summaryrefslogtreecommitdiffstats
path: root/fs/bcachefs/btree_update_interior.h
diff options
context:
space:
mode:
Diffstat (limited to 'fs/bcachefs/btree_update_interior.h')
-rw-r--r--fs/bcachefs/btree_update_interior.h374
1 files changed, 374 insertions, 0 deletions
diff --git a/fs/bcachefs/btree_update_interior.h b/fs/bcachefs/btree_update_interior.h
new file mode 100644
index 000000000000..7a19a52bbcff
--- /dev/null
+++ b/fs/bcachefs/btree_update_interior.h
@@ -0,0 +1,374 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
+#define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
+
+#include "btree_cache.h"
+#include "btree_locking.h"
+#include "btree_update.h"
+
+struct btree_reserve {
+ struct disk_reservation disk_res;
+ unsigned nr;
+ struct btree *b[BTREE_RESERVE_MAX];
+};
+
+void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *);
+bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *,
+ struct bkey_format *);
+
+/* Btree node freeing/allocation: */
+
+/*
+ * Tracks a btree node that has been (or is about to be) freed in memory, but
+ * has _not_ yet been freed on disk (because the write that makes the new
+ * node(s) visible and frees the old hasn't completed yet)
+ */
+struct pending_btree_node_free {
+ bool index_update_done;
+
+ __le64 seq;
+ enum btree_id btree_id;
+ unsigned level;
+ __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
+};
+
+/*
+ * Tracks an in progress split/rewrite of a btree node and the update to the
+ * parent node:
+ *
+ * When we split/rewrite a node, we do all the updates in memory without
+ * waiting for any writes to complete - we allocate the new node(s) and update
+ * the parent node, possibly recursively up to the root.
+ *
+ * The end result is that we have one or more new nodes being written -
+ * possibly several, if there were multiple splits - and then a write (updating
+ * an interior node) which will make all these new nodes visible.
+ *
+ * Additionally, as we split/rewrite nodes we free the old nodes - but the old
+ * nodes can't be freed (their space on disk can't be reclaimed) until the
+ * update to the interior node that makes the new node visible completes -
+ * until then, the old nodes are still reachable on disk.
+ *
+ */
+struct btree_update {
+ struct closure cl;
+ struct bch_fs *c;
+
+ struct list_head list;
+
+ /* What kind of update are we doing? */
+ enum {
+ BTREE_INTERIOR_NO_UPDATE,
+ BTREE_INTERIOR_UPDATING_NODE,
+ BTREE_INTERIOR_UPDATING_ROOT,
+ BTREE_INTERIOR_UPDATING_AS,
+ } mode;
+
+ unsigned must_rewrite:1;
+ unsigned nodes_written:1;
+
+ enum btree_id btree_id;
+
+ struct btree_reserve *reserve;
+
+ /*
+ * BTREE_INTERIOR_UPDATING_NODE:
+ * The update that made the new nodes visible was a regular update to an
+ * existing interior node - @b. We can't write out the update to @b
+ * until the new nodes we created are finished writing, so we block @b
+ * from writing by putting this btree_interior update on the
+ * @b->write_blocked list with @write_blocked_list:
+ */
+ struct btree *b;
+ struct list_head write_blocked_list;
+
+ /*
+ * BTREE_INTERIOR_UPDATING_AS: btree node we updated was freed, so now
+ * we're now blocking another btree_update
+ * @parent_as - btree_update that's waiting on our nodes to finish
+ * writing, before it can make new nodes visible on disk
+ * @wait - list of child btree_updates that are waiting on this
+ * btree_update to make all the new nodes visible before they can free
+ * their old btree nodes
+ */
+ struct btree_update *parent_as;
+ struct closure_waitlist wait;
+
+ /*
+ * We may be freeing nodes that were dirty, and thus had journal entries
+ * pinned: we need to transfer the oldest of those pins to the
+ * btree_update operation, and release it when the new node(s)
