summaryrefslogtreecommitdiffstats
path: root/kernel/sched/fair.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r--kernel/sched/fair.c389
1 files changed, 261 insertions, 128 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 0f8736991427..ff4dbbae3b10 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -468,7 +468,7 @@ is_same_group(struct sched_entity *se, struct sched_entity *pse)
return NULL;
}
-static inline struct sched_entity *parent_entity(struct sched_entity *se)
+static inline struct sched_entity *parent_entity(const struct sched_entity *se)
{
return se->parent;
}
@@ -595,8 +595,8 @@ static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
return min_vruntime;
}
-static inline bool entity_before(struct sched_entity *a,
- struct sched_entity *b)
+static inline bool entity_before(const struct sched_entity *a,
+ const struct sched_entity *b)
{
return (s64)(a->vruntime - b->vruntime) < 0;
}
@@ -1804,7 +1804,7 @@ static void update_numa_stats(struct task_numa_env *env,
ns->nr_running += rq->cfs.h_nr_running;
ns->compute_capacity += capacity_of(cpu);
- if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
+ if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
if (READ_ONCE(rq->numa_migrate_on) ||
!cpumask_test_cpu(cpu, env->p->cpus_ptr))
continue;
@@ -1836,7 +1836,7 @@ static void task_numa_assign(struct task_numa_env *env,
int start = env->dst_cpu;
/* Find alternative idle CPU. */
- for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
+ for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
if (cpu == env->best_cpu || !idle_cpu(cpu) ||
!cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
continue;
@@ -4476,17 +4476,9 @@ static inline int util_fits_cpu(unsigned long util,
*
* For uclamp_max, we can tolerate a drop in performance level as the
* goal is to cap the task. So it's okay if it's getting less.
- *
- * In case of capacity inversion we should honour the inverted capacity
- * for both uclamp_min and uclamp_max all the time.
*/
- capacity_orig = cpu_in_capacity_inversion(cpu);
- if (capacity_orig) {
- capacity_orig_thermal = capacity_orig;
- } else {
- capacity_orig = capacity_orig_of(cpu);
- capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
- }
+ capacity_orig = capacity_orig_of(cpu);
+ capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
/*
* We want to force a task to fit a cpu as implied by uclamp_max.
@@ -4561,8 +4553,8 @@ static inline int util_fits_cpu(unsigned long util,
* handle the case uclamp_min > uclamp_max.
*/
uclamp_min = min(uclamp_min, uclamp_max);
- if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE)
- fits = fits && (uclamp_min <= capacity_orig_thermal);
+ if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
+ return -1;
return fits;
}
@@ -4572,7 +4564,11 @@ static inline int task_fits_cpu(struct task_struct *p, int cpu)
unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
unsigned long util = task_util_est(p);
- return util_fits_cpu(util, uclamp_min, uclamp_max, cpu);
+ /*
+ * Return true only if the cpu fully fits the task requirements, which
+ * include the utilization but also the performance hints.
+ */
+ return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
}
static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
@@ -4656,6 +4652,7 @@ static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
u64 vruntime = cfs_rq->min_vruntime;
+ u64 sleep_time;
/*
* The 'current' period is already promised to the current tasks,
@@ -4685,8 +4682,18 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
vruntime -= thresh;
}
- /* ensure we never gain time by being placed backwards. */
- se->vruntime = max_vruntime(se->vruntime, vruntime);
+ /*
+ * Pull vruntime of the entity being placed to the base level of
+ * cfs_rq, to prevent boosting it if placed backwards. If the entity
+ * slept for a long time, don't even try to compare its vruntime with
+ * the base as it may be too far off and the comparison may get
+ * inversed due to s64 overflow.
+ */
+ sleep_time = rq_clock_task(rq_of(cfs_rq)) - se->exec_start;
+ if ((s64)sleep_time > 60LL * NSEC_PER_SEC)
+ se->vruntime = vruntime;
+ else
+ se->vruntime = max_vruntime(se->vruntime, vruntime);
}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
@@ -4896,7 +4903,13 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
struct sched_entity *se;
s64 delta;
- ideal_runtime = sched_slice(cfs_rq, curr);
+ /*
+ * When many tasks blow up the sched_period; it is possible that
+ * sched_slice() reports unusually large results (when many tasks are
+ * very light for example). Therefore impose a maximum.
+ */
+ ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency);
+
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
if (delta_exec > ideal_runtime) {
resched_curr(rq_of(cfs_rq));
@@ -5461,22 +5474,105 @@ unthrottle_throttle:
resched_curr(rq);
}
-static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
+#ifdef CONFIG_SMP
+static void __cfsb_csd_unthrottle(void *arg)
{
- struct cfs_rq *cfs_rq;
+ struct cfs_rq *cursor, *tmp;
+ struct rq *rq = arg;
+ struct rq_flags rf;
+
+ rq_lock(rq, &rf);
+
+ /*
+ * Since we hold rq lock we're safe from concurrent manipulation of
+ * the CSD list. However, this RCU critical section annotates the
+ * fact that we pair with sched_free_group_rcu(), so that we cannot
+ * race with group being freed in the window between removing it
+ * from the list and advancing to the next entry in the list.
+ */
+ rcu_read_lock();
+
+ list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
+ throttled_csd_list) {
+ list_del_init(&cursor->throttled_csd_list);
+
+ if (cfs_rq_throttled(cursor))
+ unthrottle_cfs_rq(cursor);
+ }
+
+ rcu_read_unlock();
+
+ rq_unlock(rq, &rf);
+}
+
+static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
+{
+ struct rq *rq = rq_of(cfs_rq);
+ bool first;
+
+ if (rq == this_rq()) {
+ unthrottle_cfs_rq(cfs_rq);
+ return;
+ }
+
+ /* Already enqueued */
+ if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
+ return;
+
+ first = list_empty(&rq->cfsb_csd_list);
+ list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
+ if (first)
+ smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
+}
+#else
+static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
+{
+ unthrottle_cfs_rq(cfs_rq);
+}
+#endif
+
+static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
+{
+ lockdep_assert_rq_held(rq_of(cfs_rq));
+
+ if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
+ cfs_rq->runtime_remaining <= 0))
+ return;
+
+ __unthrottle_cfs_rq_async(cfs_rq);
+}
+
+static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
+{
+ struct cfs_rq *local_unthrottle = NULL;
+ int this_cpu = smp_processor_id();
u64 runtime, remaining = 1;
+ bool throttled = false;
+ struct cfs_rq *cfs_rq;
+ struct rq_flags rf;
+ struct rq *rq;
rcu_read_lock();
list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
throttled_list) {
- struct rq *rq = rq_of(cfs_rq);
- struct rq_flags rf;
+ rq = rq_of(cfs_rq);
+
+ if (!remaining) {
+ throttled = true;
+ break;
+ }
rq_lock_irqsave(rq, &rf);
if (!cfs_rq_throttled(cfs_rq))
goto next;
- /* By the above check, this should never be true */
+#ifdef CONFIG_SMP
+ /* Already queued for async unthrottle */
+ if (!list_empty(&cfs_rq->throttled_csd_list))
+ goto next;
+#endif
+
+ /* By the above checks, this should never be true */
SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
raw_spin_lock(&cfs_b->lock);
@@ -5490,16 +5586,30 @@ static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
cfs_rq->runtime_remaining += runtime;
/* we check whether we're throttled above */
- if (cfs_rq->runtime_remaining > 0)
- unthrottle_cfs_rq(cfs_rq);
+ if (cfs_rq->runtime_remaining > 0) {
+ if (cpu_of(rq) != this_cpu ||
+ SCHED_WARN_ON(local_unthrottle))
+ unthrottle_cfs_rq_async(cfs_rq);
+ else
+ local_unthrottle = cfs_rq;
+ } else {
+ throttled = true;
+ }
next:
rq_unlock_irqrestore(rq, &rf);
-
- if (!remaining)
- break;
}
rcu_read_unlock();
+
+ if (local_unthrottle) {
+ rq = cpu_rq(this_cpu);
+ rq_lock_irqsave(rq, &rf);
+ if (cfs_rq_throttled(local_unthrottle))
+ unthrottle_cfs_rq(local_unthrottle);
+ rq_unlock_irqrestore(rq, &rf);
+ }
+
+ return throttled;
}
/*
@@ -5544,10 +5654,8 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, u
while (throttled && cfs_b->runtime > 0) {
raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
/* we can't nest cfs_b->lock while distributing bandwidth */
- distribute_cfs_runtime(cfs_b);
+ throttled = distribute_cfs_runtime(cfs_b);
raw_spin_lock_irqsave(&cfs_b->lock, flags);
-
- throttled = !list_empty(&cfs_b->throttled_cfs_rq);
}
/*
@@ -5824,6 +5932,9 @@ static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
cfs_rq->runtime_enabled = 0;
INIT_LIST_HEAD(&cfs_rq->throttled_list);
+#ifdef CONFIG_SMP
+ INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
+#endif
}
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
@@ -5840,12 +5951,38 @@ void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
+ int __maybe_unused i;
+
/* init_cfs_bandwidth() was not called */
if (!cfs_b->throttled_cfs_rq.next)
return;
hrtimer_cancel(&cfs_b->period_timer);
hrtimer_cancel(&cfs_b->slack_timer);
+
+ /*
+ * It is possible that we still have some cfs_rq's pending on a CSD
+ * list, though this race is very rare. In order for this to occur, we
+ * must have raced with the last task leaving the group while there
+ * exist throttled cfs_rq(s), and the period_timer must have queued the
+ * CSD item but the remote cpu has not yet processed it. To handle this,
+ * we can simply flush all pending CSD work inline here. We're
+ * guaranteed at this point that no additional cfs_rq of this group can
+ * join a CSD list.
+ */
+#ifdef CONFIG_SMP
+ for_each_possible_cpu(i) {
+ struct rq *rq = cpu_rq(i);
+ unsigned long flags;
+
+ if (list_empty(&rq->cfsb_csd_list))
+ continue;
+
+ local_irq_save(flags);
+ __cfsb_csd_unthrottle(rq);
+ local_irq_restore(flags);
+ }
+#endif
}
/*
@@ -6008,6 +6145,7 @@ static inline bool cpu_overutilized(int cpu)
unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
+ /* Return true only if the utilization doesn't fit CPU's capacity */
return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
}
@@ -6801,6 +6939,7 @@ static int
select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
{
unsigned long task_util, util_min, util_max, best_cap = 0;
+ int fits, best_fits = 0;
int cpu, best_cpu = -1;
struct cpumask *cpus;
@@ -6811,17 +6950,33 @@ select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
util_min = uclamp_eff_value(p, UCLAMP_MIN);
util_max = uclamp_eff_value(p, UCLAMP_MAX);
- for_each_cpu_wrap(cpu, cpus, target) {
+ for_each_cpu_wrap(cpu, cpus, target + 1) {
unsigned long cpu_cap = capacity_of(cpu);
if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
continue;
- if (util_fits_cpu(task_util, util_min, util_max, cpu))
+
+ fits = util_fits_cpu(task_util, util_min, util_max, cpu);
+
+ /* This CPU fits with all requirements */
+ if (fits > 0)
return cpu;
+ /*
+ * Only the min performance hint (i.e. uclamp_min) doesn't fit.
+ * Look for the CPU with best capacity.
+ */
+ else if (fits < 0)
+ cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
- if (cpu_cap > best_cap) {
+ /*
+ * First, select CPU which fits better (-1 being better than 0).
+ * Then, select the one with best capacity at same level.
+ */
+ if ((fits < best_fits) ||
+ ((fits == best_fits) && (cpu_cap > best_cap))) {
best_cap = cpu_cap;
best_cpu = cpu;
+ best_fits = fits;
}
}
@@ -6834,7 +6989,11 @@ static inline bool asym_fits_cpu(unsigned long util,
int cpu)
{
if (sched_asym_cpucap_active())
- return util_fits_cpu(util, util_min, util_max, cpu);
+ /*
+ * Return true only if the cpu fully fits the task requirements
+ * which include the utilization and the performance hints.
+ */
+ return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
return true;
}
@@ -7201,6 +7360,9 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
struct root_domain *rd = this_rq()->rd;
int cpu, best_energy_cpu, target = -1;
+ int prev_fits = -1, best_fits = -1;
+ unsigned long best_thermal_cap = 0;
+ unsigned long prev_thermal_cap = 0;
struct sched_domain *sd;
struct perf_domain *pd;
struct energy_env eenv;
@@ -7236,6 +7398,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
unsigned long prev_spare_cap = 0;
int max_spare_cap_cpu = -1;
unsigned long base_energy;
+ int fits, max_fits = -1;
cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
@@ -7285,7 +7448,9 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
util_min = max(rq_util_min, p_util_min);
util_max = max(rq_util_max, p_util_max);
}
- if (!util_fits_cpu(util, util_min, util_max, cpu))
+
+ fits = util_fits_cpu(util, util_min, util_max, cpu);
+ if (!fits)
continue;
lsub_positive(&cpu_cap, util);
@@ -7293,7 +7458,9 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (cpu == prev_cpu) {
/* Always use prev_cpu as a candidate. */
prev_spare_cap = cpu_cap;
- } else if (cpu_cap > max_spare_cap) {
+ prev_fits = fits;
+ } else if ((fits > max_fits) ||
+ ((fits == max_fits) && (cpu_cap > max_spare_cap))) {
/*
* Find the CPU with the maximum spare capacity
* among the remaining CPUs in the performance
@@ -7301,6 +7468,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
*/
max_spare_cap = cpu_cap;
max_spare_cap_cpu = cpu;
+ max_fits = fits;
}
}
@@ -7319,26 +7487,50 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (prev_delta < base_energy)
goto unlock;
prev_delta -= base_energy;
+ prev_thermal_cap = cpu_thermal_cap;
best_delta = min(best_delta, prev_delta);
}
/* Evaluate the energy impact of using max_spare_cap_cpu. */
if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
+ /* Current best energy cpu fits better */
+ if (max_fits < best_fits)
+ continue;
+
+ /*
+ * Both don't fit performance hint (i.e. uclamp_min)
+ * but best energy cpu has better capacity.
+ */
+ if ((max_fits < 0) &&
+ (cpu_thermal_cap <= best_thermal_cap))
+ continue;
+
cur_delta = compute_energy(&eenv, pd, cpus, p,
max_spare_cap_cpu);
/* CPU utilization has changed */
if (cur_delta < base_energy)
goto unlock;
cur_delta -= base_energy;
- if (cur_delta < best_delta) {
- best_delta = cur_delta;
- best_energy_cpu = max_spare_cap_cpu;
- }
+
+ /*
+ * Both fit for the task but best energy cpu has lower
+ * energy impact.
+ */
+ if ((max_fits > 0) && (best_fits > 0) &&
+ (cur_delta >= best_delta))
+ continue;
+
+ best_delta = cur_delta;
+ best_energy_cpu = max_spare_cap_cpu;
+ best_fits = max_fits;
+ best_thermal_cap = cpu_thermal_cap;
}
}
rcu_read_unlock();
- if (best_delta < prev_delta)
+ if ((best_fits > prev_fits) ||
+ ((best_fits > 0) && (best_delta < prev_delta)) ||
+ ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
target = best_energy_cpu;
return target;
@@ -8838,82 +9030,16 @@ static unsigned long scale_rt_capacity(int cpu)
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
{
- unsigned long capacity_orig = arch_scale_cpu_capacity(cpu);
unsigned long capacity = scale_rt_capacity(cpu);
struct sched_group *sdg = sd->groups;
- struct rq *rq = cpu_rq(cpu);
- rq->cpu_capacity_orig = capacity_orig;
+ cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
if (!capacity)
capacity = 1;
- rq->cpu_capacity = capacity;
-
- /*
- * Detect if the performance domain is in capacity inversion state.
- *
- * Capacity inversion happens when another perf domain with equal or
- * lower capacity_orig_of() ends up having higher capacity than this
- * domain after subtracting thermal pressure.
- *
- * We only take into account thermal pressure in this detection as it's
- * the only metric that actually results in *real* reduction of
- * capacity due to performance points (OPPs) being dropped/become
- * unreachable due to thermal throttling.
- *
- * We assume:
- * * That all cpus in a perf domain have the same capacity_orig
- * (same uArch).
- * * Thermal pressure will impact all cpus in this perf domain
- * equally.
- */
- if (sched_energy_enabled()) {
- unsigned long inv_cap = capacity_orig - thermal_load_avg(rq);
- struct perf_domain *pd;
-
- rcu_read_lock();
-
- pd = rcu_dereference(rq->rd->pd);
- rq->cpu_capacity_inverted = 0;
-
- for (; pd; pd = pd->next) {
- struct cpumask *pd_span = perf_domain_span(pd);
- unsigned long pd_cap_orig, pd_cap;
-
- /* We can't be inverted against our own pd */
- if (cpumask_test_cpu(cpu_of(rq), pd_span))
- continue;
-
- cpu = cpumask_any(pd_span);
- pd_cap_orig = arch_scale_cpu_capacity(cpu);
-
- if (capacity_orig < pd_cap_orig)
- continue;
-
- /*
- * handle the case of multiple perf domains have the
- * same capacity_orig but one of them is under higher
- * thermal pressure. We record it as capacity
- * inversion.
- */
- if (capacity_orig == pd_cap_orig) {
- pd_cap = pd_cap_orig - thermal_load_avg(cpu_rq(cpu));
-
- if (pd_cap > inv_cap) {
- rq->cpu_capacity_inverted = inv_cap;
- break;
- }
- } else if (pd_cap_orig > inv_cap) {
- rq->cpu_capacity_inverted = inv_cap;
- break;
- }
- }
-
- rcu_read_unlock();
- }
-
- trace_sched_cpu_capacity_tp(rq);
+ cpu_rq(cpu)->cpu_capacity = capacity;
+ trace_sched_cpu_capacity_tp(cpu_rq(cpu));
sdg->sgc->capacity = capacity;
sdg->sgc->min_capacity = capacity;
@@ -10141,24 +10267,23 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
*/
update_sd_lb_stats(env, &sds);
- if (sched_energy_enabled()) {
- struct root_domain *rd = env->dst_rq->rd;
-
- if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
- goto out_balanced;
- }
-
- local = &sds.local_stat;
- busiest = &sds.busiest_stat;
-
/* There is no busy sibling group to pull tasks from */
if (!sds.busiest)
goto out_balanced;
+ busiest = &sds.busiest_stat;
+
/* Misfit tasks should be dealt with regardless of the avg load */
if (busiest->group_type == group_misfit_task)
goto force_balance;
+ if (sched_energy_enabled()) {
+ struct root_domain *rd = env->dst_rq->rd;
+
+ if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
+ goto out_balanced;
+ }
+
/* ASYM feature bypasses nice load balance check */
if (busiest->group_type == group_asym_packing)
goto force_balance;
@@ -10171,6 +10296,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
if (busiest->group_type == group_imbalanced)
goto force_balance;
+ local = &sds.local_stat;
/*
* If the local group is busier than the selected busiest group
* don't try and pull any tasks.
@@ -11734,7 +11860,8 @@ static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
/*
* se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
*/
-static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
+static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
+ bool forceidle)
{
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
@@ -11759,11 +11886,12 @@ void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
}
-bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
+bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
+ bool in_fi)
{
struct rq *rq = task_rq(a);
- struct sched_entity *sea = &a->se;
- struct sched_entity *seb = &b->se;
+ const struct sched_entity *sea = &a->se;
+ const struct sched_entity *seb = &b->se;
struct cfs_rq *cfs_rqa;
struct cfs_rq *cfs_rqb;
s64 delta;
@@ -12480,6 +12608,11 @@ __init void init_sched_fair_class(void)
for_each_possible_cpu(i) {
zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
+
+#ifdef CONFIG_CFS_BANDWIDTH
+ INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
+ INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
+#endif
}
open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);