .... ]
-2. Enabling Events
+3. Enabling Events
==================
-2.1 System-Wide Event Enabling
+3.1 System-Wide Event Enabling
------------------------------
See Documentation/trace/events.txt for a proper description on how events
can be enabled system-wide. A short example of enabling all events related
-to page allocation would look something like
+to page allocation would look something like:
$ for i in `find /sys/kernel/debug/tracing/events -name "enable" | grep mm_`; do echo 1 > $i; done
-2.2 System-Wide Event Enabling with SystemTap
+3.2 System-Wide Event Enabling with SystemTap
---------------------------------------------
In SystemTap, tracepoints are accessible using the kernel.trace() function
@@ -86,7 +86,7 @@ were allocating the pages.
print_count()
}
-2.3 System-Wide Event Enabling with PCL
+3.3 System-Wide Event Enabling with PCL
---------------------------------------
By specifying the -a switch and analysing sleep, the system-wide events
@@ -107,16 +107,16 @@ for a duration of time can be examined.
Similarly, one could execute a shell and exit it as desired to get a report
at that point.
-2.4 Local Event Enabling
+3.4 Local Event Enabling
------------------------
Documentation/trace/ftrace.txt describes how to enable events on a per-thread
basis using set_ftrace_pid.
-2.5 Local Event Enablement with PCL
+3.5 Local Event Enablement with PCL
-----------------------------------
-Events can be activate and tracked for the duration of a process on a local
+Events can be activated and tracked for the duration of a process on a local
basis using PCL such as follows.
$ perf stat -e kmem:mm_page_alloc -e kmem:mm_page_free_direct \
@@ -131,18 +131,18 @@ basis using PCL such as follows.
0.973913387 seconds time elapsed
-3. Event Filtering
+4. Event Filtering
==================
Documentation/trace/ftrace.txt covers in-depth how to filter events in
ftrace. Obviously using grep and awk of trace_pipe is an option as well
as any script reading trace_pipe.
-4. Analysing Event Variances with PCL
+5. Analysing Event Variances with PCL
=====================================
Any workload can exhibit variances between runs and it can be important
-to know what the standard deviation in. By and large, this is left to the
+to know what the standard deviation is. By and large, this is left to the
performance analyst to do it by hand. In the event that the discrete event
occurrences are useful to the performance analyst, then perf can be used.
@@ -166,7 +166,7 @@ In the event that some higher-level event is required that depends on some
aggregation of discrete events, then a script would need to be developed.
Using --repeat, it is also possible to view how events are fluctuating over
-time on a system wide basis using -a and sleep.
+time on a system-wide basis using -a and sleep.
$ perf stat -e kmem:mm_page_alloc -e kmem:mm_page_free_direct \
-e kmem:mm_pagevec_free \
@@ -180,7 +180,7 @@ time on a system wide basis using -a and sleep.
1.002251757 seconds time elapsed ( +- 0.005% )
-5. Higher-Level Analysis with Helper Scripts
+6. Higher-Level Analysis with Helper Scripts
============================================
When events are enabled the events that are triggering can be read from
@@ -190,11 +190,11 @@ be gathered on-line as appropriate. Examples of post-processing might include
o Reading information from /proc for the PID that triggered the event
o Deriving a higher-level event from a series of lower-level events.
- o Calculate latencies between two events
+ o Calculating latencies between two events
Documentation/trace/postprocess/trace-pagealloc-postprocess.pl is an example
script that can read trace_pipe from STDIN or a copy of a trace. When used
-on-line, it can be interrupted once to generate a report without existing
+on-line, it can be interrupted once to generate a report without exiting
and twice to exit.
Simplistically, the script just reads STDIN and counts up events but it
@@ -212,12 +212,12 @@ also can do more such as
processes, the parent process responsible for creating all the helpers
can be identified
-6. Lower-Level Analysis with PCL
+7. Lower-Level Analysis with PCL
================================
-There may also be a requirement to identify what functions with a program
+There may also be a requirement to identify what functions within a program
were generating events within the kernel. To begin this sort of analysis, the
-data must be recorded. At the time of writing, this required root
+data must be recorded. At the time of writing, this required root:
$ perf record -c 1 \
-e kmem:mm_page_alloc -e kmem:mm_page_free_direct \
@@ -253,11 +253,11 @@ perf report.
# (For more details, try: perf report --sort comm,dso,symbol)
#
-According to this, the vast majority of events occured triggered on events
-within the VDSO. With simple binaries, this will often be the case so lets
+According to this, the vast majority of events triggered on events
+within the VDSO. With simple binaries, this will often be the case so let's
take a slightly different example. In the course of writing this, it was
-noticed that X was generating an insane amount of page allocations so lets look
-at it
+noticed that X was generating an insane amount of page allocations so let's look
+at it:
$ perf record -c 1 -f \
-e kmem:mm_page_alloc -e kmem:mm_page_free_direct \
@@ -280,8 +280,8 @@ This was interrupted after a few seconds and
# (For more details, try: perf report --sort comm,dso,symbol)
#
-So, almost half of the events are occuring in a library. To get an idea which
-symbol.
+So, almost half of the events are occurring in a library. To get an idea which
+symbol:
$ perf report --sort comm,dso,symbol
# Samples: 27666
@@ -297,7 +297,7 @@ symbol.
0.01% Xorg /opt/gfx-test/lib/libpixman-1.so.0.13.1 [.] get_fast_path
0.00% Xorg [kernel] [k] ftrace_trace_userstack
-To see where within the function pixmanFillsse2 things are going wrong
+To see where within the function pixmanFillsse2 things are going wrong:
$ perf annotate pixmanFillsse2
[ ... ]
diff --git a/Documentation/usb/power-management.txt b/Documentation/usb/power-management.txt
index c7c1dc2f8017..3bf6818c8cf5 100644
--- a/Documentation/usb/power-management.txt
+++ b/Documentation/usb/power-management.txt
@@ -71,12 +71,10 @@ being accessed through sysfs, then it definitely is idle.
Forms of dynamic PM
-------------------
-Dynamic suspends can occur in two ways: manual and automatic.
-"Manual" means that the user has told the kernel to suspend a device,
-whereas "automatic" means that the kernel has decided all by itself to
-suspend a device. Automatic suspend is called "autosuspend" for
-short. In general, a device won't be autosuspended unless it has been
-idle for some minimum period of time, the so-called idle-delay time.
+Dynamic suspends occur when the kernel decides to suspend an idle
+device. This is called "autosuspend" for short. In general, a device
+won't be autosuspended unless it has been idle for some minimum period
+of time, the so-called idle-delay time.
Of course, nothing the kernel does on its own initiative should
prevent the computer or its devices from working properly. If a
@@ -96,10 +94,11 @@ idle.
We can categorize power management events in two broad classes:
external and internal. External events are those triggered by some
agent outside the USB stack: system suspend/resume (triggered by
-userspace), manual dynamic suspend/resume (also triggered by
-userspace), and remote wakeup (triggered by the device). Internal
-events are those triggered within the USB stack: autosuspend and
-autoresume.
+userspace), manual dynamic resume (also triggered by userspace), and
+remote wakeup (triggered by the device). Internal events are those
+triggered within the USB stack: autosuspend and autoresume. Note that
+all dynamic suspend events are internal; external agents are not
+allowed to issue dynamic suspends.
The user interface for dynamic PM
@@ -145,9 +144,9 @@ relevant attribute files are: wakeup, level, and autosuspend.
number of seconds the device should remain idle before
the kernel will autosuspend it (the idle-delay time).
The default is 2. 0 means to autosuspend as soon as
- the device becomes idle, and -1 means never to
- autosuspend. You can write a number to the file to
- change the autosuspend idle-delay time.
+ the device becomes idle, and negative values mean
+ never to autosuspend. You can write a number to the
+ file to change the autosuspend idle-delay time.
Writing "-1" to power/autosuspend and writing "on" to power/level do
essentially the same thing -- they both prevent the device from being
@@ -377,9 +376,9 @@ the device hasn't been idle for long enough, a delayed workqueue
routine is automatically set up to carry out the operation when the
autosuspend idle-delay has expired.
-Autoresume attempts also can fail. This will happen if power/level is
-set to "suspend" or if the device doesn't manage to resume properly.
-Unlike autosuspend, there's no delay for an autoresume.
+Autoresume attempts also can fail, although failure would mean that
+the device is no longer present or operating properly. Unlike
+autosuspend, there's no delay for an autoresume.
Other parts of the driver interface
@@ -527,13 +526,3 @@ succeed, it may still remain active and thus cause the system to
resume as soon as the system suspend is complete. Or the remote
wakeup may fail and get lost. Which outcome occurs depends on timing
and on the hardware and firmware design.
-
-More interestingly, a device might undergo a manual resume or
-autoresume during system suspend. With current kernels this shouldn't
-happen, because manual resumes must be initiated by userspace and
-autoresumes happen in response to I/O requests, but all user processes
-and I/O should be quiescent during a system suspend -- thanks to the
-freezer. However there are plans to do away with the freezer, which
-would mean these things would become possible. If and when this comes
-about, the USB core will carefully arrange matters so that either type
-of resume will block until the entire system has resumed.
diff --git a/Documentation/vgaarbiter.txt b/Documentation/vgaarbiter.txt
index 987f9b0a5ece..43a9b0694fdd 100644
--- a/Documentation/vgaarbiter.txt
+++ b/Documentation/vgaarbiter.txt
@@ -103,7 +103,7 @@ I.2 libpciaccess
----------------
To use the vga arbiter char device it was implemented an API inside the
-libpciaccess library. One fieldd was added to struct pci_device (each device
+libpciaccess library. One field was added to struct pci_device (each device
on the system):
/* the type of resource decoded by the device */