+ * are all persistent and reachable:
+ */
+ struct journal_entry_pin journal;
+
+ u64 journal_seq;
+
+ /*
+ * Nodes being freed:
+ * Protected by c->btree_node_pending_free_lock
+ */
+ struct pending_btree_node_free pending[BTREE_MAX_DEPTH + GC_MERGE_NODES];
+ unsigned nr_pending;
+
+ /* New nodes, that will be made reachable by this update: */
+ struct btree *new_nodes[BTREE_MAX_DEPTH * 2 + GC_MERGE_NODES];
+ unsigned nr_new_nodes;
+
+ /* Only here to reduce stack usage on recursive splits: */
+ struct keylist parent_keys;
+ /*
+ * Enough room for btree_split's keys without realloc - btree node
+ * pointers never have crc/compression info, so we only need to acount
+ * for the pointers for three keys
+ */
+ u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
+};
+
+#define for_each_pending_btree_node_free(c, as, p) \
+ list_for_each_entry(as, &c->btree_interior_update_list, list) \
+ for (p = as->pending; p < as->pending + as->nr_pending; p++)
+
+void bch2_btree_node_free_inmem(struct bch_fs *, struct btree *,
+ struct btree_iter *);
+void bch2_btree_node_free_never_inserted(struct bch_fs *, struct btree *);
+void bch2_btree_open_bucket_put(struct bch_fs *, struct btree *);
+
+struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
+ struct btree *,
+ struct bkey_format);
+
+void bch2_btree_update_done(struct btree_update *);
+struct btree_update *
+bch2_btree_update_start(struct bch_fs *, enum btree_id, unsigned,
+ unsigned, struct closure *);
+
+void bch2_btree_interior_update_will_free_node(struct btree_update *,
+ struct btree *);
+
+void bch2_btree_insert_node(struct btree_update *, struct btree *,
+ struct btree_iter *, struct keylist *,
+ unsigned);
+int bch2_btree_split_leaf(struct bch_fs *, struct btree_iter *, unsigned);
+
+void __bch2_foreground_maybe_merge(struct bch_fs *, struct btree_iter *,
+ unsigned, unsigned, enum btree_node_sibling);
+
+static inline void bch2_foreground_maybe_merge_sibling(struct bch_fs *c,
+ struct btree_iter *iter,
+ unsigned level, unsigned flags,
+ enum btree_node_sibling sib)
+{
+ struct btree *b;
+
+ /*
+ * iterators are inconsistent when they hit end of leaf, until
+ * traversed again
+ *
+ * XXX inconsistent how?
+ */
+ if (iter->flags & BTREE_ITER_AT_END_OF_LEAF)
+ return;
+
+ if (iter->uptodate >= BTREE_ITER_NEED_TRAVERSE)
+ return;
+
+ if (!bch2_btree_node_relock(iter, level))
+ return;
+
+ b = iter->l[level].b;
+ if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
+ return;
+
+ __bch2_foreground_maybe_merge(c, iter, level, flags, sib);
+}
+
+static inline void bch2_foreground_maybe_merge(struct bch_fs *c,
+ struct btree_iter *iter,
+ unsigned level,
+ unsigned flags)
+{
+ bch2_foreground_maybe_merge_sibling(c, iter, level, flags,
+ btree_prev_sib);
+ bch2_foreground_maybe_merge_sibling(c, iter, level, flags,
+ btree_next_sib);
+}
+
+void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
+void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
+
+static inline unsigned btree_update_reserve_required(struct bch_fs *c,
+ struct btree *b)
+{
+ unsigned depth = btree_node_root(c, b)->level + 1;
+
+ /*
+ * Number of nodes we might have to allocate in a worst case btree
+ * split operation - we split all the way up to the root, then allocate
+ * a new root, unless we're already at max depth:
+ */
+ if (depth < BTREE_MAX_DEPTH)
+ return (depth - b->level) * 2 + 1;
+ else
+ return (depth - b->level) * 2 - 1;
+}
+
+static inline void btree_node_reset_sib_u64s(struct btree *b)
+{
+ b->sib_u64s[0] = b->nr.live_u64s;
+ b->sib_u64s[1] = b->nr.live_u64s;
+}
+
+static inline void *btree_data_end(struct bch_fs *c, struct btree *b)
+{
+ return (void *) b->data + btree_bytes(c);
+}
+
