diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/driver-api/dma-buf.rst | 70 |
1 files changed, 70 insertions, 0 deletions
diff --git a/Documentation/driver-api/dma-buf.rst b/Documentation/driver-api/dma-buf.rst index f8f6decde359..100bfd227265 100644 --- a/Documentation/driver-api/dma-buf.rst +++ b/Documentation/driver-api/dma-buf.rst @@ -178,3 +178,73 @@ DMA Fence uABI/Sync File .. kernel-doc:: include/linux/sync_file.h :internal: +Indefinite DMA Fences +~~~~~~~~~~~~~~~~~~~~ + +At various times &dma_fence with an indefinite time until dma_fence_wait() +finishes have been proposed. Examples include: + +* Future fences, used in HWC1 to signal when a buffer isn't used by the display + any longer, and created with the screen update that makes the buffer visible. + The time this fence completes is entirely under userspace's control. + +* Proxy fences, proposed to handle &drm_syncobj for which the fence has not yet + been set. Used to asynchronously delay command submission. + +* Userspace fences or gpu futexes, fine-grained locking within a command buffer + that userspace uses for synchronization across engines or with the CPU, which + are then imported as a DMA fence for integration into existing winsys + protocols. + +* Long-running compute command buffers, while still using traditional end of + batch DMA fences for memory management instead of context preemption DMA + fences which get reattached when the compute job is rescheduled. + +Common to all these schemes is that userspace controls the dependencies of these +fences and controls when they fire. Mixing indefinite fences with normal +in-kernel DMA fences does not work, even when a fallback timeout is included to +protect against malicious userspace: + +* Only the kernel knows about all DMA fence dependencies, userspace is not aware + of dependencies injected due to memory management or scheduler decisions. + +* Only userspace knows about all dependencies in indefinite fences and when + exactly they will complete, the kernel has no visibility. + +Furthermore the kernel has to be able to hold up userspace command submission +for memory management needs, which means we must support indefinite fences being +dependent upon DMA fences. If the kernel also support indefinite fences in the +kernel like a DMA fence, like any of the above proposal would, there is the +potential for deadlocks. + +.. kernel-render:: DOT + :alt: Indefinite Fencing Dependency Cycle + :caption: Indefinite Fencing Dependency Cycle + + digraph "Fencing Cycle" { + node [shape=box bgcolor=grey style=filled] + kernel [label="Kernel DMA Fences"] + userspace [label="userspace controlled fences"] + kernel -> userspace [label="memory management"] + userspace -> kernel [label="Future fence, fence proxy, ..."] + + { rank=same; kernel userspace } + } + +This means that the kernel might accidentally create deadlocks +through memory management dependencies which userspace is unaware of, which +randomly hangs workloads until the timeout kicks in. Workloads, which from +userspace's perspective, do not contain a deadlock. In such a mixed fencing +architecture there is no single entity with knowledge of all dependencies. +Thefore preventing such deadlocks from within the kernel is not possible. + +The only solution to avoid dependencies loops is by not allowing indefinite +fences in the kernel. This means: + +* No future fences, proxy fences or userspace fences imported as DMA fences, + with or without a timeout. + +* No DMA fences that signal end of batchbuffer for command submission where + userspace is allowed to use userspace fencing or long running compute + workloads. This also means no implicit fencing for shared buffers in these + cases. |