+static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c,
+ struct btree *b)
+{
+ return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s);
+}
+
+static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c,
+ struct btree *b)
+{
+ return btree_data_end(c, b);
+}
+
+static inline void *write_block(struct btree *b)
+{
+ return (void *) b->data + (b->written << 9);
+}
+
+static inline bool bset_written(struct btree *b, struct bset *i)
+{
+ return (void *) i < write_block(b);
+}
+
+static inline bool bset_unwritten(struct btree *b, struct bset *i)
+{
+ return (void *) i > write_block(b);
+}
+
+static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c,
+ struct btree *b,
+ void *end)
+{
+ ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
+ b->whiteout_u64s +
+ b->uncompacted_whiteout_u64s;
+ ssize_t total = c->opts.btree_node_size << 6;
+
+ return total - used;
+}
+
+static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c,
+ struct btree *b)
+{
+ ssize_t remaining = __bch_btree_u64s_remaining(c, b,
+ btree_bkey_last(b, bset_tree_last(b)));
+
+ BUG_ON(remaining < 0);
+
+ if (bset_written(b, btree_bset_last(b)))
+ return 0;
+
+ return remaining;
+}
+
+static inline unsigned btree_write_set_buffer(struct btree *b)
+{
+ /*
+ * Could buffer up larger amounts of keys for btrees with larger keys,
+ * pending benchmarking:
+ */
+ return 4 << 10;
+}
+
+static inline struct btree_node_entry *want_new_bset(struct bch_fs *c,
+ struct btree *b)
+{
+ struct bset *i = btree_bset_last(b);
+ struct btree_node_entry *bne = max(write_block(b),
+ (void *) btree_bkey_last(b, bset_tree_last(b)));
+ ssize_t remaining_space =
+ __bch_btree_u64s_remaining(c, b, &bne->keys.start[0]);
+
+ if (unlikely(bset_written(b, i))) {
+ if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
+ return bne;
+ } else {
+ if (unlikely(vstruct_bytes(i) > btree_write_set_buffer(b)) &&
+ remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
+ return bne;
+ }
+
+ return NULL;
+}
+
+static inline void unreserve_whiteout(struct btree *b, struct bset_tree *t,
+ struct bkey_packed *k)
+{
+ if (bset_written(b, bset(b, t))) {
+ EBUG_ON(b->uncompacted_whiteout_u64s <
+ bkeyp_key_u64s(&b->format, k));
+ b->uncompacted_whiteout_u64s -=
+ bkeyp_key_u64s(&b->format, k);
+ }
+}
+
+static inline void reserve_whiteout(struct btree *b, struct bset_tree *t,
+ struct bkey_packed *k)
+{
+ if (bset_written(b, bset(b, t))) {
+ BUG_ON(!k->needs_whiteout);
+ b->uncompacted_whiteout_u64s +=
+ bkeyp_key_u64s(&b->format, k);
+ }
+}
+
+/*
+ * write lock must be held on @b (else the dirty bset that we were going to
+ * insert into could be written out from under us)
+ */
+static inline bool bch2_btree_node_insert_fits(struct bch_fs *c,
+ struct btree *b, unsigned u64s)
+{
+ if (unlikely(btree_node_fake(b)))
+ return false;
+
+ if (btree_node_is_extents(b)) {
+ /* The insert key might split an existing key
+ * (bch2_insert_fixup_extent() -> BCH_EXTENT_OVERLAP_MIDDLE case:
+ */
+ u64s += BKEY_EXTENT_U64s_MAX;
+ }
+
+ return u64s <= bch_btree_keys_u64s_remaining(c, b);
+}
+
+static inline bool journal_res_insert_fits(struct btree_insert *trans,
+ struct btree_insert_entry *insert)
+{
+ unsigned u64s = 0;
+ struct btree_insert_entry *i;
+
+ /*
+ * If we didn't get a journal reservation, we're in journal replay and
+ * we're not journalling updates:
+ */
+ if (!trans->journal_res.ref)
+ return true;
+
+ for (i = insert; i < trans->entries + trans->nr; i++)
+ u64s += jset_u64s(i->k->k.u64s + i->extra_res);
+
+ return u64s <= trans->journal_res.u64s;
+}
+
+ssize_t bch2_btree_updates_print(struct bch_fs *, char *);
+
+size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *);
+
+#endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */