summaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig25
-rw-r--r--mm/bootmem.c8
-rw-r--r--mm/compaction.c11
-rw-r--r--mm/filemap.c10
-rw-r--r--mm/filemap_xip.c2
-rw-r--r--mm/fremap.c8
-rw-r--r--mm/huge_memory.c390
-rw-r--r--mm/hugetlb.c161
-rw-r--r--mm/kmemleak.c4
-rw-r--r--mm/ksm.c4
-rw-r--r--mm/memblock.c124
-rw-r--r--mm/memcontrol.c222
-rw-r--r--mm/memory-failure.c62
-rw-r--r--mm/memory.c178
-rw-r--r--mm/memory_hotplug.c65
-rw-r--r--mm/mempolicy.c165
-rw-r--r--mm/migrate.c174
-rw-r--r--mm/mlock.c44
-rw-r--r--mm/mm_init.c18
-rw-r--r--mm/mmap.c23
-rw-r--r--mm/mmzone.c14
-rw-r--r--mm/mprotect.c82
-rw-r--r--mm/nobootmem.c25
-rw-r--r--mm/nommu.c5
-rw-r--r--mm/oom_kill.c6
-rw-r--r--mm/page_alloc.c57
-rw-r--r--mm/percpu.c5
-rw-r--r--mm/pgtable-generic.c24
-rw-r--r--mm/readahead.c8
-rw-r--r--mm/rmap.c19
-rw-r--r--mm/shmem.c36
-rw-r--r--mm/slab.c573
-rw-r--r--mm/slab.h6
-rw-r--r--mm/slab_common.c2
-rw-r--r--mm/slub.c49
-rw-r--r--mm/sparse.c53
-rw-r--r--mm/swap.c146
-rw-r--r--mm/swapfile.c16
-rw-r--r--mm/util.c18
-rw-r--r--mm/vmalloc.c48
-rw-r--r--mm/vmstat.c22
-rw-r--r--mm/zswap.c195
42 files changed, 1781 insertions, 1326 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 394838f489eb..723bbe04a0b0 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -20,7 +20,7 @@ config FLATMEM_MANUAL
Some users of more advanced features like NUMA and
memory hotplug may have different options here.
- DISCONTIGMEM is an more mature, better tested system,
+ DISCONTIGMEM is a more mature, better tested system,
but is incompatible with memory hotplug and may suffer
decreased performance over SPARSEMEM. If unsure between
"Sparse Memory" and "Discontiguous Memory", choose
@@ -153,11 +153,18 @@ config MOVABLE_NODE
help
Allow a node to have only movable memory. Pages used by the kernel,
such as direct mapping pages cannot be migrated. So the corresponding
- memory device cannot be hotplugged. This option allows users to
- online all the memory of a node as movable memory so that the whole
- node can be hotplugged. Users who don't use the memory hotplug
- feature are fine with this option on since they don't online memory
- as movable.
+ memory device cannot be hotplugged. This option allows the following
+ two things:
+ - When the system is booting, node full of hotpluggable memory can
+ be arranged to have only movable memory so that the whole node can
+ be hot-removed. (need movable_node boot option specified).
+ - After the system is up, the option allows users to online all the
+ memory of a node as movable memory so that the whole node can be
+ hot-removed.
+
+ Users who don't use the memory hotplug feature are fine with this
+ option on since they don't specify movable_node boot option or they
+ don't online memory as movable.
Say Y here if you want to hotplug a whole node.
Say N here if you want kernel to use memory on all nodes evenly.
@@ -211,9 +218,11 @@ config SPLIT_PTLOCK_CPUS
int
default "999999" if ARM && !CPU_CACHE_VIPT
default "999999" if PARISC && !PA20
- default "999999" if DEBUG_SPINLOCK || DEBUG_LOCK_ALLOC
default "4"
+config ARCH_ENABLE_SPLIT_PMD_PTLOCK
+ boolean
+
#
# support for memory balloon compaction
config BALLOON_COMPACTION
@@ -534,7 +543,7 @@ config ZSWAP
config MEM_SOFT_DIRTY
bool "Track memory changes"
- depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY
+ depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY && PROC_FS
select PROC_PAGE_MONITOR
help
This option enables memory changes tracking by introducing a
diff --git a/mm/bootmem.c b/mm/bootmem.c
index 6ab7744e692e..90bd3507b413 100644
--- a/mm/bootmem.c
+++ b/mm/bootmem.c
@@ -172,11 +172,12 @@ void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
{
struct page *page;
- unsigned long start, end, pages, count = 0;
+ unsigned long *map, start, end, pages, count = 0;
if (!bdata->node_bootmem_map)
return 0;
+ map = bdata->node_bootmem_map;
start = bdata->node_min_pfn;
end = bdata->node_low_pfn;
@@ -184,10 +185,9 @@ static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
bdata - bootmem_node_data, start, end);
while (start < end) {
- unsigned long *map, idx, vec;
+ unsigned long idx, vec;
unsigned shift;
- map = bdata->node_bootmem_map;
idx = start - bdata->node_min_pfn;
shift = idx & (BITS_PER_LONG - 1);
/*
@@ -784,7 +784,7 @@ void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
/* update goal according ...MAX_DMA32_PFN */
- end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
+ end_pfn = pgdat_end_pfn(pgdat);
if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
(goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
diff --git a/mm/compaction.c b/mm/compaction.c
index b5326b141a25..f58bcd016f43 100644
--- a/mm/compaction.c
+++ b/mm/compaction.c
@@ -134,6 +134,10 @@ static void update_pageblock_skip(struct compact_control *cc,
bool migrate_scanner)
{
struct zone *zone = cc->zone;
+
+ if (cc->ignore_skip_hint)
+ return;
+
if (!page)
return;
@@ -235,10 +239,9 @@ static bool suitable_migration_target(struct page *page)
}
/*
- * Isolate free pages onto a private freelist. Caller must hold zone->lock.
- * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
- * pages inside of the pageblock (even though it may still end up isolating
- * some pages).
+ * Isolate free pages onto a private freelist. If @strict is true, will abort
+ * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
+ * (even though it may still end up isolating some pages).
*/
static unsigned long isolate_freepages_block(struct compact_control *cc,
unsigned long blockpfn,
diff --git a/mm/filemap.c b/mm/filemap.c
index ae4846ff4849..b7749a92021c 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -1090,7 +1090,6 @@ static void shrink_readahead_size_eio(struct file *filp,
* @filp: the file to read
* @ppos: current file position
* @desc: read_descriptor
- * @actor: read method
*
* This is a generic file read routine, and uses the
* mapping->a_ops->readpage() function for the actual low-level stuff.
@@ -1099,7 +1098,7 @@ static void shrink_readahead_size_eio(struct file *filp,
* of the logic when it comes to error handling etc.
*/
static void do_generic_file_read(struct file *filp, loff_t *ppos,
- read_descriptor_t *desc, read_actor_t actor)
+ read_descriptor_t *desc)
{
struct address_space *mapping = filp->f_mapping;
struct inode *inode = mapping->host;
@@ -1200,13 +1199,14 @@ page_ok:
* Ok, we have the page, and it's up-to-date, so
* now we can copy it to user space...
*
- * The actor routine returns how many bytes were actually used..
+ * The file_read_actor routine returns how many bytes were
+ * actually used..
* NOTE! This may not be the same as how much of a user buffer
* we filled up (we may be padding etc), so we can only update
* "pos" here (the actor routine has to update the user buffer
* pointers and the remaining count).
*/
- ret = actor(desc, page, offset, nr);
+ ret = file_read_actor(desc, page, offset, nr);
offset += ret;
index += offset >> PAGE_CACHE_SHIFT;
offset &= ~PAGE_CACHE_MASK;
@@ -1479,7 +1479,7 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
if (desc.count == 0)
continue;
desc.error = 0;
- do_generic_file_read(filp, ppos, &desc, file_read_actor);
+ do_generic_file_read(filp, ppos, &desc);
retval += desc.written;
if (desc.error) {
retval = retval ?: desc.error;
diff --git a/mm/filemap_xip.c b/mm/filemap_xip.c
index 28fe26b64f8a..d8d9fe3f685c 100644
--- a/mm/filemap_xip.c
+++ b/mm/filemap_xip.c
@@ -26,7 +26,7 @@
* of ZERO_PAGE(), such as /dev/zero
*/
static DEFINE_MUTEX(xip_sparse_mutex);
-static seqcount_t xip_sparse_seq = SEQCNT_ZERO;
+static seqcount_t xip_sparse_seq = SEQCNT_ZERO(xip_sparse_seq);
static struct page *__xip_sparse_page;
/* called under xip_sparse_mutex */
diff --git a/mm/fremap.c b/mm/fremap.c
index 5bff08147768..bbc4d660221a 100644
--- a/mm/fremap.c
+++ b/mm/fremap.c
@@ -208,9 +208,10 @@ get_write_lock:
if (mapping_cap_account_dirty(mapping)) {
unsigned long addr;
struct file *file = get_file(vma->vm_file);
+ /* mmap_region may free vma; grab the info now */
+ vm_flags = vma->vm_flags;
- addr = mmap_region(file, start, size,
- vma->vm_flags, pgoff);
+ addr = mmap_region(file, start, size, vm_flags, pgoff);
fput(file);
if (IS_ERR_VALUE(addr)) {
err = addr;
@@ -218,7 +219,7 @@ get_write_lock:
BUG_ON(addr != start);
err = 0;
}
- goto out;
+ goto out_freed;
}
mutex_lock(&mapping->i_mmap_mutex);
flush_dcache_mmap_lock(mapping);
@@ -253,6 +254,7 @@ get_write_lock:
out:
if (vma)
vm_flags = vma->vm_flags;
+out_freed:
if (likely(!has_write_lock))
up_read(&mm->mmap_sem);
else
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index cca80d96e509..95d1acb0f3d2 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -27,11 +27,12 @@
#include "internal.h"
/*
- * By default transparent hugepage support is enabled for all mappings
- * and khugepaged scans all mappings. Defrag is only invoked by
- * khugepaged hugepage allocations and by page faults inside
- * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
- * allocations.
+ * By default transparent hugepage support is disabled in order that avoid
+ * to risk increase the memory footprint of applications without a guaranteed
+ * benefit. When transparent hugepage support is enabled, is for all mappings,
+ * and khugepaged scans all mappings.
+ * Defrag is invoked by khugepaged hugepage allocations and by page faults
+ * for all hugepage allocations.
*/
unsigned long transparent_hugepage_flags __read_mostly =
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
@@ -709,6 +710,7 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
struct page *page)
{
pgtable_t pgtable;
+ spinlock_t *ptl;
VM_BUG_ON(!PageCompound(page));
pgtable = pte_alloc_one(mm, haddr);
@@ -723,9 +725,9 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
*/
__SetPageUptodate(page);
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_none(*pmd))) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mem_cgroup_uncharge_page(page);
put_page(page);
pte_free(mm, pgtable);
@@ -737,8 +739,8 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, haddr, pmd, entry);
add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
- mm->nr_ptes++;
- spin_unlock(&mm->page_table_lock);
+ atomic_long_inc(&mm->nr_ptes);
+ spin_unlock(ptl);
}
return 0;
@@ -758,14 +760,7 @@ static inline struct page *alloc_hugepage_vma(int defrag,
HPAGE_PMD_ORDER, vma, haddr, nd);
}
-#ifndef CONFIG_NUMA
-static inline struct page *alloc_hugepage(int defrag)
-{
- return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
- HPAGE_PMD_ORDER);
-}
-#endif
-
+/* Caller must hold page table lock. */
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
struct page *zero_page)
@@ -778,7 +773,7 @@ static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
entry = pmd_mkhuge(entry);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, haddr, pmd, entry);
- mm->nr_ptes++;
+ atomic_long_inc(&mm->nr_ptes);
return true;
}
@@ -797,6 +792,7 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
return VM_FAULT_OOM;
if (!(flags & FAULT_FLAG_WRITE) &&
transparent_hugepage_use_zero_page()) {
+ spinlock_t *ptl;
pgtable_t pgtable;
struct page *zero_page;
bool set;
@@ -809,10 +805,10 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
count_vm_event(THP_FAULT_FALLBACK);
return VM_FAULT_FALLBACK;
}
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
zero_page);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
if (!set) {
pte_free(mm, pgtable);
put_huge_zero_page();
@@ -845,6 +841,7 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
struct vm_area_struct *vma)
{
+ spinlock_t *dst_ptl, *src_ptl;
struct page *src_page;
pmd_t pmd;
pgtable_t pgtable;
@@ -855,8 +852,9 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
if (unlikely(!pgtable))
goto out;
- spin_lock(&dst_mm->page_table_lock);
- spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
+ dst_ptl = pmd_lock(dst_mm, dst_pmd);
+ src_ptl = pmd_lockptr(src_mm, src_pmd);
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
ret = -EAGAIN;
pmd = *src_pmd;
@@ -865,7 +863,7 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
goto out_unlock;
}
/*
- * mm->page_table_lock is enough to be sure that huge zero pmd is not
+ * When page table lock is held, the huge zero pmd should not be
* under splitting since we don't split the page itself, only pmd to
* a page table.
*/
@@ -884,10 +882,11 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
ret = 0;
goto out_unlock;
}
+
if (unlikely(pmd_trans_splitting(pmd))) {
/* split huge page running from under us */
- spin_unlock(&src_mm->page_table_lock);
- spin_unlock(&dst_mm->page_table_lock);
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
pte_free(dst_mm, pgtable);
wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
@@ -903,12 +902,12 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd = pmd_mkold(pmd_wrprotect(pmd));
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
- dst_mm->nr_ptes++;
+ atomic_long_inc(&dst_mm->nr_ptes);
ret = 0;
out_unlock:
- spin_unlock(&src_mm->page_table_lock);
- spin_unlock(&dst_mm->page_table_lock);
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
out:
return ret;
}
@@ -919,10 +918,11 @@ void huge_pmd_set_accessed(struct mm_struct *mm,
pmd_t *pmd, pmd_t orig_pmd,
int dirty)
{
+ spinlock_t *ptl;
pmd_t entry;
unsigned long haddr;
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto unlock;
@@ -932,13 +932,14 @@ void huge_pmd_set_accessed(struct mm_struct *mm,
update_mmu_cache_pmd(vma, address, pmd);
unlock:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
}
static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
{
+ spinlock_t *ptl;
pgtable_t pgtable;
pmd_t _pmd;
struct page *page;
@@ -965,7 +966,7 @@ static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_free_page;
@@ -992,7 +993,7 @@ static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
}
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
put_huge_zero_page();
inc_mm_counter(mm, MM_ANONPAGES);
@@ -1002,7 +1003,7 @@ static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
out:
return ret;
out_free_page:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
mem_cgroup_uncharge_page(page);
put_page(page);
@@ -1016,6 +1017,7 @@ static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
struct page *page,
unsigned long haddr)
{
+ spinlock_t *ptl;
pgtable_t pgtable;
pmd_t _pmd;
int ret = 0, i;
@@ -1062,7 +1064,7 @@ static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_free_pages;
VM_BUG_ON(!PageHead(page));
@@ -1088,7 +1090,7 @@ static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
page_remove_rmap(page);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
@@ -1099,7 +1101,7 @@ out:
return ret;
out_free_pages:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
mem_cgroup_uncharge_start();
for (i = 0; i < HPAGE_PMD_NR; i++) {
@@ -1114,17 +1116,19 @@ out_free_pages:
int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
{
+ spinlock_t *ptl;
int ret = 0;
struct page *page = NULL, *new_page;
unsigned long haddr;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
+ ptl = pmd_lockptr(mm, pmd);
VM_BUG_ON(!vma->anon_vma);
haddr = address & HPAGE_PMD_MASK;
if (is_huge_zero_pmd(orig_pmd))
goto alloc;
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_unlock;
@@ -1140,7 +1144,7 @@ int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
goto out_unlock;
}
get_page(page);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
alloc:
if (transparent_hugepage_enabled(vma) &&
!transparent_hugepage_debug_cow())
@@ -1150,7 +1154,7 @@ alloc:
new_page = NULL;
if (unlikely(!new_page)) {
- if (is_huge_zero_pmd(orig_pmd)) {
+ if (!page) {
ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
address, pmd, orig_pmd, haddr);
} else {
@@ -1177,7 +1181,7 @@ alloc:
count_vm_event(THP_FAULT_ALLOC);
- if (is_huge_zero_pmd(orig_pmd))
+ if (!page)
clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
else
copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
@@ -1187,11 +1191,11 @@ alloc:
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
if (page)
put_page(page);
if (unlikely(!pmd_same(*pmd, orig_pmd))) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mem_cgroup_uncharge_page(new_page);
put_page(new_page);
goto out_mn;
@@ -1203,7 +1207,7 @@ alloc:
page_add_new_anon_rmap(new_page, vma, haddr);
set_pmd_at(mm, haddr, pmd, entry);
update_mmu_cache_pmd(vma, address, pmd);
- if (is_huge_zero_pmd(orig_pmd)) {
+ if (!page) {
add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
put_huge_zero_page();
} else {
@@ -1213,13 +1217,13 @@ alloc:
}
ret |= VM_FAULT_WRITE;
}
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
out_mn:
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
out:
return ret;
out_unlock:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
return ret;
}
@@ -1231,7 +1235,7 @@ struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
struct mm_struct *mm = vma->vm_mm;
struct page *page = NULL;
- assert_spin_locked(&mm->page_table_lock);
+ assert_spin_locked(pmd_lockptr(mm, pmd));
if (flags & FOLL_WRITE && !pmd_write(*pmd))
goto out;
@@ -1240,6 +1244,10 @@ struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
return ERR_PTR(-EFAULT);
+ /* Full NUMA hinting faults to serialise migration in fault paths */
+ if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
+ goto out;
+
page = pmd_page(*pmd);
VM_BUG_ON(!PageHead(page));
if (flags & FOLL_TOUCH) {
@@ -1278,23 +1286,48 @@ out:
int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pmd_t pmd, pmd_t *pmdp)
{
+ spinlock_t *ptl;
struct anon_vma *anon_vma = NULL;
struct page *page;
unsigned long haddr = addr & HPAGE_PMD_MASK;
int page_nid = -1, this_nid = numa_node_id();
- int target_nid;
+ int target_nid, last_cpupid = -1;
bool page_locked;
bool migrated = false;
+ int flags = 0;
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmdp);
if (unlikely(!pmd_same(pmd, *pmdp)))
goto out_unlock;
+ /*
+ * If there are potential migrations, wait for completion and retry
+ * without disrupting NUMA hinting information. Do not relock and
+ * check_same as the page may no longer be mapped.
+ */
+ if (unlikely(pmd_trans_migrating(*pmdp))) {
+ spin_unlock(ptl);
+ wait_migrate_huge_page(vma->anon_vma, pmdp);
+ goto out;
+ }
+
page = pmd_page(pmd);
+ BUG_ON(is_huge_zero_page(page));
page_nid = page_to_nid(page);
+ last_cpupid = page_cpupid_last(page);
count_vm_numa_event(NUMA_HINT_FAULTS);
- if (page_nid == this_nid)
+ if (page_nid == this_nid) {
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
+ flags |= TNF_FAULT_LOCAL;
+ }
+
+ /*
+ * Avoid grouping on DSO/COW pages in specific and RO pages
+ * in general, RO pages shouldn't hurt as much anyway since
+ * they can be in shared cache state.
+ */
+ if (!pmd_write(pmd))
+ flags |= TNF_NO_GROUP;
/*
* Acquire the page lock to serialise THP migrations but avoid dropping
@@ -1306,27 +1339,26 @@ int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
/* If the page was locked, there are no parallel migrations */
if (page_locked)
goto clear_pmdnuma;
+ }
- /*
- * Otherwise wait for potential migrations and retry. We do
- * relock and check_same as the page may no longer be mapped.
- * As the fault is being retried, do not account for it.
- */
- spin_unlock(&mm->page_table_lock);
+ /* Migration could have started since the pmd_trans_migrating check */
+ if (!page_locked) {
+ spin_unlock(ptl);
wait_on_page_locked(page);
page_nid = -1;
goto out;
}
- /* Page is misplaced, serialise migrations and parallel THP splits */
+ /*
+ * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
+ * to serialises splits
+ */
get_page(page);
- spin_unlock(&mm->page_table_lock);
- if (!page_locked)
- lock_page(page);
+ spin_unlock(ptl);
anon_vma = page_lock_anon_vma_read(page);
- /* Confirm the PTE did not while locked */
- spin_lock(&mm->page_table_lock);
+ /* Confirm the PMD did not change while page_table_lock was released */
+ spin_lock(ptl);
if (unlikely(!pmd_same(pmd, *pmdp))) {
unlock_page(page);
put_page(page);
@@ -1334,15 +1366,24 @@ int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
goto out_unlock;
}
+ /* Bail if we fail to protect against THP splits for any reason */
+ if (unlikely(!anon_vma)) {
+ put_page(page);
+ page_nid = -1;
+ goto clear_pmdnuma;
+ }
+
/*
* Migrate the THP to the requested node, returns with page unlocked
* and pmd_numa cleared.
*/
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
migrated = migrate_misplaced_transhuge_page(mm, vma,
pmdp, pmd, addr, page, target_nid);
- if (migrated)
+ if (migrated) {
+ flags |= TNF_MIGRATED;
page_nid = target_nid;
+ }
goto out;
clear_pmdnuma:
@@ -1353,14 +1394,14 @@ clear_pmdnuma:
update_mmu_cache_pmd(vma, addr, pmdp);
unlock_page(page);
out_unlock:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
out:
if (anon_vma)
page_unlock_anon_vma_read(anon_vma);
if (page_nid != -1)
- task_numa_fault(page_nid, HPAGE_PMD_NR, migrated);
+ task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
return 0;
}
@@ -1368,9 +1409,10 @@ out:
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr)
{
+ spinlock_t *ptl;
int ret = 0;
- if (__pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
struct page *page;
pgtable_t pgtable;
pmd_t orig_pmd;
@@ -1384,8 +1426,8 @@ int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
if (is_huge_zero_pmd(orig_pmd)) {
- tlb->mm->nr_ptes--;
- spin_unlock(&tlb->mm->page_table_lock);
+ atomic_long_dec(&tlb->mm->nr_ptes);
+ spin_unlock(ptl);
put_huge_zero_page();
} else {
page = pmd_page(orig_pmd);
@@ -1393,8 +1435,8 @@ int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
VM_BUG_ON(page_mapcount(page) < 0);
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
VM_BUG_ON(!PageHead(page));
- tlb->mm->nr_ptes--;
- spin_unlock(&tlb->mm->page_table_lock);
+ atomic_long_dec(&tlb->mm->nr_ptes);
+ spin_unlock(ptl);
tlb_remove_page(tlb, page);
}
pte_free(tlb->mm, pgtable);
@@ -1407,14 +1449,15 @@ int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
unsigned char *vec)
{
+ spinlock_t *ptl;
int ret = 0;
- if (__pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
/*
* All logical pages in the range are present
* if backed by a huge page.
*/
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
memset(vec, 1, (end - addr) >> PAGE_SHIFT);
ret = 1;
}
@@ -1427,6 +1470,7 @@ int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
unsigned long new_addr, unsigned long old_end,
pmd_t *old_pmd, pmd_t *new_pmd)
{
+ spinlock_t *old_ptl, *new_ptl;
int ret = 0;
pmd_t pmd;
@@ -1447,41 +1491,81 @@ int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
goto out;
}
- ret = __pmd_trans_huge_lock(old_pmd, vma);
+ /*
+ * We don't have to worry about the ordering of src and dst
+ * ptlocks because exclusive mmap_sem prevents deadlock.
+ */
+ ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
if (ret == 1) {
+ new_ptl = pmd_lockptr(mm, new_pmd);
+ if (new_ptl != old_ptl)
+ spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
VM_BUG_ON(!pmd_none(*new_pmd));
set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
- spin_unlock(&mm->page_table_lock);
+ if (new_ptl != old_ptl) {
+ pgtable_t pgtable;
+
+ /*
+ * Move preallocated PTE page table if new_pmd is on
+ * different PMD page table.
+ */
+ pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
+ pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
+
+ spin_unlock(new_ptl);
+ }
+ spin_unlock(old_ptl);
}
out:
return ret;
}
+/*
+ * Returns
+ * - 0 if PMD could not be locked
+ * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
+ * - HPAGE_PMD_NR is protections changed and TLB flush necessary
+ */
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, pgprot_t newprot, int prot_numa)
{
struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *ptl;
int ret = 0;
- if (__pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
pmd_t entry;
- entry = pmdp_get_and_clear(mm, addr, pmd);
+ ret = 1;
if (!prot_numa) {
+ entry = pmdp_get_and_clear(mm, addr, pmd);
+ if (pmd_numa(entry))
+ entry = pmd_mknonnuma(entry);
entry = pmd_modify(entry, newprot);
+ ret = HPAGE_PMD_NR;
BUG_ON(pmd_write(entry));
} else {
struct page *page = pmd_page(*pmd);
- /* only check non-shared pages */
- if (page_mapcount(page) == 1 &&
+ /*
+ * Do not trap faults against the zero page. The
+ * read-only data is likely to be read-cached on the
+ * local CPU cache and it is less useful to know about
+ * local vs remote hits on the zero page.
+ */
+ if (!is_huge_zero_page(page) &&
!pmd_numa(*pmd)) {
+ entry = *pmd;
entry = pmd_mknuma(entry);
+ ret = HPAGE_PMD_NR;
}
}
- set_pmd_at(mm, addr, pmd, entry);
- spin_unlock(&vma->vm_mm->page_table_lock);
- ret = 1;
+
+ /* Set PMD if cleared earlier */
+ if (ret == HPAGE_PMD_NR)
+ set_pmd_at(mm, addr, pmd, entry);
+
+ spin_unlock(ptl);
}
return ret;
@@ -1494,12 +1578,13 @@ int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
* Note that if it returns 1, this routine returns without unlocking page
* table locks. So callers must unlock them.
*/
-int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
+int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
+ spinlock_t **ptl)
{
- spin_lock(&vma->vm_mm->page_table_lock);
+ *ptl = pmd_lock(vma->vm_mm, pmd);
if (likely(pmd_trans_huge(*pmd))) {
if (unlikely(pmd_trans_splitting(*pmd))) {
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(*ptl);
wait_split_huge_page(vma->anon_vma, pmd);
return -1;
} else {
@@ -1508,27 +1593,37 @@ int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
return 1;
}
}
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(*ptl);
return 0;
}
+/*
+ * This function returns whether a given @page is mapped onto the @address
+ * in the virtual space of @mm.
+ *
+ * When it's true, this function returns *pmd with holding the page table lock
+ * and passing it back to the caller via @ptl.
+ * If it's false, returns NULL without holding the page table lock.
+ */
pmd_t *page_check_address_pmd(struct page *page,
struct mm_struct *mm,
unsigned long address,
- enum page_check_address_pmd_flag flag)
+ enum page_check_address_pmd_flag flag,
+ spinlock_t **ptl)
{
- pmd_t *pmd, *ret = NULL;
+ pmd_t *pmd;
if (address & ~HPAGE_PMD_MASK)
- goto out;
+ return NULL;
pmd = mm_find_pmd(mm, address);
if (!pmd)
- goto out;
+ return NULL;
+ *ptl = pmd_lock(mm, pmd);
if (pmd_none(*pmd))
- goto out;
+ goto unlock;
if (pmd_page(*pmd) != page)
- goto out;
+ goto unlock;
/*
* split_vma() may create temporary aliased mappings. There is
* no risk as long as all huge pmd are found and have their
@@ -1538,14 +1633,15 @@ pmd_t *page_check_address_pmd(struct page *page,
*/
if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
pmd_trans_splitting(*pmd))
- goto out;
+ goto unlock;
if (pmd_trans_huge(*pmd)) {
VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
!pmd_trans_splitting(*pmd));
- ret = pmd;
+ return pmd;
}
-out:
- return ret;
+unlock:
+ spin_unlock(*ptl);
+ return NULL;
}
static int __split_huge_page_splitting(struct page *page,
@@ -1553,6 +1649,7 @@ static int __split_huge_page_splitting(struct page *page,
unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *ptl;
pmd_t *pmd;
int ret = 0;
/* For mmu_notifiers */
@@ -1560,9 +1657,8 @@ static int __split_huge_page_splitting(struct page *page,
const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock);
pmd = page_check_address_pmd(page, mm, address,
- PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
+ PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
if (pmd) {
/*
* We can't temporarily set the pmd to null in order
@@ -1573,8 +1669,8 @@ static int __split_huge_page_splitting(struct page *page,
*/
pmdp_splitting_flush(vma, address, pmd);
ret = 1;
+ spin_unlock(ptl);
}
- spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return ret;
@@ -1662,7 +1758,7 @@ static void __split_huge_page_refcount(struct page *page,
page_tail->mapping = page->mapping;
page_tail->index = page->index + i;
- page_nid_xchg_last(page_tail, page_nid_last(page));
+ page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
BUG_ON(!PageAnon(page_tail));
BUG_ON(!PageUptodate(page_tail));
@@ -1705,14 +1801,14 @@ static int __split_huge_page_map(struct page *page,
unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *ptl;
pmd_t *pmd, _pmd;
int ret = 0, i;
pgtable_t pgtable;
unsigned long haddr;
- spin_lock(&mm->page_table_lock);
pmd = page_check_address_pmd(page, mm, address,
- PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
+ PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
if (pmd) {
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
@@ -1767,8 +1863,8 @@ static int __split_huge_page_map(struct page *page,
pmdp_invalidate(vma, address, pmd);
pmd_populate(mm, pmd, pgtable);
ret = 1;
+ spin_unlock(ptl);
}
- spin_unlock(&mm->page_table_lock);
return ret;
}
@@ -2165,7 +2261,34 @@ static void khugepaged_alloc_sleep(void)
msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
}
+static int khugepaged_node_load[MAX_NUMNODES];
+
#ifdef CONFIG_NUMA
+static int khugepaged_find_target_node(void)
+{
+ static int last_khugepaged_target_node = NUMA_NO_NODE;
+ int nid, target_node = 0, max_value = 0;
+
+ /* find first node with max normal pages hit */
+ for (nid = 0; nid < MAX_NUMNODES; nid++)
+ if (khugepaged_node_load[nid] > max_value) {
+ max_value = khugepaged_node_load[nid];
+ target_node = nid;
+ }
+
+ /* do some balance if several nodes have the same hit record */
+ if (target_node <= last_khugepaged_target_node)
+ for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
+ nid++)
+ if (max_value == khugepaged_node_load[nid]) {
+ target_node = nid;
+ break;
+ }
+
+ last_khugepaged_target_node = target_node;
+ return target_node;
+}
+
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
if (IS_ERR(*hpage)) {
@@ -2199,9 +2322,8 @@ static struct page
* mmap_sem in read mode is good idea also to allow greater
* scalability.
*/
- *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
- node, __GFP_OTHER_NODE);
-
+ *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
+ khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
/*
* After allocating the hugepage, release the mmap_sem read lock in
* preparation for taking it in write mode.
@@ -2217,6 +2339,17 @@ static struct page
return *hpage;
}
#else
+static int khugepaged_find_target_node(void)
+{
+ return 0;
+}
+
+static inline struct page *alloc_hugepage(int defrag)
+{
+ return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
+ HPAGE_PMD_ORDER);
+}
+
static struct page *khugepaged_alloc_hugepage(bool *wait)
{
struct page *hpage;
@@ -2283,7 +2416,7 @@ static void collapse_huge_page(struct mm_struct *mm,
pte_t *pte;
pgtable_t pgtable;
struct page *new_page;
- spinlock_t *ptl;
+ spinlock_t *pmd_ptl, *pte_ptl;
int isolated;
unsigned long hstart, hend;
unsigned long mmun_start; /* For mmu_notifiers */
@@ -2326,12 +2459,12 @@ static void collapse_huge_page(struct mm_struct *mm,
anon_vma_lock_write(vma->anon_vma);
pte = pte_offset_map(pmd, address);
- ptl = pte_lockptr(mm, pmd);
+ pte_ptl = pte_lockptr(mm, pmd);
mmun_start = address;
mmun_end = address + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock); /* probably unnecessary */
+ pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
/*
* After this gup_fast can't run anymore. This also removes
* any huge TLB entry from the CPU so we won't allow
@@ -2339,16 +2472,16 @@ static void collapse_huge_page(struct mm_struct *mm,
* to avoid the risk of CPU bugs in that area.
*/
_pmd = pmdp_clear_flush(vma, address, pmd);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(pmd_ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
- spin_lock(ptl);
+ spin_lock(pte_ptl);
isolated = __collapse_huge_page_isolate(vma, address, pte);
- spin_unlock(ptl);
+ spin_unlock(pte_ptl);
if (unlikely(!isolated)) {
pte_unmap(pte);
- spin_lock(&mm->page_table_lock);
+ spin_lock(pmd_ptl);
BUG_ON(!pmd_none(*pmd));
/*
* We can only use set_pmd_at when establishing
@@ -2356,7 +2489,7 @@ static void collapse_huge_page(struct mm_struct *mm,
* points to regular pagetables. Use pmd_populate for that
*/
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(pmd_ptl);
anon_vma_unlock_write(vma->anon_vma);
goto out;
}
@@ -2367,7 +2500,7 @@ static void collapse_huge_page(struct mm_struct *mm,
*/
anon_vma_unlock_write(vma->anon_vma);
- __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
+ __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
pte_unmap(pte);
__SetPageUptodate(new_page);
pgtable = pmd_pgtable(_pmd);
@@ -2382,13 +2515,13 @@ static void collapse_huge_page(struct mm_struct *mm,
*/
smp_wmb();
- spin_lock(&mm->page_table_lock);
+ spin_lock(pmd_ptl);
BUG_ON(!pmd_none(*pmd));
page_add_new_anon_rmap(new_page, vma, address);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, address, pmd, _pmd);
update_mmu_cache_pmd(vma, address, pmd);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(pmd_ptl);
*hpage = NULL;
@@ -2423,6 +2556,7 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
if (pmd_trans_huge(*pmd))
goto out;
+ memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
_pte++, _address += PAGE_SIZE) {
@@ -2439,12 +2573,13 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
if (unlikely(!page))
goto out_unmap;
/*
- * Chose the node of the first page. This could
- * be more sophisticated and look at more pages,
- * but isn't for now.
+ * Record which node the original page is from and save this
+ * information to khugepaged_node_load[].
+ * Khupaged will allocate hugepage from the node has the max
+ * hit record.
*/
- if (node == NUMA_NO_NODE)
- node = page_to_nid(page);
+ node = page_to_nid(page);
+ khugepaged_node_load[node]++;
VM_BUG_ON(PageCompound(page));
if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
goto out_unmap;
@@ -2459,9 +2594,11 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
ret = 1;
out_unmap:
pte_unmap_unlock(pte, ptl);
- if (ret)
+ if (ret) {
+ node = khugepaged_find_target_node();
/* collapse_huge_page will return with the mmap_sem released */
collapse_huge_page(mm, address, hpage, vma, node);
+ }
out:
return ret;
}
@@ -2713,6 +2850,7 @@ static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd)
{
+ spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
unsigned long haddr = address & HPAGE_PMD_MASK;
@@ -2725,22 +2863,22 @@ void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
mmun_end = haddr + HPAGE_PMD_SIZE;
again:
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_trans_huge(*pmd))) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return;
}
if (is_huge_zero_pmd(*pmd)) {
__split_huge_zero_page_pmd(vma, haddr, pmd);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return;
}
page = pmd_page(*pmd);
VM_BUG_ON(!page_count(page));
get_page(page);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
split_huge_page(page);
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 0b7656e804d1..dee6cf4e6d34 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -476,40 +476,6 @@ static int vma_has_reserves(struct vm_area_struct *vma, long chg)
return 0;
}
-static void copy_gigantic_page(struct page *dst, struct page *src)
-{
- int i;
- struct hstate *h = page_hstate(src);
- struct page *dst_base = dst;
- struct page *src_base = src;
-
- for (i = 0; i < pages_per_huge_page(h); ) {
- cond_resched();
- copy_highpage(dst, src);
-
- i++;
- dst = mem_map_next(dst, dst_base, i);
- src = mem_map_next(src, src_base, i);
- }
-}
-
-void copy_huge_page(struct page *dst, struct page *src)
-{
- int i;
- struct hstate *h = page_hstate(src);
-
- if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
- copy_gigantic_page(dst, src);
- return;
- }
-
- might_sleep();
- for (i = 0; i < pages_per_huge_page(h); i++) {
- cond_resched();
- copy_highpage(dst + i, src + i);
- }
-}
-
static void enqueue_huge_page(struct hstate *h, struct page *page)
{
int nid = page_to_nid(page);
@@ -736,6 +702,23 @@ int PageHuge(struct page *page)
}
EXPORT_SYMBOL_GPL(PageHuge);
+/*
+ * PageHeadHuge() only returns true for hugetlbfs head page, but not for
+ * normal or transparent huge pages.
+ */
+int PageHeadHuge(struct page *page_head)
+{
+ compound_page_dtor *dtor;
+
+ if (!PageHead(page_head))
+ return 0;
+
+ dtor = get_compound_page_dtor(page_head);
+
+ return dtor == free_huge_page;
+}
+EXPORT_SYMBOL_GPL(PageHeadHuge);
+
pgoff_t __basepage_index(struct page *page)
{
struct page *page_head = compound_head(page);
@@ -2376,6 +2359,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
+ spinlock_t *src_ptl, *dst_ptl;
src_pte = huge_pte_offset(src, addr);
if (!src_pte)
continue;
@@ -2387,8 +2371,9 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
if (dst_pte == src_pte)
continue;
- spin_lock(&dst->page_table_lock);
- spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
+ dst_ptl = huge_pte_lock(h, dst, dst_pte);
+ src_ptl = huge_pte_lockptr(h, src, src_pte);
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
if (!huge_pte_none(huge_ptep_get(src_pte))) {
if (cow)
huge_ptep_set_wrprotect(src, addr, src_pte);
@@ -2398,8 +2383,8 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
page_dup_rmap(ptepage);
set_huge_pte_at(dst, addr, dst_pte, entry);
}
- spin_unlock(&src->page_table_lock);
- spin_unlock(&dst->page_table_lock);
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
}
return 0;
@@ -2442,6 +2427,7 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
unsigned long address;
pte_t *ptep;
pte_t pte;
+ spinlock_t *ptl;
struct page *page;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
@@ -2455,25 +2441,25 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
tlb_start_vma(tlb, vma);
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
again:
- spin_lock(&mm->page_table_lock);
for (address = start; address < end; address += sz) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
+ ptl = huge_pte_lock(h, mm, ptep);
if (huge_pmd_unshare(mm, &address, ptep))
- continue;
+ goto unlock;
pte = huge_ptep_get(ptep);
if (huge_pte_none(pte))
- continue;
+ goto unlock;
/*
* HWPoisoned hugepage is already unmapped and dropped reference
*/
if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
huge_pte_clear(mm, address, ptep);
- continue;
+ goto unlock;
}
page = pte_page(pte);
@@ -2484,7 +2470,7 @@ again:
*/
if (ref_page) {
if (page != ref_page)
- continue;
+ goto unlock;
/*
* Mark the VMA as having unmapped its page so that
@@ -2501,13 +2487,18 @@ again:
page_remove_rmap(page);
force_flush = !__tlb_remove_page(tlb, page);
- if (force_flush)
+ if (force_flush) {
+ spin_unlock(ptl);
break;
+ }
/* Bail out after unmapping reference page if supplied */
- if (ref_page)
+ if (ref_page) {
+ spin_unlock(ptl);
break;
+ }
+unlock:
+ spin_unlock(ptl);
}
- spin_unlock(&mm->page_table_lock);
/*
* mmu_gather ran out of room to batch pages, we break out of
* the PTE lock to avoid doing the potential expensive TLB invalidate
@@ -2613,7 +2604,7 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
*/
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, pte_t pte,
- struct page *pagecache_page)
+ struct page *pagecache_page, spinlock_t *ptl)
{
struct hstate *h = hstate_vma(vma);
struct page *old_page, *new_page;
@@ -2647,8 +2638,8 @@ retry_avoidcopy:
page_cache_get(old_page);
- /* Drop page_table_lock as buddy allocator may be called */
- spin_unlock(&mm->page_table_lock);
+ /* Drop page table lock as buddy allocator may be called */
+ spin_unlock(ptl);
new_page = alloc_huge_page(vma, address, outside_reserve);
if (IS_ERR(new_page)) {
@@ -2666,13 +2657,13 @@ retry_avoidcopy:
BUG_ON(huge_pte_none(pte));
if (unmap_ref_private(mm, vma, old_page, address)) {
BUG_ON(huge_pte_none(pte));
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
ptep = huge_pte_offset(mm, address & huge_page_mask(h));
if (likely(pte_same(huge_ptep_get(ptep), pte)))
goto retry_avoidcopy;
/*
- * race occurs while re-acquiring page_table_lock, and
- * our job is done.
+ * race occurs while re-acquiring page table
+ * lock, and our job is done.
*/
return 0;
}
@@ -2680,7 +2671,7 @@ retry_avoidcopy:
}
/* Caller expects lock to be held */
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
if (err == -ENOMEM)
return VM_FAULT_OOM;
else
@@ -2695,7 +2686,7 @@ retry_avoidcopy:
page_cache_release(new_page);
page_cache_release(old_page);
/* Caller expects lock to be held */
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
return VM_FAULT_OOM;
}
@@ -2707,10 +2698,10 @@ retry_avoidcopy:
mmun_end = mmun_start + huge_page_size(h);
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
/*
- * Retake the page_table_lock to check for racing updates
+ * Retake the page table lock to check for racing updates
* before the page tables are altered
*/
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
ptep = huge_pte_offset(mm, address & huge_page_mask(h));
if (likely(pte_same(huge_ptep_get(ptep), pte))) {
ClearPagePrivate(new_page);
@@ -2724,13 +2715,13 @@ retry_avoidcopy:
/* Make the old page be freed below */
new_page = old_page;
}
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
page_cache_release(new_page);
page_cache_release(old_page);
/* Caller expects lock to be held */
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
return 0;
}
@@ -2778,6 +2769,7 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page *page;
struct address_space *mapping;
pte_t new_pte;
+ spinlock_t *ptl;
/*
* Currently, we are forced to kill the process in the event the
@@ -2864,7 +2856,8 @@ retry:
goto backout_unlocked;
}
- spin_lock(&mm->page_table_lock);
+ ptl = huge_pte_lockptr(h, mm, ptep);
+ spin_lock(ptl);
size = i_size_read(mapping->host) >> huge_page_shift(h);
if (idx >= size)
goto backout;
@@ -2885,16 +2878,16 @@ retry:
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
/* Optimization, do the COW without a second fault */
- ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
+ ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
}
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
unlock_page(page);
out:
return ret;
backout:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
backout_unlocked:
unlock_page(page);
put_page(page);
@@ -2906,6 +2899,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
{
pte_t *ptep;
pte_t entry;
+ spinlock_t *ptl;
int ret;
struct page *page = NULL;
struct page *pagecache_page = NULL;
@@ -2918,7 +2912,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
if (ptep) {
entry = huge_ptep_get(ptep);
if (unlikely(is_hugetlb_entry_migration(entry))) {
- migration_entry_wait_huge(mm, ptep);
+ migration_entry_wait_huge(vma, mm, ptep);
return 0;
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
return VM_FAULT_HWPOISON_LARGE |
@@ -2974,17 +2968,18 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
if (page != pagecache_page)
lock_page(page);
- spin_lock(&mm->page_table_lock);
+ ptl = huge_pte_lockptr(h, mm, ptep);
+ spin_lock(ptl);
/* Check for a racing update before calling hugetlb_cow */
if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
- goto out_page_table_lock;
+ goto out_ptl;
if (flags & FAULT_FLAG_WRITE) {
if (!huge_pte_write(entry)) {
ret = hugetlb_cow(mm, vma, address, ptep, entry,
- pagecache_page);
- goto out_page_table_lock;
+ pagecache_page, ptl);
+ goto out_ptl;
}
entry = huge_pte_mkdirty(entry);
}
@@ -2993,8 +2988,8 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
flags & FAULT_FLAG_WRITE))
update_mmu_cache(vma, address, ptep);
-out_page_table_lock:
- spin_unlock(&mm->page_table_lock);
+out_ptl:
+ spin_unlock(ptl);
if (pagecache_page) {
unlock_page(pagecache_page);
@@ -3020,9 +3015,9 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long remainder = *nr_pages;
struct hstate *h = hstate_vma(vma);
- spin_lock(&mm->page_table_lock);
while (vaddr < vma->vm_end && remainder) {
pte_t *pte;
+ spinlock_t *ptl = NULL;
int absent;
struct page *page;
@@ -3030,8 +3025,12 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
* Some archs (sparc64, sh*) have multiple pte_ts to
* each hugepage. We have to make sure we get the
* first, for the page indexing below to work.
+ *
+ * Note that page table lock is not held when pte is null.
*/
pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
+ if (pte)
+ ptl = huge_pte_lock(h, mm, pte);
absent = !pte || huge_pte_none(huge_ptep_get(pte));
/*
@@ -3043,6 +3042,8 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
*/
if (absent && (flags & FOLL_DUMP) &&
!hugetlbfs_pagecache_present(h, vma, vaddr)) {
+ if (pte)
+ spin_unlock(ptl);
remainder = 0;
break;
}
@@ -3062,10 +3063,10 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
!huge_pte_write(huge_ptep_get(pte)))) {
int ret;
- spin_unlock(&mm->page_table_lock);
+ if (pte)
+ spin_unlock(ptl);
ret = hugetlb_fault(mm, vma, vaddr,
(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
- spin_lock(&mm->page_table_lock);
if (!(ret & VM_FAULT_ERROR))
continue;
@@ -3096,8 +3097,8 @@ same_page:
*/
goto same_page;
}
+ spin_unlock(ptl);
}
- spin_unlock(&mm->page_table_lock);
*nr_pages = remainder;
*position = vaddr;
@@ -3118,13 +3119,15 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
flush_cache_range(vma, address, end);
mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
- spin_lock(&mm->page_table_lock);
for (; address < end; address += huge_page_size(h)) {
+ spinlock_t *ptl;
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
+ ptl = huge_pte_lock(h, mm, ptep);
if (huge_pmd_unshare(mm, &address, ptep)) {
pages++;
+ spin_unlock(ptl);
continue;
}
if (!huge_pte_none(huge_ptep_get(ptep))) {
@@ -3134,8 +3137,8 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
set_huge_pte_at(mm, address, ptep, pte);
pages++;
}
+ spin_unlock(ptl);
}
- spin_unlock(&mm->page_table_lock);
/*
* Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
* may have cleared our pud entry and done put_page on the page table:
@@ -3298,6 +3301,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
unsigned long saddr;
pte_t *spte = NULL;
pte_t *pte;
+ spinlock_t *ptl;
if (!vma_shareable(vma, addr))
return (pte_t *)pmd_alloc(mm, pud, addr);
@@ -3320,13 +3324,14 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
if (!spte)
goto out;
- spin_lock(&mm->page_table_lock);
+ ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
+ spin_lock(ptl);
if (pud_none(*pud))
pud_populate(mm, pud,
(pmd_t *)((unsigned long)spte & PAGE_MASK));
else
put_page(virt_to_page(spte));
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
out:
pte = (pte_t *)pmd_alloc(mm, pud, addr);
mutex_unlock(&mapping->i_mmap_mutex);
@@ -3340,7 +3345,7 @@ out:
* indicated by page_count > 1, unmap is achieved by clearing pud and
* decrementing the ref count. If count == 1, the pte page is not shared.
*
- * called with vma->vm_mm->page_table_lock held.
+ * called with page table lock held.
*
* returns: 1 successfully unmapped a shared pte page
* 0 the underlying pte page is not shared, or it is the last user
diff --git a/mm/kmemleak.c b/mm/kmemleak.c
index e126b0ef9ad2..31f01c5011e5 100644
--- a/mm/kmemleak.c
+++ b/mm/kmemleak.c
@@ -753,7 +753,9 @@ static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
}
spin_lock_irqsave(&object->lock, flags);
- if (ptr + size > object->pointer + object->size) {
+ if (size == SIZE_MAX) {
+ size = object->pointer + object->size - ptr;
+ } else if (ptr + size > object->pointer + object->size) {
kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
dump_object_info(object);
kmem_cache_free(scan_area_cache, area);
diff --git a/mm/ksm.c b/mm/ksm.c
index 0bea2b262a47..175fff79dc95 100644
--- a/mm/ksm.c
+++ b/mm/ksm.c
@@ -2309,8 +2309,8 @@ static ssize_t merge_across_nodes_store(struct kobject *kobj,
* Allocate stable and unstable together:
* MAXSMP NODES_SHIFT 10 will use 16kB.
*/
- buf = kcalloc(nr_node_ids + nr_node_ids,
- sizeof(*buf), GFP_KERNEL | __GFP_ZERO);
+ buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
+ GFP_KERNEL);
/* Let us assume that RB_ROOT is NULL is zero */
if (!buf)
err = -ENOMEM;
diff --git a/mm/memblock.c b/mm/memblock.c
index 0ac412a0a7ee..53e477bb5558 100644
--- a/mm/memblock.c
+++ b/mm/memblock.c
@@ -20,6 +20,8 @@
#include <linux/seq_file.h>
#include <linux/memblock.h>
+#include <asm-generic/sections.h>
+
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
@@ -32,6 +34,7 @@ struct memblock memblock __initdata_memblock = {
.reserved.cnt = 1, /* empty dummy entry */
.reserved.max = INIT_MEMBLOCK_REGIONS,
+ .bottom_up = false,
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
};
@@ -82,6 +85,73 @@ static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
return (i < type->cnt) ? i : -1;
}
+/*
+ * __memblock_find_range_bottom_up - find free area utility in bottom-up
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @nid: nid of the free area to find, %MAX_NUMNODES for any node
+ *
+ * Utility called from memblock_find_in_range_node(), find free area bottom-up.
+ *
+ * RETURNS:
+ * Found address on success, 0 on failure.
+ */
+static phys_addr_t __init_memblock
+__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
+ phys_addr_t size, phys_addr_t align, int nid)
+{
+ phys_addr_t this_start, this_end, cand;
+ u64 i;
+
+ for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
+ this_start = clamp(this_start, start, end);
+ this_end = clamp(this_end, start, end);
+
+ cand = round_up(this_start, align);
+ if (cand < this_end && this_end - cand >= size)
+ return cand;
+ }
+
+ return 0;
+}
+
+/**
+ * __memblock_find_range_top_down - find free area utility, in top-down
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @nid: nid of the free area to find, %MAX_NUMNODES for any node
+ *
+ * Utility called from memblock_find_in_range_node(), find free area top-down.
+ *
+ * RETURNS:
+ * Found address on success, 0 on failure.
+ */
+static phys_addr_t __init_memblock
+__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
+ phys_addr_t size, phys_addr_t align, int nid)
+{
+ phys_addr_t this_start, this_end, cand;
+ u64 i;
+
+ for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
+ this_start = clamp(this_start, start, end);
+ this_end = clamp(this_end, start, end);
+
+ if (this_end < size)
+ continue;
+
+ cand = round_down(this_end - size, align);
+ if (cand >= this_start)
+ return cand;
+ }
+
+ return 0;
+}
+
/**
* memblock_find_in_range_node - find free area in given range and node
* @start: start of candidate range
@@ -92,15 +162,23 @@ static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
*
* Find @size free area aligned to @align in the specified range and node.
*
+ * When allocation direction is bottom-up, the @start should be greater
+ * than the end of the kernel image. Otherwise, it will be trimmed. The
+ * reason is that we want the bottom-up allocation just near the kernel
+ * image so it is highly likely that the allocated memory and the kernel
+ * will reside in the same node.
+ *
+ * If bottom-up allocation failed, will try to allocate memory top-down.
+ *
* RETURNS:
- * Found address on success, %0 on failure.
+ * Found address on success, 0 on failure.
*/
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
phys_addr_t end, phys_addr_t size,
phys_addr_t align, int nid)
{
- phys_addr_t this_start, this_end, cand;
- u64 i;
+ int ret;
+ phys_addr_t kernel_end;
/* pump up @end */
if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
@@ -109,19 +187,39 @@ phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
/* avoid allocating the first page */
start = max_t(phys_addr_t, start, PAGE_SIZE);
end = max(start, end);
+ kernel_end = __pa_symbol(_end);
- for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
- this_start = clamp(this_start, start, end);
- this_end = clamp(this_end, start, end);
+ /*
+ * try bottom-up allocation only when bottom-up mode
+ * is set and @end is above the kernel image.
+ */
+ if (memblock_bottom_up() && end > kernel_end) {
+ phys_addr_t bottom_up_start;
- if (this_end < size)
- continue;
+ /* make sure we will allocate above the kernel */
+ bottom_up_start = max(start, kernel_end);
- cand = round_down(this_end - size, align);
- if (cand >= this_start)
- return cand;
+ /* ok, try bottom-up allocation first */
+ ret = __memblock_find_range_bottom_up(bottom_up_start, end,
+ size, align, nid);
+ if (ret)
+ return ret;
+
+ /*
+ * we always limit bottom-up allocation above the kernel,
+ * but top-down allocation doesn't have the limit, so
+ * retrying top-down allocation may succeed when bottom-up
+ * allocation failed.
+ *
+ * bottom-up allocation is expected to be fail very rarely,
+ * so we use WARN_ONCE() here to see the stack trace if
+ * fail happens.
+ */
+ WARN_ONCE(1, "memblock: bottom-up allocation failed, "
+ "memory hotunplug may be affected\n");
}
- return 0;
+
+ return __memblock_find_range_top_down(start, end, size, align, nid);
}
/**
@@ -134,7 +232,7 @@ phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
* Find @size free area aligned to @align in the specified range.
*
* RETURNS:
- * Found address on success, %0 on failure.
+ * Found address on success, 0 on failure.
*/
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
phys_addr_t end, phys_addr_t size,
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 13b9d0f221b8..7f1a356153c0 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -59,6 +59,7 @@
#include <net/sock.h>
#include <net/ip.h>
#include <net/tcp_memcontrol.h>
+#include "slab.h"
#include <asm/uaccess.h>
@@ -312,7 +313,7 @@ struct mem_cgroup {
atomic_t dead_count;
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
- struct tcp_memcontrol tcp_mem;
+ struct cg_proto tcp_mem;
#endif
#if defined(CONFIG_MEMCG_KMEM)
/* analogous to slab_common's slab_caches list. per-memcg */
@@ -337,7 +338,7 @@ struct mem_cgroup {
static size_t memcg_size(void)
{
return sizeof(struct mem_cgroup) +
- nr_node_ids * sizeof(struct mem_cgroup_per_node);
+ nr_node_ids * sizeof(struct mem_cgroup_per_node *);
}
/* internal only representation about the status of kmem accounting. */
@@ -499,6 +500,29 @@ static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
return (memcg == root_mem_cgroup);
}
+/*
+ * We restrict the id in the range of [1, 65535], so it can fit into
+ * an unsigned short.
+ */
+#define MEM_CGROUP_ID_MAX USHRT_MAX
+
+static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
+{
+ /*
+ * The ID of the root cgroup is 0, but memcg treat 0 as an
+ * invalid ID, so we return (cgroup_id + 1).
+ */
+ return memcg->css.cgroup->id + 1;
+}
+
+static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
+{
+ struct cgroup_subsys_state *css;
+
+ css = css_from_id(id - 1, &mem_cgroup_subsys);
+ return mem_cgroup_from_css(css);
+}
+
/* Writing them here to avoid exposing memcg's inner layout */
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
@@ -551,13 +575,13 @@ struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
if (!memcg || mem_cgroup_is_root(memcg))
return NULL;
- return &memcg->tcp_mem.cg_proto;
+ return &memcg->tcp_mem;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
- if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
+ if (!memcg_proto_activated(&memcg->tcp_mem))
return;
static_key_slow_dec(&memcg_socket_limit_enabled);
}
@@ -570,16 +594,11 @@ static void disarm_sock_keys(struct mem_cgroup *memcg)
#ifdef CONFIG_MEMCG_KMEM
/*
* This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
- * There are two main reasons for not using the css_id for this:
- * 1) this works better in sparse environments, where we have a lot of memcgs,
- * but only a few kmem-limited. Or also, if we have, for instance, 200
- * memcgs, and none but the 200th is kmem-limited, we'd have to have a
- * 200 entry array for that.
- *
- * 2) In order not to violate the cgroup API, we would like to do all memory
- * allocation in ->create(). At that point, we haven't yet allocated the
- * css_id. Having a separate index prevents us from messing with the cgroup
- * core for this
+ * The main reason for not using cgroup id for this:
+ * this works better in sparse environments, where we have a lot of memcgs,
+ * but only a few kmem-limited. Or also, if we have, for instance, 200
+ * memcgs, and none but the 200th is kmem-limited, we'd have to have a
+ * 200 entry array for that.
*
* The current size of the caches array is stored in
* memcg_limited_groups_array_size. It will double each time we have to
@@ -594,14 +613,14 @@ int memcg_limited_groups_array_size;
* cgroups is a reasonable guess. In the future, it could be a parameter or
* tunable, but that is strictly not necessary.
*
- * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
+ * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
* this constant directly from cgroup, but it is understandable that this is
* better kept as an internal representation in cgroup.c. In any case, the
- * css_id space is not getting any smaller, and we don't have to necessarily
+ * cgrp_id space is not getting any smaller, and we don't have to necessarily
* increase ours as well if it increases.
*/
#define MEMCG_CACHES_MIN_SIZE 4
-#define MEMCG_CACHES_MAX_SIZE 65535
+#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
/*
* A lot of the calls to the cache allocation functions are expected to be
@@ -1408,7 +1427,7 @@ bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
return true;
if (!root_memcg->use_hierarchy || !memcg)
return false;
- return css_is_ancestor(&memcg->css, &root_memcg->css);
+ return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
}
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
@@ -2675,7 +2694,10 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
goto bypass;
if (unlikely(task_in_memcg_oom(current)))
- goto bypass;
+ goto nomem;
+
+ if (gfp_mask & __GFP_NOFAIL)
+ oom = false;
/*
* We always charge the cgroup the mm_struct belongs to.
@@ -2826,15 +2848,10 @@ static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
*/
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
- struct cgroup_subsys_state *css;
-
/* ID 0 is unused ID */
if (!id)
return NULL;
- css = css_lookup(&mem_cgroup_subsys, id);
- if (!css)
- return NULL;
- return mem_cgroup_from_css(css);
+ return mem_cgroup_from_id(id);
}
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
@@ -2955,7 +2972,7 @@ static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
VM_BUG_ON(p->is_root_cache);
cachep = p->root_cache;
- return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
+ return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
}
#ifdef CONFIG_SLABINFO
@@ -2984,21 +3001,14 @@ static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
struct res_counter *fail_res;
struct mem_cgroup *_memcg;
int ret = 0;
- bool may_oom;
ret = res_counter_charge(&memcg->kmem, size, &fail_res);
if (ret)
return ret;
- /*
- * Conditions under which we can wait for the oom_killer. Those are
- * the same conditions tested by the core page allocator
- */
- may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
-
_memcg = memcg;
ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
- &_memcg, may_oom);
+ &_memcg, oom_gfp_allowed(gfp));
if (ret == -EINTR) {
/*
@@ -3138,7 +3148,7 @@ int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
struct memcg_cache_params *cur_params = s->memcg_params;
- VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
+ VM_BUG_ON(!is_root_cache(s));
if (num_groups > memcg_limited_groups_array_size) {
int i;
@@ -3399,7 +3409,7 @@ static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
idx = memcg_cache_id(memcg);
mutex_lock(&memcg_cache_mutex);
- new_cachep = cachep->memcg_params->memcg_caches[idx];
+ new_cachep = cache_from_memcg_idx(cachep, idx);
if (new_cachep) {
css_put(&memcg->css);
goto out;
@@ -3445,8 +3455,8 @@ void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
* we'll take the set_limit_mutex to protect ourselves against this.
*/
mutex_lock(&set_limit_mutex);
- for (i = 0; i < memcg_limited_groups_array_size; i++) {
- c = s->memcg_params->memcg_caches[i];
+ for_each_memcg_cache_index(i) {
+ c = cache_from_memcg_idx(s, i);
if (!c)
continue;
@@ -3579,8 +3589,8 @@ struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
* code updating memcg_caches will issue a write barrier to match this.
*/
read_barrier_depends();
- if (likely(cachep->memcg_params->memcg_caches[idx])) {
- cachep = cachep->memcg_params->memcg_caches[idx];
+ if (likely(cache_from_memcg_idx(cachep, idx))) {
+ cachep = cache_from_memcg_idx(cachep, idx);
goto out;
}
@@ -4350,7 +4360,7 @@ mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
* css_get() was called in uncharge().
*/
if (do_swap_account && swapout && memcg)
- swap_cgroup_record(ent, css_id(&memcg->css));
+ swap_cgroup_record(ent, mem_cgroup_id(memcg));
}
#endif
@@ -4402,8 +4412,8 @@ static int mem_cgroup_move_swap_account(swp_entry_t entry,
{
unsigned short old_id, new_id;
- old_id = css_id(&from->css);
- new_id = css_id(&to->css);
+ old_id = mem_cgroup_id(from);
+ new_id = mem_cgroup_id(to);
if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
mem_cgroup_swap_statistics(from, false);
@@ -5376,45 +5386,50 @@ static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
struct cftype *cft, struct seq_file *m)
{
+ struct numa_stat {
+ const char *name;
+ unsigned int lru_mask;
+ };
+
+ static const struct numa_stat stats[] = {
+ { "total", LRU_ALL },
+ { "file", LRU_ALL_FILE },
+ { "anon", LRU_ALL_ANON },
+ { "unevictable", BIT(LRU_UNEVICTABLE) },
+ };
+ const struct numa_stat *stat;
int nid;
- unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
- unsigned long node_nr;
+ unsigned long nr;
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
- seq_printf(m, "total=%lu", total_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
-
- file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
- seq_printf(m, "file=%lu", file_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- LRU_ALL_FILE);
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
-
- anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
- seq_printf(m, "anon=%lu", anon_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- LRU_ALL_ANON);
- seq_printf(m, " N%d=%lu", nid, node_nr);
+ for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
+ nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
+ seq_printf(m, "%s=%lu", stat->name, nr);
+ for_each_node_state(nid, N_MEMORY) {
+ nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
+ stat->lru_mask);
+ seq_printf(m, " N%d=%lu", nid, nr);
+ }
+ seq_putc(m, '\n');
+ }
+
+ for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
+ struct mem_cgroup *iter;
+
+ nr = 0;
+ for_each_mem_cgroup_tree(iter, memcg)
+ nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
+ seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
+ for_each_node_state(nid, N_MEMORY) {
+ nr = 0;
+ for_each_mem_cgroup_tree(iter, memcg)
+ nr += mem_cgroup_node_nr_lru_pages(
+ iter, nid, stat->lru_mask);
+ seq_printf(m, " N%d=%lu", nid, nr);
+ }
+ seq_putc(m, '\n');
}
- seq_putc(m, '\n');
- unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
- seq_printf(m, "unevictable=%lu", unevictable_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- BIT(LRU_UNEVICTABLE));
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
return 0;
}
#endif /* CONFIG_NUMA */
@@ -6166,7 +6181,6 @@ static void __mem_cgroup_free(struct mem_cgroup *memcg)
size_t size = memcg_size();
mem_cgroup_remove_from_trees(memcg);
- free_css_id(&mem_cgroup_subsys, &memcg->css);
for_each_node(node)
free_mem_cgroup_per_zone_info(memcg, node);
@@ -6269,6 +6283,9 @@ mem_cgroup_css_online(struct cgroup_subsys_state *css)
struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
int error = 0;
+ if (css->cgroup->id > MEM_CGROUP_ID_MAX)
+ return -ENOSPC;
+
if (!parent)
return 0;
@@ -6338,6 +6355,42 @@ static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ /*
+ * XXX: css_offline() would be where we should reparent all
+ * memory to prepare the cgroup for destruction. However,
+ * memcg does not do css_tryget() and res_counter charging
+ * under the same RCU lock region, which means that charging
+ * could race with offlining. Offlining only happens to
+ * cgroups with no tasks in them but charges can show up
+ * without any tasks from the swapin path when the target
+ * memcg is looked up from the swapout record and not from the
+ * current task as it usually is. A race like this can leak
+ * charges and put pages with stale cgroup pointers into
+ * circulation:
+ *
+ * #0 #1
+ * lookup_swap_cgroup_id()
+ * rcu_read_lock()
+ * mem_cgroup_lookup()
+ * css_tryget()
+ * rcu_read_unlock()
+ * disable css_tryget()
+ * call_rcu()
+ * offline_css()
+ * reparent_charges()
+ * res_counter_charge()
+ * css_put()
+ * css_free()
+ * pc->mem_cgroup = dead memcg
+ * add page to lru
+ *
+ * The bulk of the charges are still moved in offline_css() to
+ * avoid pinning a lot of pages in case a long-term reference
+ * like a swapout record is deferring the css_free() to long
+ * after offlining. But this makes sure we catch any charges
+ * made after offlining:
+ */
+ mem_cgroup_reparent_charges(memcg);
memcg_destroy_kmem(memcg);
__mem_cgroup_free(memcg);
@@ -6540,7 +6593,7 @@ static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
}
/* There is a swap entry and a page doesn't exist or isn't charged */
if (ent.val && !ret &&
- css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
+ mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
ret = MC_TARGET_SWAP;
if (target)
target->ent = ent;
@@ -6591,10 +6644,10 @@ static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
pte_t *pte;
spinlock_t *ptl;
- if (pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
mc.precharge += HPAGE_PMD_NR;
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
return 0;
}
@@ -6783,9 +6836,9 @@ static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
* to be unlocked in __split_huge_page_splitting(), where the main
* part of thp split is not executed yet.
*/
- if (pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
if (mc.precharge < HPAGE_PMD_NR) {
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
return 0;
}
target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
@@ -6802,7 +6855,7 @@ static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
}
put_page(page);
}
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
return 0;
}
@@ -6960,7 +7013,6 @@ struct cgroup_subsys mem_cgroup_subsys = {
.bind = mem_cgroup_bind,
.base_cftypes = mem_cgroup_files,
.early_init = 0,
- .use_id = 1,
};
#ifdef CONFIG_MEMCG_SWAP
diff --git a/mm/memory-failure.c b/mm/memory-failure.c
index bf3351b5115e..fabe55046c1d 100644
--- a/mm/memory-failure.c
+++ b/mm/memory-failure.c
@@ -938,6 +938,16 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
BUG_ON(!PageHWPoison(p));
return SWAP_FAIL;
}
+ /*
+ * We pinned the head page for hwpoison handling,
+ * now we split the thp and we are interested in
+ * the hwpoisoned raw page, so move the refcount
+ * to it.
+ */
+ if (hpage != p) {
+ put_page(hpage);
+ get_page(p);
+ }
/* THP is split, so ppage should be the real poisoned page. */
ppage = p;
}
@@ -1269,7 +1279,7 @@ void memory_failure_queue(unsigned long pfn, int trapno, int flags)
mf_cpu = &get_cpu_var(memory_failure_cpu);
spin_lock_irqsave(&mf_cpu->lock, proc_flags);
- if (kfifo_put(&mf_cpu->fifo, &entry))
+ if (kfifo_put(&mf_cpu->fifo, entry))
schedule_work_on(smp_processor_id(), &mf_cpu->work);
else
pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
@@ -1423,19 +1433,6 @@ static int __get_any_page(struct page *p, unsigned long pfn, int flags)
return 1;
/*
- * The lock_memory_hotplug prevents a race with memory hotplug.
- * This is a big hammer, a better would be nicer.
- */
- lock_memory_hotplug();
-
- /*
- * Isolate the page, so that it doesn't get reallocated if it
- * was free. This flag should be kept set until the source page
- * is freed and PG_hwpoison on it is set.
- */
- if (get_pageblock_migratetype(p) != MIGRATE_ISOLATE)
- set_migratetype_isolate(p, true);
- /*
* When the target page is a free hugepage, just remove it
* from free hugepage list.
*/
@@ -1455,7 +1452,6 @@ static int __get_any_page(struct page *p, unsigned long pfn, int flags)
/* Not a free page */
ret = 1;
}
- unlock_memory_hotplug();
return ret;
}
@@ -1519,10 +1515,16 @@ static int soft_offline_huge_page(struct page *page, int flags)
if (ret > 0)
ret = -EIO;
} else {
- set_page_hwpoison_huge_page(hpage);
- dequeue_hwpoisoned_huge_page(hpage);
- atomic_long_add(1 << compound_order(hpage),
- &num_poisoned_pages);
+ /* overcommit hugetlb page will be freed to buddy */
+ if (PageHuge(page)) {
+ set_page_hwpoison_huge_page(hpage);
+ dequeue_hwpoisoned_huge_page(hpage);
+ atomic_long_add(1 << compound_order(hpage),
+ &num_poisoned_pages);
+ } else {
+ SetPageHWPoison(page);
+ atomic_long_inc(&num_poisoned_pages);
+ }
}
return ret;
}
@@ -1654,15 +1656,28 @@ int soft_offline_page(struct page *page, int flags)
}
}
+ /*
+ * The lock_memory_hotplug prevents a race with memory hotplug.
+ * This is a big hammer, a better would be nicer.
+ */
+ lock_memory_hotplug();
+
+ /*
+ * Isolate the page, so that it doesn't get reallocated if it
+ * was free. This flag should be kept set until the source page
+ * is freed and PG_hwpoison on it is set.
+ */
+ if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
+ set_migratetype_isolate(page, true);
+
ret = get_any_page(page, pfn, flags);
- if (ret < 0)
- goto unset;
- if (ret) { /* for in-use pages */
+ unlock_memory_hotplug();
+ if (ret > 0) { /* for in-use pages */
if (PageHuge(page))
ret = soft_offline_huge_page(page, flags);
else
ret = __soft_offline_page(page, flags);
- } else { /* for free pages */
+ } else if (ret == 0) { /* for free pages */
if (PageHuge(page)) {
set_page_hwpoison_huge_page(hpage);
dequeue_hwpoisoned_huge_page(hpage);
@@ -1673,7 +1688,6 @@ int soft_offline_page(struct page *page, int flags)
atomic_long_inc(&num_poisoned_pages);
}
}
-unset:
unset_migratetype_isolate(page, MIGRATE_MOVABLE);
return ret;
}
diff --git a/mm/memory.c b/mm/memory.c
index d176154c243f..6768ce9e57d2 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -69,8 +69,8 @@
#include "internal.h"
-#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
-#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
+#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
+#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
#endif
#ifndef CONFIG_NEED_MULTIPLE_NODES
@@ -382,7 +382,7 @@ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
pgtable_t token = pmd_pgtable(*pmd);
pmd_clear(pmd);
pte_free_tlb(tlb, token, addr);
- tlb->mm->nr_ptes--;
+ atomic_long_dec(&tlb->mm->nr_ptes);
}
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
@@ -453,8 +453,6 @@ static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
/*
* This function frees user-level page tables of a process.
- *
- * Must be called with pagetable lock held.
*/
void free_pgd_range(struct mmu_gather *tlb,
unsigned long addr, unsigned long end,
@@ -552,6 +550,7 @@ void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long address)
{
+ spinlock_t *ptl;
pgtable_t new = pte_alloc_one(mm, address);
int wait_split_huge_page;
if (!new)
@@ -572,15 +571,15 @@ int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
*/
smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
wait_split_huge_page = 0;
if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
- mm->nr_ptes++;
+ atomic_long_inc(&mm->nr_ptes);
pmd_populate(mm, pmd, new);
new = NULL;
} else if (unlikely(pmd_trans_splitting(*pmd)))
wait_split_huge_page = 1;
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
if (new)
pte_free(mm, new);
if (wait_split_huge_page)
@@ -681,7 +680,7 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
if (vma->vm_ops)
printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
vma->vm_ops->fault);
- if (vma->vm_file && vma->vm_file->f_op)
+ if (vma->vm_file)
printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
vma->vm_file->f_op->mmap);
dump_stack();
@@ -1518,20 +1517,20 @@ struct page *follow_page_mask(struct vm_area_struct *vma,
split_huge_page_pmd(vma, address, pmd);
goto split_fallthrough;
}
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (likely(pmd_trans_huge(*pmd))) {
if (unlikely(pmd_trans_splitting(*pmd))) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
wait_split_huge_page(vma->anon_vma, pmd);
} else {
page = follow_trans_huge_pmd(vma, address,
pmd, flags);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
*page_mask = HPAGE_PMD_NR - 1;
goto out;
}
} else
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
/* fall through */
}
split_fallthrough:
@@ -2721,6 +2720,14 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
get_page(dirty_page);
reuse:
+ /*
+ * Clear the pages cpupid information as the existing
+ * information potentially belongs to a now completely
+ * unrelated process.
+ */
+ if (old_page)
+ page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
+
flush_cache_page(vma, address, pte_pfn(orig_pte));
entry = pte_mkyoung(orig_pte);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
@@ -3521,13 +3528,16 @@ static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
}
int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
- unsigned long addr, int page_nid)
+ unsigned long addr, int page_nid,
+ int *flags)
{
get_page(page);
count_vm_numa_event(NUMA_HINT_FAULTS);
- if (page_nid == numa_node_id())
+ if (page_nid == numa_node_id()) {
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
+ *flags |= TNF_FAULT_LOCAL;
+ }
return mpol_misplaced(page, vma, addr);
}
@@ -3538,8 +3548,10 @@ int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page *page = NULL;
spinlock_t *ptl;
int page_nid = -1;
+ int last_cpupid;
int target_nid;
bool migrated = false;
+ int flags = 0;
/*
* The "pte" at this point cannot be used safely without
@@ -3566,9 +3578,26 @@ int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
pte_unmap_unlock(ptep, ptl);
return 0;
}
+ BUG_ON(is_zero_pfn(page_to_pfn(page)));
+
+ /*
+ * Avoid grouping on DSO/COW pages in specific and RO pages
+ * in general, RO pages shouldn't hurt as much anyway since
+ * they can be in shared cache state.
+ */
+ if (!pte_write(pte))
+ flags |= TNF_NO_GROUP;
+
+ /*
+ * Flag if the page is shared between multiple address spaces. This
+ * is later used when determining whether to group tasks together
+ */
+ if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
+ flags |= TNF_SHARED;
+ last_cpupid = page_cpupid_last(page);
page_nid = page_to_nid(page);
- target_nid = numa_migrate_prep(page, vma, addr, page_nid);
+ target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
pte_unmap_unlock(ptep, ptl);
if (target_nid == -1) {
put_page(page);
@@ -3576,103 +3605,18 @@ int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
}
/* Migrate to the requested node */
- migrated = migrate_misplaced_page(page, target_nid);
- if (migrated)
+ migrated = migrate_misplaced_page(page, vma, target_nid);
+ if (migrated) {
page_nid = target_nid;
+ flags |= TNF_MIGRATED;
+ }
out:
if (page_nid != -1)
- task_numa_fault(page_nid, 1, migrated);
+ task_numa_fault(last_cpupid, page_nid, 1, flags);
return 0;
}
-/* NUMA hinting page fault entry point for regular pmds */
-#ifdef CONFIG_NUMA_BALANCING
-static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long addr, pmd_t *pmdp)
-{
- pmd_t pmd;
- pte_t *pte, *orig_pte;
- unsigned long _addr = addr & PMD_MASK;
- unsigned long offset;
- spinlock_t *ptl;
- bool numa = false;
-
- spin_lock(&mm->page_table_lock);
- pmd = *pmdp;
- if (pmd_numa(pmd)) {
- set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
- numa = true;
- }
- spin_unlock(&mm->page_table_lock);
-
- if (!numa)
- return 0;
-
- /* we're in a page fault so some vma must be in the range */
- BUG_ON(!vma);
- BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
- offset = max(_addr, vma->vm_start) & ~PMD_MASK;
- VM_BUG_ON(offset >= PMD_SIZE);
- orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
- pte += offset >> PAGE_SHIFT;
- for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
- pte_t pteval = *pte;
- struct page *page;
- int page_nid = -1;
- int target_nid;
- bool migrated = false;
-
- if (!pte_present(pteval))
- continue;
- if (!pte_numa(pteval))
- continue;
- if (addr >= vma->vm_end) {
- vma = find_vma(mm, addr);
- /* there's a pte present so there must be a vma */
- BUG_ON(!vma);
- BUG_ON(addr < vma->vm_start);
- }
- if (pte_numa(pteval)) {
- pteval = pte_mknonnuma(pteval);
- set_pte_at(mm, addr, pte, pteval);
- }
- page = vm_normal_page(vma, addr, pteval);
- if (unlikely(!page))
- continue;
- /* only check non-shared pages */
- if (unlikely(page_mapcount(page) != 1))
- continue;
-
- page_nid = page_to_nid(page);
- target_nid = numa_migrate_prep(page, vma, addr, page_nid);
- pte_unmap_unlock(pte, ptl);
- if (target_nid != -1) {
- migrated = migrate_misplaced_page(page, target_nid);
- if (migrated)
- page_nid = target_nid;
- } else {
- put_page(page);
- }
-
- if (page_nid != -1)
- task_numa_fault(page_nid, 1, migrated);
-
- pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
- }
- pte_unmap_unlock(orig_pte, ptl);
-
- return 0;
-}
-#else
-static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long addr, pmd_t *pmdp)
-{
- BUG();
- return 0;
-}
-#endif /* CONFIG_NUMA_BALANCING */
-
/*
* These routines also need to handle stuff like marking pages dirty
* and/or accessed for architectures that don't do it in hardware (most
@@ -3811,8 +3755,8 @@ retry:
}
}
- if (pmd_numa(*pmd))
- return do_pmd_numa_page(mm, vma, address, pmd);
+ /* THP should already have been handled */
+ BUG_ON(pmd_numa(*pmd));
/*
* Use __pte_alloc instead of pte_alloc_map, because we can't
@@ -4326,3 +4270,21 @@ void copy_user_huge_page(struct page *dst, struct page *src,
}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
+
+#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
+bool ptlock_alloc(struct page *page)
+{
+ spinlock_t *ptl;
+
+ ptl = kmalloc(sizeof(spinlock_t), GFP_KERNEL);
+ if (!ptl)
+ return false;
+ page->ptl = ptl;
+ return true;
+}
+
+void ptlock_free(struct page *page)
+{
+ kfree(page->ptl);
+}
+#endif
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c
index ed85fe3870e2..489f235502db 100644
--- a/mm/memory_hotplug.c
+++ b/mm/memory_hotplug.c
@@ -31,6 +31,7 @@
#include <linux/firmware-map.h>
#include <linux/stop_machine.h>
#include <linux/hugetlb.h>
+#include <linux/memblock.h>
#include <asm/tlbflush.h>
@@ -365,8 +366,7 @@ out_fail:
static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
unsigned long end_pfn)
{
- unsigned long old_pgdat_end_pfn =
- pgdat->node_start_pfn + pgdat->node_spanned_pages;
+ unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
pgdat->node_start_pfn = start_pfn;
@@ -402,13 +402,12 @@ static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
static int __meminit __add_section(int nid, struct zone *zone,
unsigned long phys_start_pfn)
{
- int nr_pages = PAGES_PER_SECTION;
int ret;
if (pfn_valid(phys_start_pfn))
return -EEXIST;
- ret = sparse_add_one_section(zone, phys_start_pfn, nr_pages);
+ ret = sparse_add_one_section(zone, phys_start_pfn);
if (ret < 0)
return ret;
@@ -579,9 +578,9 @@ static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
static void shrink_pgdat_span(struct pglist_data *pgdat,
unsigned long start_pfn, unsigned long end_pfn)
{
- unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
- unsigned long pgdat_end_pfn =
- pgdat->node_start_pfn + pgdat->node_spanned_pages;
+ unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
+ unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
+ unsigned long pgdat_end_pfn = p;
unsigned long pfn;
struct mem_section *ms;
int nid = pgdat->node_id;
@@ -935,7 +934,7 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_typ
arg.nr_pages = nr_pages;
node_states_check_changes_online(nr_pages, zone, &arg);
- nid = page_to_nid(pfn_to_page(pfn));
+ nid = pfn_to_nid(pfn);
ret = memory_notify(MEM_GOING_ONLINE, &arg);
ret = notifier_to_errno(ret);
@@ -1044,17 +1043,23 @@ static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
}
-/*
+/**
+ * try_online_node - online a node if offlined
+ *
* called by cpu_up() to online a node without onlined memory.
*/
-int mem_online_node(int nid)
+int try_online_node(int nid)
{
pg_data_t *pgdat;
int ret;
+ if (node_online(nid))
+ return 0;
+
lock_memory_hotplug();
pgdat = hotadd_new_pgdat(nid, 0);
if (!pgdat) {
+ pr_err("Cannot online node %d due to NULL pgdat\n", nid);
ret = -ENOMEM;
goto out;
}
@@ -1062,6 +1067,12 @@ int mem_online_node(int nid)
ret = register_one_node(nid);
BUG_ON(ret);
+ if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
+ mutex_lock(&zonelists_mutex);
+ build_all_zonelists(NULL, NULL);
+ mutex_unlock(&zonelists_mutex);
+ }
+
out:
unlock_memory_hotplug();
return ret;
@@ -1412,6 +1423,36 @@ static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
}
#endif /* CONFIG_MOVABLE_NODE */
+static int __init cmdline_parse_movable_node(char *p)
+{
+#ifdef CONFIG_MOVABLE_NODE
+ /*
+ * Memory used by the kernel cannot be hot-removed because Linux
+ * cannot migrate the kernel pages. When memory hotplug is
+ * enabled, we should prevent memblock from allocating memory
+ * for the kernel.
+ *
+ * ACPI SRAT records all hotpluggable memory ranges. But before
+ * SRAT is parsed, we don't know about it.
+ *
+ * The kernel image is loaded into memory at very early time. We
+ * cannot prevent this anyway. So on NUMA system, we set any
+ * node the kernel resides in as un-hotpluggable.
+ *
+ * Since on modern servers, one node could have double-digit
+ * gigabytes memory, we can assume the memory around the kernel
+ * image is also un-hotpluggable. So before SRAT is parsed, just
+ * allocate memory near the kernel image to try the best to keep
+ * the kernel away from hotpluggable memory.
+ */
+ memblock_set_bottom_up(true);
+#else
+ pr_warn("movable_node option not supported\n");
+#endif
+ return 0;
+}
+early_param("movable_node", cmdline_parse_movable_node);
+
/* check which state of node_states will be changed when offline memory */
static void node_states_check_changes_offline(unsigned long nr_pages,
struct zone *zone, struct memory_notify *arg)
@@ -1702,7 +1743,7 @@ int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
}
#ifdef CONFIG_MEMORY_HOTREMOVE
-static int is_memblock_offlined_cb(struct memory_block *mem, void *arg)
+static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
{
int ret = !is_memblock_offlined(mem);
@@ -1854,7 +1895,7 @@ void __ref remove_memory(int nid, u64 start, u64 size)
* if this is not the case.
*/
ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
- is_memblock_offlined_cb);
+ check_memblock_offlined_cb);
if (ret) {
unlock_memory_hotplug();
BUG();
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index 04729647f359..0cd2c4d4e270 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -525,8 +525,9 @@ static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
#ifdef CONFIG_HUGETLB_PAGE
int nid;
struct page *page;
+ spinlock_t *ptl;
- spin_lock(&vma->vm_mm->page_table_lock);
+ ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
page = pte_page(huge_ptep_get((pte_t *)pmd));
nid = page_to_nid(page);
if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
@@ -536,7 +537,7 @@ static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
(flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
isolate_huge_page(page, private);
unlock:
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
#else
BUG();
#endif
@@ -1125,7 +1126,7 @@ int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
tmp = *from;
while (!nodes_empty(tmp)) {
int s,d;
- int source = -1;
+ int source = NUMA_NO_NODE;
int dest = 0;
for_each_node_mask(s, tmp) {
@@ -1160,7 +1161,7 @@ int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
if (!node_isset(dest, tmp))
break;
}
- if (source == -1)
+ if (source == NUMA_NO_NODE)
break;
node_clear(source, tmp);
@@ -1196,14 +1197,16 @@ static struct page *new_vma_page(struct page *page, unsigned long private, int *
break;
vma = vma->vm_next;
}
+
+ if (PageHuge(page)) {
+ if (vma)
+ return alloc_huge_page_noerr(vma, address, 1);
+ else
+ return NULL;
+ }
/*
- * queue_pages_range() confirms that @page belongs to some vma,
- * so vma shouldn't be NULL.
+ * if !vma, alloc_page_vma() will use task or system default policy
*/
- BUG_ON(!vma);
-
- if (PageHuge(page))
- return alloc_huge_page_noerr(vma, address, 1);
return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
}
#else
@@ -1317,7 +1320,7 @@ static long do_mbind(unsigned long start, unsigned long len,
if (nr_failed && (flags & MPOL_MF_STRICT))
err = -EIO;
} else
- putback_lru_pages(&pagelist);
+ putback_movable_pages(&pagelist);
up_write(&mm->mmap_sem);
mpol_out:
@@ -1679,6 +1682,30 @@ struct mempolicy *get_vma_policy(struct task_struct *task,
return pol;
}
+bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
+{
+ struct mempolicy *pol = get_task_policy(task);
+ if (vma) {
+ if (vma->vm_ops && vma->vm_ops->get_policy) {
+ bool ret = false;
+
+ pol = vma->vm_ops->get_policy(vma, vma->vm_start);
+ if (pol && (pol->flags & MPOL_F_MOF))
+ ret = true;
+ mpol_cond_put(pol);
+
+ return ret;
+ } else if (vma->vm_policy) {
+ pol = vma->vm_policy;
+ }
+ }
+
+ if (!pol)
+ return default_policy.flags & MPOL_F_MOF;
+
+ return pol->flags & MPOL_F_MOF;
+}
+
static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
{
enum zone_type dynamic_policy_zone = policy_zone;
@@ -1811,7 +1838,7 @@ static unsigned offset_il_node(struct mempolicy *pol,
unsigned nnodes = nodes_weight(pol->v.nodes);
unsigned target;
int c;
- int nid = -1;
+ int nid = NUMA_NO_NODE;
if (!nnodes)
return numa_node_id();
@@ -1848,11 +1875,11 @@ static inline unsigned interleave_nid(struct mempolicy *pol,
/*
* Return the bit number of a random bit set in the nodemask.
- * (returns -1 if nodemask is empty)
+ * (returns NUMA_NO_NODE if nodemask is empty)
*/
int node_random(const nodemask_t *maskp)
{
- int w, bit = -1;
+ int w, bit = NUMA_NO_NODE;
w = nodes_weight(*maskp);
if (w)
@@ -2277,6 +2304,35 @@ static void sp_free(struct sp_node *n)
kmem_cache_free(sn_cache, n);
}
+#ifdef CONFIG_NUMA_BALANCING
+static bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
+{
+ /* Never defer a private fault */
+ if (cpupid_match_pid(p, last_cpupid))
+ return false;
+
+ if (p->numa_migrate_deferred) {
+ p->numa_migrate_deferred--;
+ return true;
+ }
+ return false;
+}
+
+static inline void defer_numa_migrate(struct task_struct *p)
+{
+ p->numa_migrate_deferred = sysctl_numa_balancing_migrate_deferred;
+}
+#else
+static inline bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
+{
+ return false;
+}
+
+static inline void defer_numa_migrate(struct task_struct *p)
+{
+}
+#endif /* CONFIG_NUMA_BALANCING */
+
/**
* mpol_misplaced - check whether current page node is valid in policy
*
@@ -2300,6 +2356,8 @@ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long
struct zone *zone;
int curnid = page_to_nid(page);
unsigned long pgoff;
+ int thiscpu = raw_smp_processor_id();
+ int thisnid = cpu_to_node(thiscpu);
int polnid = -1;
int ret = -1;
@@ -2348,9 +2406,11 @@ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long
/* Migrate the page towards the node whose CPU is referencing it */
if (pol->flags & MPOL_F_MORON) {
- int last_nid;
+ int last_cpupid;
+ int this_cpupid;
- polnid = numa_node_id();
+ polnid = thisnid;
+ this_cpupid = cpu_pid_to_cpupid(thiscpu, current->pid);
/*
* Multi-stage node selection is used in conjunction
@@ -2373,8 +2433,25 @@ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long
* it less likely we act on an unlikely task<->page
* relation.
*/
- last_nid = page_nid_xchg_last(page, polnid);
- if (last_nid != polnid)
+ last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
+ if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != thisnid) {
+
+ /* See sysctl_numa_balancing_migrate_deferred comment */
+ if (!cpupid_match_pid(current, last_cpupid))
+ defer_numa_migrate(current);
+
+ goto out;
+ }
+
+ /*
+ * The quadratic filter above reduces extraneous migration
+ * of shared pages somewhat. This code reduces it even more,
+ * reducing the overhead of page migrations of shared pages.
+ * This makes workloads with shared pages rely more on
+ * "move task near its memory", and less on "move memory
+ * towards its task", which is exactly what we want.
+ */
+ if (numa_migrate_deferred(current, last_cpupid))
goto out;
}
@@ -2840,62 +2917,45 @@ out:
* @maxlen: length of @buffer
* @pol: pointer to mempolicy to be formatted
*
- * Convert a mempolicy into a string.
- * Returns the number of characters in buffer (if positive)
- * or an error (negative)
+ * Convert @pol into a string. If @buffer is too short, truncate the string.
+ * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
+ * longest flag, "relative", and to display at least a few node ids.
*/
-int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
+void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
{
char *p = buffer;
- int l;
- nodemask_t nodes;
- unsigned short mode;
- unsigned short flags = pol ? pol->flags : 0;
-
- /*
- * Sanity check: room for longest mode, flag and some nodes
- */
- VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
+ nodemask_t nodes = NODE_MASK_NONE;
+ unsigned short mode = MPOL_DEFAULT;
+ unsigned short flags = 0;
- if (!pol || pol == &default_policy)
- mode = MPOL_DEFAULT;
- else
+ if (pol && pol != &default_policy) {
mode = pol->mode;
+ flags = pol->flags;
+ }
switch (mode) {
case MPOL_DEFAULT:
- nodes_clear(nodes);
break;
-
case MPOL_PREFERRED:
- nodes_clear(nodes);
if (flags & MPOL_F_LOCAL)
mode = MPOL_LOCAL;
else
node_set(pol->v.preferred_node, nodes);
break;
-
case MPOL_BIND:
- /* Fall through */
case MPOL_INTERLEAVE:
nodes = pol->v.nodes;
break;
-
default:
- return -EINVAL;
+ WARN_ON_ONCE(1);
+ snprintf(p, maxlen, "unknown");
+ return;
}
- l = strlen(policy_modes[mode]);
- if (buffer + maxlen < p + l + 1)
- return -ENOSPC;
-
- strcpy(p, policy_modes[mode]);
- p += l;
+ p += snprintf(p, maxlen, "%s", policy_modes[mode]);
if (flags & MPOL_MODE_FLAGS) {
- if (buffer + maxlen < p + 2)
- return -ENOSPC;
- *p++ = '=';
+ p += snprintf(p, buffer + maxlen - p, "=");
/*
* Currently, the only defined flags are mutually exclusive
@@ -2907,10 +2967,7 @@ int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
}
if (!nodes_empty(nodes)) {
- if (buffer + maxlen < p + 2)
- return -ENOSPC;
- *p++ = ':';
+ p += snprintf(p, buffer + maxlen - p, ":");
p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
}
- return p - buffer;
}
diff --git a/mm/migrate.c b/mm/migrate.c
index c04692774e88..9194375b2307 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -36,6 +36,7 @@
#include <linux/hugetlb_cgroup.h>
#include <linux/gfp.h>
#include <linux/balloon_compaction.h>
+#include <linux/mmu_notifier.h>
#include <asm/tlbflush.h>
@@ -130,7 +131,7 @@ static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
ptep = huge_pte_offset(mm, addr);
if (!ptep)
goto out;
- ptl = &mm->page_table_lock;
+ ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
} else {
pmd = mm_find_pmd(mm, addr);
if (!pmd)
@@ -249,9 +250,10 @@ void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
__migration_entry_wait(mm, ptep, ptl);
}
-void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
+void migration_entry_wait_huge(struct vm_area_struct *vma,
+ struct mm_struct *mm, pte_t *pte)
{
- spinlock_t *ptl = &(mm)->page_table_lock;
+ spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
__migration_entry_wait(mm, pte, ptl);
}
@@ -315,14 +317,15 @@ static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
*/
int migrate_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page,
- struct buffer_head *head, enum migrate_mode mode)
+ struct buffer_head *head, enum migrate_mode mode,
+ int extra_count)
{
- int expected_count = 0;
+ int expected_count = 1 + extra_count;
void **pslot;
if (!mapping) {
/* Anonymous page without mapping */
- if (page_count(page) != 1)
+ if (page_count(page) != expected_count)
return -EAGAIN;
return MIGRATEPAGE_SUCCESS;
}
@@ -332,7 +335,7 @@ int migrate_page_move_mapping(struct address_space *mapping,
pslot = radix_tree_lookup_slot(&mapping->page_tree,
page_index(page));
- expected_count = 2 + page_has_private(page);
+ expected_count += 1 + page_has_private(page);
if (page_count(page) != expected_count ||
radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
spin_unlock_irq(&mapping->tree_lock);
@@ -441,10 +444,60 @@ int migrate_huge_page_move_mapping(struct address_space *mapping,
}
/*
+ * Gigantic pages are so large that we do not guarantee that page++ pointer
+ * arithmetic will work across the entire page. We need something more
+ * specialized.
+ */
+static void __copy_gigantic_page(struct page *dst, struct page *src,
+ int nr_pages)
+{
+ int i;
+ struct page *dst_base = dst;
+ struct page *src_base = src;
+
+ for (i = 0; i < nr_pages; ) {
+ cond_resched();
+ copy_highpage(dst, src);
+
+ i++;
+ dst = mem_map_next(dst, dst_base, i);
+ src = mem_map_next(src, src_base, i);
+ }
+}
+
+static void copy_huge_page(struct page *dst, struct page *src)
+{
+ int i;
+ int nr_pages;
+
+ if (PageHuge(src)) {
+ /* hugetlbfs page */
+ struct hstate *h = page_hstate(src);
+ nr_pages = pages_per_huge_page(h);
+
+ if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
+ __copy_gigantic_page(dst, src, nr_pages);
+ return;
+ }
+ } else {
+ /* thp page */
+ BUG_ON(!PageTransHuge(src));
+ nr_pages = hpage_nr_pages(src);
+ }
+
+ for (i = 0; i < nr_pages; i++) {
+ cond_resched();
+ copy_highpage(dst + i, src + i);
+ }
+}
+
+/*
* Copy the page to its new location
*/
void migrate_page_copy(struct page *newpage, struct page *page)
{
+ int cpupid;
+
if (PageHuge(page) || PageTransHuge(page))
copy_huge_page(newpage, page);
else
@@ -481,6 +534,13 @@ void migrate_page_copy(struct page *newpage, struct page *page)
__set_page_dirty_nobuffers(newpage);
}
+ /*
+ * Copy NUMA information to the new page, to prevent over-eager
+ * future migrations of this same page.
+ */
+ cpupid = page_cpupid_xchg_last(page, -1);
+ page_cpupid_xchg_last(newpage, cpupid);
+
mlock_migrate_page(newpage, page);
ksm_migrate_page(newpage, page);
/*
@@ -525,7 +585,7 @@ int migrate_page(struct address_space *mapping,
BUG_ON(PageWriteback(page)); /* Writeback must be complete */
- rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
+ rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
if (rc != MIGRATEPAGE_SUCCESS)
return rc;
@@ -552,7 +612,7 @@ int buffer_migrate_page(struct address_space *mapping,
head = page_buffers(page);
- rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
+ rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
if (rc != MIGRATEPAGE_SUCCESS)
return rc;
@@ -1500,7 +1560,7 @@ static struct page *alloc_misplaced_dst_page(struct page *page,
__GFP_NOWARN) &
~GFP_IOFS, 0);
if (newpage)
- page_nid_xchg_last(newpage, page_nid_last(page));
+ page_cpupid_xchg_last(newpage, page_cpupid_last(page));
return newpage;
}
@@ -1596,12 +1656,25 @@ int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
return 1;
}
+bool pmd_trans_migrating(pmd_t pmd)
+{
+ struct page *page = pmd_page(pmd);
+ return PageLocked(page);
+}
+
+void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
+{
+ struct page *page = pmd_page(*pmd);
+ wait_on_page_locked(page);
+}
+
/*
* Attempt to migrate a misplaced page to the specified destination
* node. Caller is expected to have an elevated reference count on
* the page that will be dropped by this function before returning.
*/
-int migrate_misplaced_page(struct page *page, int node)
+int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
+ int node)
{
pg_data_t *pgdat = NODE_DATA(node);
int isolated;
@@ -1609,10 +1682,11 @@ int migrate_misplaced_page(struct page *page, int node)
LIST_HEAD(migratepages);
/*
- * Don't migrate pages that are mapped in multiple processes.
- * TODO: Handle false sharing detection instead of this hammer
+ * Don't migrate file pages that are mapped in multiple processes
+ * with execute permissions as they are probably shared libraries.
*/
- if (page_mapcount(page) != 1)
+ if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
+ (vma->vm_flags & VM_EXEC))
goto out;
/*
@@ -1655,19 +1729,15 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
unsigned long address,
struct page *page, int node)
{
- unsigned long haddr = address & HPAGE_PMD_MASK;
+ spinlock_t *ptl;
pg_data_t *pgdat = NODE_DATA(node);
int isolated = 0;
struct page *new_page = NULL;
struct mem_cgroup *memcg = NULL;
int page_lru = page_is_file_cache(page);
-
- /*
- * Don't migrate pages that are mapped in multiple processes.
- * TODO: Handle false sharing detection instead of this hammer
- */
- if (page_mapcount(page) != 1)
- goto out_dropref;
+ unsigned long mmun_start = address & HPAGE_PMD_MASK;
+ unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
+ pmd_t orig_entry;
/*
* Rate-limit the amount of data that is being migrated to a node.
@@ -1682,7 +1752,7 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
if (!new_page)
goto out_fail;
- page_nid_xchg_last(new_page, page_nid_last(page));
+ page_cpupid_xchg_last(new_page, page_cpupid_last(page));
isolated = numamigrate_isolate_page(pgdat, page);
if (!isolated) {
@@ -1690,6 +1760,9 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
goto out_fail;
}
+ if (mm_tlb_flush_pending(mm))
+ flush_tlb_range(vma, mmun_start, mmun_end);
+
/* Prepare a page as a migration target */
__set_page_locked(new_page);
SetPageSwapBacked(new_page);
@@ -1701,9 +1774,12 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
WARN_ON(PageLRU(new_page));
/* Recheck the target PMD */
- spin_lock(&mm->page_table_lock);
- if (unlikely(!pmd_same(*pmd, entry))) {
- spin_unlock(&mm->page_table_lock);
+ mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+ ptl = pmd_lock(mm, pmd);
+ if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
+fail_putback:
+ spin_unlock(ptl);
+ mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
/* Reverse changes made by migrate_page_copy() */
if (TestClearPageActive(new_page))
@@ -1720,7 +1796,8 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
putback_lru_page(page);
mod_zone_page_state(page_zone(page),
NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
- goto out_fail;
+
+ goto out_unlock;
}
/*
@@ -1732,23 +1809,43 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
*/
mem_cgroup_prepare_migration(page, new_page, &memcg);
+ orig_entry = *pmd;
entry = mk_pmd(new_page, vma->vm_page_prot);
- entry = pmd_mknonnuma(entry);
- entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
entry = pmd_mkhuge(entry);
+ entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
- pmdp_clear_flush(vma, haddr, pmd);
- set_pmd_at(mm, haddr, pmd, entry);
- page_add_new_anon_rmap(new_page, vma, haddr);
+ /*
+ * Clear the old entry under pagetable lock and establish the new PTE.
+ * Any parallel GUP will either observe the old page blocking on the
+ * page lock, block on the page table lock or observe the new page.
+ * The SetPageUptodate on the new page and page_add_new_anon_rmap
+ * guarantee the copy is visible before the pagetable update.
+ */
+ flush_cache_range(vma, mmun_start, mmun_end);
+ page_add_new_anon_rmap(new_page, vma, mmun_start);
+ pmdp_clear_flush(vma, mmun_start, pmd);
+ set_pmd_at(mm, mmun_start, pmd, entry);
+ flush_tlb_range(vma, mmun_start, mmun_end);
update_mmu_cache_pmd(vma, address, &entry);
+
+ if (page_count(page) != 2) {
+ set_pmd_at(mm, mmun_start, pmd, orig_entry);
+ flush_tlb_range(vma, mmun_start, mmun_end);
+ update_mmu_cache_pmd(vma, address, &entry);
+ page_remove_rmap(new_page);
+ goto fail_putback;
+ }
+
page_remove_rmap(page);
+
/*
* Finish the charge transaction under the page table lock to
* prevent split_huge_page() from dividing up the charge
* before it's fully transferred to the new page.
*/
mem_cgroup_end_migration(memcg, page, new_page, true);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
+ mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
unlock_page(new_page);
unlock_page(page);
@@ -1766,10 +1863,15 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
out_fail:
count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
out_dropref:
- entry = pmd_mknonnuma(entry);
- set_pmd_at(mm, haddr, pmd, entry);
- update_mmu_cache_pmd(vma, address, &entry);
+ ptl = pmd_lock(mm, pmd);
+ if (pmd_same(*pmd, entry)) {
+ entry = pmd_mknonnuma(entry);
+ set_pmd_at(mm, mmun_start, pmd, entry);
+ update_mmu_cache_pmd(vma, address, &entry);
+ }
+ spin_unlock(ptl);
+out_unlock:
unlock_page(page);
put_page(page);
return 0;
diff --git a/mm/mlock.c b/mm/mlock.c
index d480cd6fc475..192e6eebe4f2 100644
--- a/mm/mlock.c
+++ b/mm/mlock.c
@@ -133,7 +133,10 @@ static void __munlock_isolation_failed(struct page *page)
/**
* munlock_vma_page - munlock a vma page
- * @page - page to be unlocked
+ * @page - page to be unlocked, either a normal page or THP page head
+ *
+ * returns the size of the page as a page mask (0 for normal page,
+ * HPAGE_PMD_NR - 1 for THP head page)
*
* called from munlock()/munmap() path with page supposedly on the LRU.
* When we munlock a page, because the vma where we found the page is being
@@ -148,21 +151,30 @@ static void __munlock_isolation_failed(struct page *page)
*/
unsigned int munlock_vma_page(struct page *page)
{
- unsigned int page_mask = 0;
+ unsigned int nr_pages;
BUG_ON(!PageLocked(page));
if (TestClearPageMlocked(page)) {
- unsigned int nr_pages = hpage_nr_pages(page);
+ nr_pages = hpage_nr_pages(page);
mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
- page_mask = nr_pages - 1;
if (!isolate_lru_page(page))
__munlock_isolated_page(page);
else
__munlock_isolation_failed(page);
+ } else {
+ nr_pages = hpage_nr_pages(page);
}
- return page_mask;
+ /*
+ * Regardless of the original PageMlocked flag, we determine nr_pages
+ * after touching the flag. This leaves a possible race with a THP page
+ * split, such that a whole THP page was munlocked, but nr_pages == 1.
+ * Returning a smaller mask due to that is OK, the worst that can
+ * happen is subsequent useless scanning of the former tail pages.
+ * The NR_MLOCK accounting can however become broken.
+ */
+ return nr_pages - 1;
}
/**
@@ -286,10 +298,12 @@ static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
{
int i;
int nr = pagevec_count(pvec);
- int delta_munlocked = -nr;
+ int delta_munlocked;
struct pagevec pvec_putback;
int pgrescued = 0;
+ pagevec_init(&pvec_putback, 0);
+
/* Phase 1: page isolation */
spin_lock_irq(&zone->lru_lock);
for (i = 0; i < nr; i++) {
@@ -318,18 +332,21 @@ skip_munlock:
/*
* We won't be munlocking this page in the next phase
* but we still need to release the follow_page_mask()
- * pin.
+ * pin. We cannot do it under lru_lock however. If it's
+ * the last pin, __page_cache_release would deadlock.
*/
+ pagevec_add(&pvec_putback, pvec->pages[i]);
pvec->pages[i] = NULL;
- put_page(page);
- delta_munlocked++;
}
}
+ delta_munlocked = -nr + pagevec_count(&pvec_putback);
__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
spin_unlock_irq(&zone->lru_lock);
+ /* Now we can release pins of pages that we are not munlocking */
+ pagevec_release(&pvec_putback);
+
/* Phase 2: page munlock */
- pagevec_init(&pvec_putback, 0);
for (i = 0; i < nr; i++) {
struct page *page = pvec->pages[i];
@@ -440,7 +457,8 @@ void munlock_vma_pages_range(struct vm_area_struct *vma,
while (start < end) {
struct page *page = NULL;
- unsigned int page_mask, page_increm;
+ unsigned int page_mask;
+ unsigned long page_increm;
struct pagevec pvec;
struct zone *zone;
int zoneid;
@@ -490,7 +508,9 @@ void munlock_vma_pages_range(struct vm_area_struct *vma,
goto next;
}
}
- page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
+ /* It's a bug to munlock in the middle of a THP page */
+ VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
+ page_increm = 1 + page_mask;
start += page_increm * PAGE_SIZE;
next:
cond_resched();
diff --git a/mm/mm_init.c b/mm/mm_init.c
index 633c08863fd8..68562e92d50c 100644
--- a/mm/mm_init.c
+++ b/mm/mm_init.c
@@ -71,26 +71,26 @@ void __init mminit_verify_pageflags_layout(void)
unsigned long or_mask, add_mask;
shift = 8 * sizeof(unsigned long);
- width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH - LAST_NID_SHIFT;
+ width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH - LAST_CPUPID_SHIFT;
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
- "Section %d Node %d Zone %d Lastnid %d Flags %d\n",
+ "Section %d Node %d Zone %d Lastcpupid %d Flags %d\n",
SECTIONS_WIDTH,
NODES_WIDTH,
ZONES_WIDTH,
- LAST_NID_WIDTH,
+ LAST_CPUPID_WIDTH,
NR_PAGEFLAGS);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
- "Section %d Node %d Zone %d Lastnid %d\n",
+ "Section %d Node %d Zone %d Lastcpupid %d\n",
SECTIONS_SHIFT,
NODES_SHIFT,
ZONES_SHIFT,
- LAST_NID_SHIFT);
+ LAST_CPUPID_SHIFT);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
- "Section %lu Node %lu Zone %lu Lastnid %lu\n",
+ "Section %lu Node %lu Zone %lu Lastcpupid %lu\n",
(unsigned long)SECTIONS_PGSHIFT,
(unsigned long)NODES_PGSHIFT,
(unsigned long)ZONES_PGSHIFT,
- (unsigned long)LAST_NID_PGSHIFT);
+ (unsigned long)LAST_CPUPID_PGSHIFT);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
"Node/Zone ID: %lu -> %lu\n",
(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
@@ -102,9 +102,9 @@ void __init mminit_verify_pageflags_layout(void)
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
"Node not in page flags");
#endif
-#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
+#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
- "Last nid not in page flags");
+ "Last cpupid not in page flags");
#endif
if (SECTIONS_WIDTH) {
diff --git a/mm/mmap.c b/mm/mmap.c
index 9d548512ff8a..834b2d785f1e 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -179,14 +179,12 @@ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
goto error;
}
- allowed = (totalram_pages - hugetlb_total_pages())
- * sysctl_overcommit_ratio / 100;
+ allowed = vm_commit_limit();
/*
* Reserve some for root
*/
if (!cap_sys_admin)
allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
- allowed += total_swap_pages;
/*
* Don't let a single process grow so big a user can't recover
@@ -1299,7 +1297,7 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
vm_flags &= ~VM_MAYEXEC;
}
- if (!file->f_op || !file->f_op->mmap)
+ if (!file->f_op->mmap)
return -ENODEV;
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
return -EINVAL;
@@ -1856,7 +1854,7 @@ arch_get_unmapped_area(struct file *filp, unsigned long addr,
struct vm_area_struct *vma;
struct vm_unmapped_area_info info;
- if (len > TASK_SIZE)
+ if (len > TASK_SIZE - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED)
@@ -1865,14 +1863,14 @@ arch_get_unmapped_area(struct file *filp, unsigned long addr,
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
- if (TASK_SIZE - len >= addr &&
+ if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
info.flags = 0;
info.length = len;
- info.low_limit = TASK_UNMAPPED_BASE;
+ info.low_limit = mm->mmap_base;
info.high_limit = TASK_SIZE;
info.align_mask = 0;
return vm_unmapped_area(&info);
@@ -1895,7 +1893,7 @@ arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
struct vm_unmapped_area_info info;
/* requested length too big for entire address space */
- if (len > TASK_SIZE)
+ if (len > TASK_SIZE - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED)
@@ -1905,14 +1903,14 @@ arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
- if (TASK_SIZE - len >= addr &&
+ if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
- info.low_limit = PAGE_SIZE;
+ info.low_limit = max(PAGE_SIZE, mmap_min_addr);
info.high_limit = mm->mmap_base;
info.align_mask = 0;
addr = vm_unmapped_area(&info);
@@ -1951,7 +1949,7 @@ get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
return -ENOMEM;
get_area = current->mm->get_unmapped_area;
- if (file && file->f_op && file->f_op->get_unmapped_area)
+ if (file && file->f_op->get_unmapped_area)
get_area = file->f_op->get_unmapped_area;
addr = get_area(file, addr, len, pgoff, flags);
if (IS_ERR_VALUE(addr))
@@ -2726,7 +2724,8 @@ void exit_mmap(struct mm_struct *mm)
}
vm_unacct_memory(nr_accounted);
- WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
+ WARN_ON(atomic_long_read(&mm->nr_ptes) >
+ (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
}
/* Insert vm structure into process list sorted by address
diff --git a/mm/mmzone.c b/mm/mmzone.c
index 2ac0afbd68f3..bf34fb8556db 100644
--- a/mm/mmzone.c
+++ b/mm/mmzone.c
@@ -97,20 +97,20 @@ void lruvec_init(struct lruvec *lruvec)
INIT_LIST_HEAD(&lruvec->lists[lru]);
}
-#if defined(CONFIG_NUMA_BALANCING) && !defined(LAST_NID_NOT_IN_PAGE_FLAGS)
-int page_nid_xchg_last(struct page *page, int nid)
+#if defined(CONFIG_NUMA_BALANCING) && !defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS)
+int page_cpupid_xchg_last(struct page *page, int cpupid)
{
unsigned long old_flags, flags;
- int last_nid;
+ int last_cpupid;
do {
old_flags = flags = page->flags;
- last_nid = page_nid_last(page);
+ last_cpupid = page_cpupid_last(page);
- flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
- flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
+ flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
+ flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
} while (unlikely(cmpxchg(&page->flags, old_flags, flags) != old_flags));
- return last_nid;
+ return last_cpupid;
}
#endif
diff --git a/mm/mprotect.c b/mm/mprotect.c
index 412ba2b7326a..bb53a6591aea 100644
--- a/mm/mprotect.c
+++ b/mm/mprotect.c
@@ -37,14 +37,12 @@ static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end, pgprot_t newprot,
- int dirty_accountable, int prot_numa, bool *ret_all_same_node)
+ int dirty_accountable, int prot_numa)
{
struct mm_struct *mm = vma->vm_mm;
pte_t *pte, oldpte;
spinlock_t *ptl;
unsigned long pages = 0;
- bool all_same_node = true;
- int last_nid = -1;
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
arch_enter_lazy_mmu_mode();
@@ -54,25 +52,21 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
pte_t ptent;
bool updated = false;
- ptent = ptep_modify_prot_start(mm, addr, pte);
if (!prot_numa) {
+ ptent = ptep_modify_prot_start(mm, addr, pte);
+ if (pte_numa(ptent))
+ ptent = pte_mknonnuma(ptent);
ptent = pte_modify(ptent, newprot);
updated = true;
} else {
struct page *page;
+ ptent = *pte;
page = vm_normal_page(vma, addr, oldpte);
if (page) {
- int this_nid = page_to_nid(page);
- if (last_nid == -1)
- last_nid = this_nid;
- if (last_nid != this_nid)
- all_same_node = false;
-
- /* only check non-shared pages */
- if (!pte_numa(oldpte) &&
- page_mapcount(page) == 1) {
+ if (!pte_numa(oldpte)) {
ptent = pte_mknuma(ptent);
+ set_pte_at(mm, addr, pte, ptent);
updated = true;
}
}
@@ -89,7 +83,10 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
if (updated)
pages++;
- ptep_modify_prot_commit(mm, addr, pte, ptent);
+
+ /* Only !prot_numa always clears the pte */
+ if (!prot_numa)
+ ptep_modify_prot_commit(mm, addr, pte, ptent);
} else if (IS_ENABLED(CONFIG_MIGRATION) && !pte_file(oldpte)) {
swp_entry_t entry = pte_to_swp_entry(oldpte);
@@ -104,33 +101,17 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
if (pte_swp_soft_dirty(oldpte))
newpte = pte_swp_mksoft_dirty(newpte);
set_pte_at(mm, addr, pte, newpte);
+
+ pages++;
}
- pages++;
}
} while (pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(pte - 1, ptl);
- *ret_all_same_node = all_same_node;
return pages;
}
-#ifdef CONFIG_NUMA_BALANCING
-static inline void change_pmd_protnuma(struct mm_struct *mm, unsigned long addr,
- pmd_t *pmd)
-{
- spin_lock(&mm->page_table_lock);
- set_pmd_at(mm, addr & PMD_MASK, pmd, pmd_mknuma(*pmd));
- spin_unlock(&mm->page_table_lock);
-}
-#else
-static inline void change_pmd_protnuma(struct mm_struct *mm, unsigned long addr,
- pmd_t *pmd)
-{
- BUG();
-}
-#endif /* CONFIG_NUMA_BALANCING */
-
static inline unsigned long change_pmd_range(struct vm_area_struct *vma,
pud_t *pud, unsigned long addr, unsigned long end,
pgprot_t newprot, int dirty_accountable, int prot_numa)
@@ -138,36 +119,39 @@ static inline unsigned long change_pmd_range(struct vm_area_struct *vma,
pmd_t *pmd;
unsigned long next;
unsigned long pages = 0;
- bool all_same_node;
+ unsigned long nr_huge_updates = 0;
pmd = pmd_offset(pud, addr);
do {
+ unsigned long this_pages;
+
next = pmd_addr_end(addr, end);
if (pmd_trans_huge(*pmd)) {
if (next - addr != HPAGE_PMD_SIZE)
split_huge_page_pmd(vma, addr, pmd);
- else if (change_huge_pmd(vma, pmd, addr, newprot,
- prot_numa)) {
- pages++;
- continue;
+ else {
+ int nr_ptes = change_huge_pmd(vma, pmd, addr,
+ newprot, prot_numa);
+
+ if (nr_ptes) {
+ if (nr_ptes == HPAGE_PMD_NR) {
+ pages += HPAGE_PMD_NR;
+ nr_huge_updates++;
+ }
+ continue;
+ }
}
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
continue;
- pages += change_pte_range(vma, pmd, addr, next, newprot,
- dirty_accountable, prot_numa, &all_same_node);
-
- /*
- * If we are changing protections for NUMA hinting faults then
- * set pmd_numa if the examined pages were all on the same
- * node. This allows a regular PMD to be handled as one fault
- * and effectively batches the taking of the PTL
- */
- if (prot_numa && all_same_node)
- change_pmd_protnuma(vma->vm_mm, addr, pmd);
+ this_pages = change_pte_range(vma, pmd, addr, next, newprot,
+ dirty_accountable, prot_numa);
+ pages += this_pages;
} while (pmd++, addr = next, addr != end);
+ if (nr_huge_updates)
+ count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
return pages;
}
@@ -204,6 +188,7 @@ static unsigned long change_protection_range(struct vm_area_struct *vma,
BUG_ON(addr >= end);
pgd = pgd_offset(mm, addr);
flush_cache_range(vma, addr, end);
+ set_tlb_flush_pending(mm);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
@@ -215,6 +200,7 @@ static unsigned long change_protection_range(struct vm_area_struct *vma,
/* Only flush the TLB if we actually modified any entries: */
if (pages)
flush_tlb_range(vma, start, end);
+ clear_tlb_flush_pending(mm);
return pages;
}
diff --git a/mm/nobootmem.c b/mm/nobootmem.c
index 61107cf55bb3..2c254d374655 100644
--- a/mm/nobootmem.c
+++ b/mm/nobootmem.c
@@ -82,27 +82,18 @@ void __init free_bootmem_late(unsigned long addr, unsigned long size)
static void __init __free_pages_memory(unsigned long start, unsigned long end)
{
- unsigned long i, start_aligned, end_aligned;
- int order = ilog2(BITS_PER_LONG);
+ int order;
- start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
- end_aligned = end & ~(BITS_PER_LONG - 1);
+ while (start < end) {
+ order = min(MAX_ORDER - 1UL, __ffs(start));
- if (end_aligned <= start_aligned) {
- for (i = start; i < end; i++)
- __free_pages_bootmem(pfn_to_page(i), 0);
+ while (start + (1UL << order) > end)
+ order--;
- return;
- }
-
- for (i = start; i < start_aligned; i++)
- __free_pages_bootmem(pfn_to_page(i), 0);
+ __free_pages_bootmem(pfn_to_page(start), order);
- for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
- __free_pages_bootmem(pfn_to_page(i), order);
-
- for (i = end_aligned; i < end; i++)
- __free_pages_bootmem(pfn_to_page(i), 0);
+ start += (1UL << order);
+ }
}
static unsigned long __init __free_memory_core(phys_addr_t start,
diff --git a/mm/nommu.c b/mm/nommu.c
index ecd1f158548e..fec093adad9c 100644
--- a/mm/nommu.c
+++ b/mm/nommu.c
@@ -937,7 +937,7 @@ static int validate_mmap_request(struct file *file,
struct address_space *mapping;
/* files must support mmap */
- if (!file->f_op || !file->f_op->mmap)
+ if (!file->f_op->mmap)
return -ENODEV;
/* work out if what we've got could possibly be shared
@@ -1948,13 +1948,12 @@ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
goto error;
}
- allowed = totalram_pages * sysctl_overcommit_ratio / 100;
+ allowed = vm_commit_limit();
/*
* Reserve some 3% for root
*/
if (!cap_sys_admin)
allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
- allowed += total_swap_pages;
/*
* Don't let a single process grow so big a user can't recover
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 6738c47f1f72..1e4a600a6163 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -161,7 +161,7 @@ unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
* The baseline for the badness score is the proportion of RAM that each
* task's rss, pagetable and swap space use.
*/
- points = get_mm_rss(p->mm) + p->mm->nr_ptes +
+ points = get_mm_rss(p->mm) + atomic_long_read(&p->mm->nr_ptes) +
get_mm_counter(p->mm, MM_SWAPENTS);
task_unlock(p);
@@ -364,10 +364,10 @@ static void dump_tasks(const struct mem_cgroup *memcg, const nodemask_t *nodemas
continue;
}
- pr_info("[%5d] %5d %5d %8lu %8lu %7lu %8lu %5hd %s\n",
+ pr_info("[%5d] %5d %5d %8lu %8lu %7ld %8lu %5hd %s\n",
task->pid, from_kuid(&init_user_ns, task_uid(task)),
task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
- task->mm->nr_ptes,
+ atomic_long_read(&task->mm->nr_ptes),
get_mm_counter(task->mm, MM_SWAPENTS),
task->signal->oom_score_adj, task->comm);
task_unlock(task);
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index dd886fac451a..5248fe070aa4 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -234,8 +234,8 @@ int page_group_by_mobility_disabled __read_mostly;
void set_pageblock_migratetype(struct page *page, int migratetype)
{
-
- if (unlikely(page_group_by_mobility_disabled))
+ if (unlikely(page_group_by_mobility_disabled &&
+ migratetype < MIGRATE_PCPTYPES))
migratetype = MIGRATE_UNMOVABLE;
set_pageblock_flags_group(page, (unsigned long)migratetype,
@@ -626,7 +626,7 @@ static inline int free_pages_check(struct page *page)
bad_page(page);
return 1;
}
- page_nid_reset_last(page);
+ page_cpupid_reset_last(page);
if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
return 0;
@@ -1027,6 +1027,10 @@ static int try_to_steal_freepages(struct zone *zone, struct page *page,
{
int current_order = page_order(page);
+ /*
+ * When borrowing from MIGRATE_CMA, we need to release the excess
+ * buddy pages to CMA itself.
+ */
if (is_migrate_cma(fallback_type))
return fallback_type;
@@ -1091,21 +1095,11 @@ __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
list_del(&page->lru);
rmv_page_order(page);
- /*
- * Borrow the excess buddy pages as well, irrespective
- * of whether we stole freepages, or took ownership of
- * the pageblock or not.
- *
- * Exception: When borrowing from MIGRATE_CMA, release
- * the excess buddy pages to CMA itself.
- */
expand(zone, page, order, current_order, area,
- is_migrate_cma(migratetype)
- ? migratetype : start_migratetype);
+ new_type);
- trace_mm_page_alloc_extfrag(page, order,
- current_order, start_migratetype, migratetype,
- new_type == start_migratetype);
+ trace_mm_page_alloc_extfrag(page, order, current_order,
+ start_migratetype, migratetype, new_type);
return page;
}
@@ -1711,7 +1705,7 @@ bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
* comments in mmzone.h. Reduces cache footprint of zonelist scans
* that have to skip over a lot of full or unallowed zones.
*
- * If the zonelist cache is present in the passed in zonelist, then
+ * If the zonelist cache is present in the passed zonelist, then
* returns a pointer to the allowed node mask (either the current
* tasks mems_allowed, or node_states[N_MEMORY].)
*
@@ -1822,7 +1816,7 @@ static void zlc_clear_zones_full(struct zonelist *zonelist)
static bool zone_local(struct zone *local_zone, struct zone *zone)
{
- return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
+ return local_zone->node == zone->node;
}
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
@@ -1919,18 +1913,17 @@ zonelist_scan:
* page was allocated in should have no effect on the
* time the page has in memory before being reclaimed.
*
- * When zone_reclaim_mode is enabled, try to stay in
- * local zones in the fastpath. If that fails, the
- * slowpath is entered, which will do another pass
- * starting with the local zones, but ultimately fall
- * back to remote zones that do not partake in the
- * fairness round-robin cycle of this zonelist.
+ * Try to stay in local zones in the fastpath. If
+ * that fails, the slowpath is entered, which will do
+ * another pass starting with the local zones, but
+ * ultimately fall back to remote zones that do not
+ * partake in the fairness round-robin cycle of this
+ * zonelist.
*/
if (alloc_flags & ALLOC_WMARK_LOW) {
if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
continue;
- if (zone_reclaim_mode &&
- !zone_local(preferred_zone, zone))
+ if (!zone_local(preferred_zone, zone))
continue;
}
/*
@@ -2396,7 +2389,7 @@ static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
* thrash fairness information for zones that are not
* actually part of this zonelist's round-robin cycle.
*/
- if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
+ if (!zone_local(preferred_zone, zone))
continue;
mod_zone_page_state(zone, NR_ALLOC_BATCH,
high_wmark_pages(zone) -
@@ -2593,7 +2586,7 @@ rebalance:
* running out of options and have to consider going OOM
*/
if (!did_some_progress) {
- if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
+ if (oom_gfp_allowed(gfp_mask)) {
if (oom_killer_disabled)
goto nopage;
/* Coredumps can quickly deplete all memory reserves */
@@ -3881,8 +3874,6 @@ static inline unsigned long wait_table_bits(unsigned long size)
return ffz(~size);
}
-#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
-
/*
* Check if a pageblock contains reserved pages
*/
@@ -4015,7 +4006,7 @@ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
mminit_verify_page_links(page, zone, nid, pfn);
init_page_count(page);
page_mapcount_reset(page);
- page_nid_reset_last(page);
+ page_cpupid_reset_last(page);
SetPageReserved(page);
/*
* Mark the block movable so that blocks are reserved for
@@ -4266,7 +4257,7 @@ static __meminit void zone_pcp_init(struct zone *zone)
*/
zone->pageset = &boot_pageset;
- if (zone->present_pages)
+ if (populated_zone(zone))
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
zone->name, zone->present_pages,
zone_batchsize(zone));
@@ -5160,7 +5151,7 @@ static void check_for_memory(pg_data_t *pgdat, int nid)
for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
struct zone *zone = &pgdat->node_zones[zone_type];
- if (zone->present_pages) {
+ if (populated_zone(zone)) {
node_set_state(nid, N_HIGH_MEMORY);
if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
zone_type <= ZONE_NORMAL)
diff --git a/mm/percpu.c b/mm/percpu.c
index 8c8e08f3a692..0d10defe951e 100644
--- a/mm/percpu.c
+++ b/mm/percpu.c
@@ -1706,8 +1706,9 @@ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
out_free_areas:
for (group = 0; group < ai->nr_groups; group++)
- free_fn(areas[group],
- ai->groups[group].nr_units * ai->unit_size);
+ if (areas[group])
+ free_fn(areas[group],
+ ai->groups[group].nr_units * ai->unit_size);
out_free:
pcpu_free_alloc_info(ai);
if (areas)
diff --git a/mm/pgtable-generic.c b/mm/pgtable-generic.c
index 3929a40bd6c0..a8b919925934 100644
--- a/mm/pgtable-generic.c
+++ b/mm/pgtable-generic.c
@@ -110,9 +110,10 @@ int pmdp_clear_flush_young(struct vm_area_struct *vma,
pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address,
pte_t *ptep)
{
+ struct mm_struct *mm = (vma)->vm_mm;
pte_t pte;
- pte = ptep_get_and_clear((vma)->vm_mm, address, ptep);
- if (pte_accessible(pte))
+ pte = ptep_get_and_clear(mm, address, ptep);
+ if (pte_accessible(mm, pte))
flush_tlb_page(vma, address);
return pte;
}
@@ -151,14 +152,14 @@ void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable)
{
- assert_spin_locked(&mm->page_table_lock);
+ assert_spin_locked(pmd_lockptr(mm, pmdp));
/* FIFO */
- if (!mm->pmd_huge_pte)
+ if (!pmd_huge_pte(mm, pmdp))
INIT_LIST_HEAD(&pgtable->lru);
else
- list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
- mm->pmd_huge_pte = pgtable;
+ list_add(&pgtable->lru, &pmd_huge_pte(mm, pmdp)->lru);
+ pmd_huge_pte(mm, pmdp) = pgtable;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
@@ -170,14 +171,14 @@ pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
{
pgtable_t pgtable;
- assert_spin_locked(&mm->page_table_lock);
+ assert_spin_locked(pmd_lockptr(mm, pmdp));
/* FIFO */
- pgtable = mm->pmd_huge_pte;
+ pgtable = pmd_huge_pte(mm, pmdp);
if (list_empty(&pgtable->lru))
- mm->pmd_huge_pte = NULL;
+ pmd_huge_pte(mm, pmdp) = NULL;
else {
- mm->pmd_huge_pte = list_entry(pgtable->lru.next,
+ pmd_huge_pte(mm, pmdp) = list_entry(pgtable->lru.next,
struct page, lru);
list_del(&pgtable->lru);
}
@@ -191,6 +192,9 @@ pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp)
{
+ pmd_t entry = *pmdp;
+ if (pmd_numa(entry))
+ entry = pmd_mknonnuma(entry);
set_pmd_at(vma->vm_mm, address, pmdp, pmd_mknotpresent(*pmdp));
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
}
diff --git a/mm/readahead.c b/mm/readahead.c
index e4ed04149785..7cdbb44aa90b 100644
--- a/mm/readahead.c
+++ b/mm/readahead.c
@@ -401,6 +401,7 @@ ondemand_readahead(struct address_space *mapping,
unsigned long req_size)
{
unsigned long max = max_sane_readahead(ra->ra_pages);
+ pgoff_t prev_offset;
/*
* start of file
@@ -452,8 +453,11 @@ ondemand_readahead(struct address_space *mapping,
/*
* sequential cache miss
+ * trivial case: (offset - prev_offset) == 1
+ * unaligned reads: (offset - prev_offset) == 0
*/
- if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
+ prev_offset = (unsigned long long)ra->prev_pos >> PAGE_CACHE_SHIFT;
+ if (offset - prev_offset <= 1UL)
goto initial_readahead;
/*
@@ -569,7 +573,7 @@ static ssize_t
do_readahead(struct address_space *mapping, struct file *filp,
pgoff_t index, unsigned long nr)
{
- if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
+ if (!mapping || !mapping->a_ops)
return -EINVAL;
force_page_cache_readahead(mapping, filp, index, nr);
diff --git a/mm/rmap.c b/mm/rmap.c
index fd3ee7a54a13..068522d8502a 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -600,8 +600,12 @@ pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
spinlock_t *ptl;
if (unlikely(PageHuge(page))) {
+ /* when pud is not present, pte will be NULL */
pte = huge_pte_offset(mm, address);
- ptl = &mm->page_table_lock;
+ if (!pte)
+ return NULL;
+
+ ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
goto check;
}
@@ -665,25 +669,23 @@ int page_referenced_one(struct page *page, struct vm_area_struct *vma,
unsigned long *vm_flags)
{
struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *ptl;
int referenced = 0;
if (unlikely(PageTransHuge(page))) {
pmd_t *pmd;
- spin_lock(&mm->page_table_lock);
/*
* rmap might return false positives; we must filter
* these out using page_check_address_pmd().
*/
pmd = page_check_address_pmd(page, mm, address,
- PAGE_CHECK_ADDRESS_PMD_FLAG);
- if (!pmd) {
- spin_unlock(&mm->page_table_lock);
+ PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
+ if (!pmd)
goto out;
- }
if (vma->vm_flags & VM_LOCKED) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
*mapcount = 0; /* break early from loop */
*vm_flags |= VM_LOCKED;
goto out;
@@ -692,10 +694,9 @@ int page_referenced_one(struct page *page, struct vm_area_struct *vma,
/* go ahead even if the pmd is pmd_trans_splitting() */
if (pmdp_clear_flush_young_notify(vma, address, pmd))
referenced++;
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
} else {
pte_t *pte;
- spinlock_t *ptl;
/*
* rmap might return false positives; we must filter
diff --git a/mm/shmem.c b/mm/shmem.c
index 8297623fcaed..902a14842b74 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -2918,13 +2918,8 @@ static struct dentry_operations anon_ops = {
.d_dname = simple_dname
};
-/**
- * shmem_file_setup - get an unlinked file living in tmpfs
- * @name: name for dentry (to be seen in /proc/<pid>/maps
- * @size: size to be set for the file
- * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
- */
-struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
+static struct file *__shmem_file_setup(const char *name, loff_t size,
+ unsigned long flags, unsigned int i_flags)
{
struct file *res;
struct inode *inode;
@@ -2957,6 +2952,7 @@ struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags
if (!inode)
goto put_dentry;
+ inode->i_flags |= i_flags;
d_instantiate(path.dentry, inode);
inode->i_size = size;
clear_nlink(inode); /* It is unlinked */
@@ -2977,6 +2973,32 @@ put_memory:
shmem_unacct_size(flags, size);
return res;
}
+
+/**
+ * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
+ * kernel internal. There will be NO LSM permission checks against the
+ * underlying inode. So users of this interface must do LSM checks at a
+ * higher layer. The one user is the big_key implementation. LSM checks
+ * are provided at the key level rather than the inode level.
+ * @name: name for dentry (to be seen in /proc/<pid>/maps
+ * @size: size to be set for the file
+ * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
+ */
+struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
+{
+ return __shmem_file_setup(name, size, flags, S_PRIVATE);
+}
+
+/**
+ * shmem_file_setup - get an unlinked file living in tmpfs
+ * @name: name for dentry (to be seen in /proc/<pid>/maps
+ * @size: size to be set for the file
+ * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
+ */
+struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
+{
+ return __shmem_file_setup(name, size, flags, 0);
+}
EXPORT_SYMBOL_GPL(shmem_file_setup);
/**
diff --git a/mm/slab.c b/mm/slab.c
index 2580db062df9..eb043bf05f4c 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -164,72 +164,6 @@
static bool pfmemalloc_active __read_mostly;
/*
- * kmem_bufctl_t:
- *
- * Bufctl's are used for linking objs within a slab
- * linked offsets.
- *
- * This implementation relies on "struct page" for locating the cache &
- * slab an object belongs to.
- * This allows the bufctl structure to be small (one int), but limits
- * the number of objects a slab (not a cache) can contain when off-slab
- * bufctls are used. The limit is the size of the largest general cache
- * that does not use off-slab slabs.
- * For 32bit archs with 4 kB pages, is this 56.
- * This is not serious, as it is only for large objects, when it is unwise
- * to have too many per slab.
- * Note: This limit can be raised by introducing a general cache whose size
- * is less than 512 (PAGE_SIZE<<3), but greater than 256.
- */
-
-typedef unsigned int kmem_bufctl_t;
-#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
-#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
-#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
-#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
-
-/*
- * struct slab_rcu
- *
- * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
- * arrange for kmem_freepages to be called via RCU. This is useful if
- * we need to approach a kernel structure obliquely, from its address
- * obtained without the usual locking. We can lock the structure to
- * stabilize it and check it's still at the given address, only if we
- * can be sure that the memory has not been meanwhile reused for some
- * other kind of object (which our subsystem's lock might corrupt).
- *
- * rcu_read_lock before reading the address, then rcu_read_unlock after
- * taking the spinlock within the structure expected at that address.
- */
-struct slab_rcu {
- struct rcu_head head;
- struct kmem_cache *cachep;
- void *addr;
-};
-
-/*
- * struct slab
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
-struct slab {
- union {
- struct {
- struct list_head list;
- unsigned long colouroff;
- void *s_mem; /* including colour offset */
- unsigned int inuse; /* num of objs active in slab */
- kmem_bufctl_t free;
- unsigned short nodeid;
- };
- struct slab_rcu __slab_cover_slab_rcu;
- };
-};
-
-/*
* struct array_cache
*
* Purpose:
@@ -456,18 +390,10 @@ static inline struct kmem_cache *virt_to_cache(const void *obj)
return page->slab_cache;
}
-static inline struct slab *virt_to_slab(const void *obj)
-{
- struct page *page = virt_to_head_page(obj);
-
- VM_BUG_ON(!PageSlab(page));
- return page->slab_page;
-}
-
-static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
+static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
unsigned int idx)
{
- return slab->s_mem + cache->size * idx;
+ return page->s_mem + cache->size * idx;
}
/*
@@ -477,9 +403,9 @@ static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
* reciprocal_divide(offset, cache->reciprocal_buffer_size)
*/
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
- const struct slab *slab, void *obj)
+ const struct page *page, void *obj)
{
- u32 offset = (obj - slab->s_mem);
+ u32 offset = (obj - page->s_mem);
return reciprocal_divide(offset, cache->reciprocal_buffer_size);
}
@@ -641,7 +567,7 @@ static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
{
- return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
+ return ALIGN(nr_objs * sizeof(unsigned int), align);
}
/*
@@ -660,8 +586,7 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
* on it. For the latter case, the memory allocated for a
* slab is used for:
*
- * - The struct slab
- * - One kmem_bufctl_t for each object
+ * - One unsigned int for each object
* - Padding to respect alignment of @align
* - @buffer_size bytes for each object
*
@@ -674,8 +599,6 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
mgmt_size = 0;
nr_objs = slab_size / buffer_size;
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
} else {
/*
* Ignore padding for the initial guess. The padding
@@ -685,8 +608,7 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
* into the memory allocation when taking the padding
* into account.
*/
- nr_objs = (slab_size - sizeof(struct slab)) /
- (buffer_size + sizeof(kmem_bufctl_t));
+ nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));
/*
* This calculated number will be either the right
@@ -696,9 +618,6 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
> slab_size)
nr_objs--;
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
-
mgmt_size = slab_mgmt_size(nr_objs, align);
}
*num = nr_objs;
@@ -829,10 +748,8 @@ static struct array_cache *alloc_arraycache(int node, int entries,
return nc;
}
-static inline bool is_slab_pfmemalloc(struct slab *slabp)
+static inline bool is_slab_pfmemalloc(struct page *page)
{
- struct page *page = virt_to_page(slabp->s_mem);
-
return PageSlabPfmemalloc(page);
}
@@ -841,23 +758,23 @@ static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
struct array_cache *ac)
{
struct kmem_cache_node *n = cachep->node[numa_mem_id()];
- struct slab *slabp;
+ struct page *page;
unsigned long flags;
if (!pfmemalloc_active)
return;
spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(slabp, &n->slabs_full, list)
- if (is_slab_pfmemalloc(slabp))
+ list_for_each_entry(page, &n->slabs_full, lru)
+ if (is_slab_pfmemalloc(page))
goto out;
- list_for_each_entry(slabp, &n->slabs_partial, list)
- if (is_slab_pfmemalloc(slabp))
+ list_for_each_entry(page, &n->slabs_partial, lru)
+ if (is_slab_pfmemalloc(page))
goto out;
- list_for_each_entry(slabp, &n->slabs_free, list)
- if (is_slab_pfmemalloc(slabp))
+ list_for_each_entry(page, &n->slabs_free, lru)
+ if (is_slab_pfmemalloc(page))
goto out;
pfmemalloc_active = false;
@@ -897,8 +814,8 @@ static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
*/
n = cachep->node[numa_mem_id()];
if (!list_empty(&n->slabs_free) && force_refill) {
- struct slab *slabp = virt_to_slab(objp);
- ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
+ struct page *page = virt_to_head_page(objp);
+ ClearPageSlabPfmemalloc(page);
clear_obj_pfmemalloc(&objp);
recheck_pfmemalloc_active(cachep, ac);
return objp;
@@ -1099,8 +1016,7 @@ static void drain_alien_cache(struct kmem_cache *cachep,
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
- struct slab *slabp = virt_to_slab(objp);
- int nodeid = slabp->nodeid;
+ int nodeid = page_to_nid(virt_to_page(objp));
struct kmem_cache_node *n;
struct array_cache *alien = NULL;
int node;
@@ -1111,7 +1027,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
* Make sure we are not freeing a object from another node to the array
* cache on this cpu.
*/
- if (likely(slabp->nodeid == node))
+ if (likely(nodeid == node))
return 0;
n = cachep->node[node];
@@ -1512,6 +1428,8 @@ void __init kmem_cache_init(void)
{
int i;
+ BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
+ sizeof(struct rcu_head));
kmem_cache = &kmem_cache_boot;
setup_node_pointer(kmem_cache);
@@ -1687,7 +1605,7 @@ static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
struct kmem_cache_node *n;
- struct slab *slabp;
+ struct page *page;
unsigned long flags;
int node;
@@ -1706,15 +1624,15 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
continue;
spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(slabp, &n->slabs_full, list) {
+ list_for_each_entry(page, &n->slabs_full, lru) {
active_objs += cachep->num;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_partial, list) {
- active_objs += slabp->inuse;
+ list_for_each_entry(page, &n->slabs_partial, lru) {
+ active_objs += page->active;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_free, list)
+ list_for_each_entry(page, &n->slabs_free, lru)
num_slabs++;
free_objects += n->free_objects;
@@ -1736,19 +1654,11 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
* did not request dmaable memory, we might get it, but that
* would be relatively rare and ignorable.
*/
-static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
+static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
+ int nodeid)
{
struct page *page;
int nr_pages;
- int i;
-
-#ifndef CONFIG_MMU
- /*
- * Nommu uses slab's for process anonymous memory allocations, and thus
- * requires __GFP_COMP to properly refcount higher order allocations
- */
- flags |= __GFP_COMP;
-#endif
flags |= cachep->allocflags;
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
@@ -1772,12 +1682,9 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
else
add_zone_page_state(page_zone(page),
NR_SLAB_UNRECLAIMABLE, nr_pages);
- for (i = 0; i < nr_pages; i++) {
- __SetPageSlab(page + i);
-
- if (page->pfmemalloc)
- SetPageSlabPfmemalloc(page + i);
- }
+ __SetPageSlab(page);
+ if (page->pfmemalloc)
+ SetPageSlabPfmemalloc(page);
memcg_bind_pages(cachep, cachep->gfporder);
if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
@@ -1789,17 +1696,15 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
kmemcheck_mark_unallocated_pages(page, nr_pages);
}
- return page_address(page);
+ return page;
}
/*
* Interface to system's page release.
*/
-static void kmem_freepages(struct kmem_cache *cachep, void *addr)
+static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
{
- unsigned long i = (1 << cachep->gfporder);
- struct page *page = virt_to_page(addr);
- const unsigned long nr_freed = i;
+ const unsigned long nr_freed = (1 << cachep->gfporder);
kmemcheck_free_shadow(page, cachep->gfporder);
@@ -1809,27 +1714,28 @@ static void kmem_freepages(struct kmem_cache *cachep, void *addr)
else
sub_zone_page_state(page_zone(page),
NR_SLAB_UNRECLAIMABLE, nr_freed);
- while (i--) {
- BUG_ON(!PageSlab(page));
- __ClearPageSlabPfmemalloc(page);
- __ClearPageSlab(page);
- page++;
- }
+
+ BUG_ON(!PageSlab(page));
+ __ClearPageSlabPfmemalloc(page);
+ __ClearPageSlab(page);
+ page_mapcount_reset(page);
+ page->mapping = NULL;
memcg_release_pages(cachep, cachep->gfporder);
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += nr_freed;
- free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
+ __free_memcg_kmem_pages(page, cachep->gfporder);
}
static void kmem_rcu_free(struct rcu_head *head)
{
- struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
- struct kmem_cache *cachep = slab_rcu->cachep;
+ struct kmem_cache *cachep;
+ struct page *page;
- kmem_freepages(cachep, slab_rcu->addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slab_rcu);
+ page = container_of(head, struct page, rcu_head);
+ cachep = page->slab_cache;
+
+ kmem_freepages(cachep, page);
}
#if DEBUG
@@ -1978,19 +1884,19 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
/* Print some data about the neighboring objects, if they
* exist:
*/
- struct slab *slabp = virt_to_slab(objp);
+ struct page *page = virt_to_head_page(objp);
unsigned int objnr;
- objnr = obj_to_index(cachep, slabp, objp);
+ objnr = obj_to_index(cachep, page, objp);
if (objnr) {
- objp = index_to_obj(cachep, slabp, objnr - 1);
+ objp = index_to_obj(cachep, page, objnr - 1);
realobj = (char *)objp + obj_offset(cachep);
printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
realobj, size);
print_objinfo(cachep, objp, 2);
}
if (objnr + 1 < cachep->num) {
- objp = index_to_obj(cachep, slabp, objnr + 1);
+ objp = index_to_obj(cachep, page, objnr + 1);
realobj = (char *)objp + obj_offset(cachep);
printk(KERN_ERR "Next obj: start=%p, len=%d\n",
realobj, size);
@@ -2001,11 +1907,12 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
#endif
#if DEBUG
-static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
+static void slab_destroy_debugcheck(struct kmem_cache *cachep,
+ struct page *page)
{
int i;
for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
+ void *objp = index_to_obj(cachep, page, i);
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
@@ -2030,7 +1937,8 @@ static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slab
}
}
#else
-static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
+static void slab_destroy_debugcheck(struct kmem_cache *cachep,
+ struct page *page)
{
}
#endif
@@ -2044,23 +1952,34 @@ static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slab
* Before calling the slab must have been unlinked from the cache. The
* cache-lock is not held/needed.
*/
-static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
+static void slab_destroy(struct kmem_cache *cachep, struct page *page)
{
- void *addr = slabp->s_mem - slabp->colouroff;
+ void *freelist;
- slab_destroy_debugcheck(cachep, slabp);
+ freelist = page->freelist;
+ slab_destroy_debugcheck(cachep, page);
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
- struct slab_rcu *slab_rcu;
+ struct rcu_head *head;
+
+ /*
+ * RCU free overloads the RCU head over the LRU.
+ * slab_page has been overloeaded over the LRU,
+ * however it is not used from now on so that
+ * we can use it safely.
+ */
+ head = (void *)&page->rcu_head;
+ call_rcu(head, kmem_rcu_free);
- slab_rcu = (struct slab_rcu *)slabp;
- slab_rcu->cachep = cachep;
- slab_rcu->addr = addr;
- call_rcu(&slab_rcu->head, kmem_rcu_free);
} else {
- kmem_freepages(cachep, addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slabp);
+ kmem_freepages(cachep, page);
}
+
+ /*
+ * From now on, we don't use freelist
+ * although actual page can be freed in rcu context
+ */
+ if (OFF_SLAB(cachep))
+ kmem_cache_free(cachep->freelist_cache, freelist);
}
/**
@@ -2097,8 +2016,8 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
* use off-slab slabs. Needed to avoid a possible
* looping condition in cache_grow().
*/
- offslab_limit = size - sizeof(struct slab);
- offslab_limit /= sizeof(kmem_bufctl_t);
+ offslab_limit = size;
+ offslab_limit /= sizeof(unsigned int);
if (num > offslab_limit)
break;
@@ -2220,7 +2139,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
int
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
{
- size_t left_over, slab_size, ralign;
+ size_t left_over, freelist_size, ralign;
gfp_t gfp;
int err;
size_t size = cachep->size;
@@ -2339,22 +2258,21 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
if (!cachep->num)
return -E2BIG;
- slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
- + sizeof(struct slab), cachep->align);
+ freelist_size =
+ ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
/*
* If the slab has been placed off-slab, and we have enough space then
* move it on-slab. This is at the expense of any extra colouring.
*/
- if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
+ if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
flags &= ~CFLGS_OFF_SLAB;
- left_over -= slab_size;
+ left_over -= freelist_size;
}
if (flags & CFLGS_OFF_SLAB) {
/* really off slab. No need for manual alignment */
- slab_size =
- cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
+ freelist_size = cachep->num * sizeof(unsigned int);
#ifdef CONFIG_PAGE_POISONING
/* If we're going to use the generic kernel_map_pages()
@@ -2371,16 +2289,16 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
if (cachep->colour_off < cachep->align)
cachep->colour_off = cachep->align;
cachep->colour = left_over / cachep->colour_off;
- cachep->slab_size = slab_size;
+ cachep->freelist_size = freelist_size;
cachep->flags = flags;
- cachep->allocflags = 0;
+ cachep->allocflags = __GFP_COMP;
if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
cachep->allocflags |= GFP_DMA;
cachep->size = size;
cachep->reciprocal_buffer_size = reciprocal_value(size);
if (flags & CFLGS_OFF_SLAB) {
- cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
+ cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
/*
* This is a possibility for one of the malloc_sizes caches.
* But since we go off slab only for object size greater than
@@ -2388,7 +2306,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
* this should not happen at all.
* But leave a BUG_ON for some lucky dude.
*/
- BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
+ BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
}
err = setup_cpu_cache(cachep, gfp);
@@ -2494,7 +2412,7 @@ static int drain_freelist(struct kmem_cache *cache,
{
struct list_head *p;
int nr_freed;
- struct slab *slabp;
+ struct page *page;
nr_freed = 0;
while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
@@ -2506,18 +2424,18 @@ static int drain_freelist(struct kmem_cache *cache,
goto out;
}
- slabp = list_entry(p, struct slab, list);
+ page = list_entry(p, struct page, lru);
#if DEBUG
- BUG_ON(slabp->inuse);
+ BUG_ON(page->active);
#endif
- list_del(&slabp->list);
+ list_del(&page->lru);
/*
* Safe to drop the lock. The slab is no longer linked
* to the cache.
*/
n->free_objects -= cache->num;
spin_unlock_irq(&n->list_lock);
- slab_destroy(cache, slabp);
+ slab_destroy(cache, page);
nr_freed++;
}
out:
@@ -2600,52 +2518,42 @@ int __kmem_cache_shutdown(struct kmem_cache *cachep)
* descriptors in kmem_cache_create, we search through the malloc_sizes array.
* If we are creating a malloc_sizes cache here it would not be visible to
* kmem_find_general_cachep till the initialization is complete.
- * Hence we cannot have slabp_cache same as the original cache.
+ * Hence we cannot have freelist_cache same as the original cache.
*/
-static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
- int colour_off, gfp_t local_flags,
- int nodeid)
+static void *alloc_slabmgmt(struct kmem_cache *cachep,
+ struct page *page, int colour_off,
+ gfp_t local_flags, int nodeid)
{
- struct slab *slabp;
+ void *freelist;
+ void *addr = page_address(page);
if (OFF_SLAB(cachep)) {
/* Slab management obj is off-slab. */
- slabp = kmem_cache_alloc_node(cachep->slabp_cache,
+ freelist = kmem_cache_alloc_node(cachep->freelist_cache,
local_flags, nodeid);
- /*
- * If the first object in the slab is leaked (it's allocated
- * but no one has a reference to it), we want to make sure
- * kmemleak does not treat the ->s_mem pointer as a reference
- * to the object. Otherwise we will not report the leak.
- */
- kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
- local_flags);
- if (!slabp)
+ if (!freelist)
return NULL;
} else {
- slabp = objp + colour_off;
- colour_off += cachep->slab_size;
+ freelist = addr + colour_off;
+ colour_off += cachep->freelist_size;
}
- slabp->inuse = 0;
- slabp->colouroff = colour_off;
- slabp->s_mem = objp + colour_off;
- slabp->nodeid = nodeid;
- slabp->free = 0;
- return slabp;
+ page->active = 0;
+ page->s_mem = addr + colour_off;
+ return freelist;
}
-static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
+static inline unsigned int *slab_freelist(struct page *page)
{
- return (kmem_bufctl_t *) (slabp + 1);
+ return (unsigned int *)(page->freelist);
}
static void cache_init_objs(struct kmem_cache *cachep,
- struct slab *slabp)
+ struct page *page)
{
int i;
for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
+ void *objp = index_to_obj(cachep, page, i);
#if DEBUG
/* need to poison the objs? */
if (cachep->flags & SLAB_POISON)
@@ -2681,9 +2589,8 @@ static void cache_init_objs(struct kmem_cache *cachep,
if (cachep->ctor)
cachep->ctor(objp);
#endif
- slab_bufctl(slabp)[i] = i + 1;
+ slab_freelist(page)[i] = i;
}
- slab_bufctl(slabp)[i - 1] = BUFCTL_END;
}
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
@@ -2696,41 +2603,41 @@ static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
}
}
-static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
+static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
int nodeid)
{
- void *objp = index_to_obj(cachep, slabp, slabp->free);
- kmem_bufctl_t next;
+ void *objp;
- slabp->inuse++;
- next = slab_bufctl(slabp)[slabp->free];
+ objp = index_to_obj(cachep, page, slab_freelist(page)[page->active]);
+ page->active++;
#if DEBUG
- slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
- WARN_ON(slabp->nodeid != nodeid);
+ WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
#endif
- slabp->free = next;
return objp;
}
-static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
+static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
void *objp, int nodeid)
{
- unsigned int objnr = obj_to_index(cachep, slabp, objp);
-
+ unsigned int objnr = obj_to_index(cachep, page, objp);
#if DEBUG
+ unsigned int i;
+
/* Verify that the slab belongs to the intended node */
- WARN_ON(slabp->nodeid != nodeid);
+ WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
- if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
- printk(KERN_ERR "slab: double free detected in cache "
- "'%s', objp %p\n", cachep->name, objp);
- BUG();
+ /* Verify double free bug */
+ for (i = page->active; i < cachep->num; i++) {
+ if (slab_freelist(page)[i] == objnr) {
+ printk(KERN_ERR "slab: double free detected in cache "
+ "'%s', objp %p\n", cachep->name, objp);
+ BUG();
+ }
}
#endif
- slab_bufctl(slabp)[objnr] = slabp->free;
- slabp->free = objnr;
- slabp->inuse--;
+ page->active--;
+ slab_freelist(page)[page->active] = objnr;
}
/*
@@ -2738,23 +2645,11 @@ static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
* for the slab allocator to be able to lookup the cache and slab of a
* virtual address for kfree, ksize, and slab debugging.
*/
-static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
- void *addr)
+static void slab_map_pages(struct kmem_cache *cache, struct page *page,
+ void *freelist)
{
- int nr_pages;
- struct page *page;
-
- page = virt_to_page(addr);
-
- nr_pages = 1;
- if (likely(!PageCompound(page)))
- nr_pages <<= cache->gfporder;
-
- do {
- page->slab_cache = cache;
- page->slab_page = slab;
- page++;
- } while (--nr_pages);
+ page->slab_cache = cache;
+ page->freelist = freelist;
}
/*
@@ -2762,9 +2657,9 @@ static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
* kmem_cache_alloc() when there are no active objs left in a cache.
*/
static int cache_grow(struct kmem_cache *cachep,
- gfp_t flags, int nodeid, void *objp)
+ gfp_t flags, int nodeid, struct page *page)
{
- struct slab *slabp;
+ void *freelist;
size_t offset;
gfp_t local_flags;
struct kmem_cache_node *n;
@@ -2805,20 +2700,20 @@ static int cache_grow(struct kmem_cache *cachep,
* Get mem for the objs. Attempt to allocate a physical page from
* 'nodeid'.
*/
- if (!objp)
- objp = kmem_getpages(cachep, local_flags, nodeid);
- if (!objp)
+ if (!page)
+ page = kmem_getpages(cachep, local_flags, nodeid);
+ if (!page)
goto failed;
/* Get slab management. */
- slabp = alloc_slabmgmt(cachep, objp, offset,
+ freelist = alloc_slabmgmt(cachep, page, offset,
local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
- if (!slabp)
+ if (!freelist)
goto opps1;
- slab_map_pages(cachep, slabp, objp);
+ slab_map_pages(cachep, page, freelist);
- cache_init_objs(cachep, slabp);
+ cache_init_objs(cachep, page);
if (local_flags & __GFP_WAIT)
local_irq_disable();
@@ -2826,13 +2721,13 @@ static int cache_grow(struct kmem_cache *cachep,
spin_lock(&n->list_lock);
/* Make slab active. */
- list_add_tail(&slabp->list, &(n->slabs_free));
+ list_add_tail(&page->lru, &(n->slabs_free));
STATS_INC_GROWN(cachep);
n->free_objects += cachep->num;
spin_unlock(&n->list_lock);
return 1;
opps1:
- kmem_freepages(cachep, objp);
+ kmem_freepages(cachep, page);
failed:
if (local_flags & __GFP_WAIT)
local_irq_disable();
@@ -2880,9 +2775,8 @@ static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
unsigned long caller)
{
- struct page *page;
unsigned int objnr;
- struct slab *slabp;
+ struct page *page;
BUG_ON(virt_to_cache(objp) != cachep);
@@ -2890,8 +2784,6 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
kfree_debugcheck(objp);
page = virt_to_head_page(objp);
- slabp = page->slab_page;
-
if (cachep->flags & SLAB_RED_ZONE) {
verify_redzone_free(cachep, objp);
*dbg_redzone1(cachep, objp) = RED_INACTIVE;
@@ -2900,14 +2792,11 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
if (cachep->flags & SLAB_STORE_USER)
*dbg_userword(cachep, objp) = (void *)caller;
- objnr = obj_to_index(cachep, slabp, objp);
+ objnr = obj_to_index(cachep, page, objp);
BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
+ BUG_ON(objp != index_to_obj(cachep, page, objnr));
-#ifdef CONFIG_DEBUG_SLAB_LEAK
- slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
-#endif
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
@@ -2924,33 +2813,9 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
return objp;
}
-static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
-{
- kmem_bufctl_t i;
- int entries = 0;
-
- /* Check slab's freelist to see if this obj is there. */
- for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
- entries++;
- if (entries > cachep->num || i >= cachep->num)
- goto bad;
- }
- if (entries != cachep->num - slabp->inuse) {
-bad:
- printk(KERN_ERR "slab: Internal list corruption detected in "
- "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
- cachep->name, cachep->num, slabp, slabp->inuse,
- print_tainted());
- print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
- sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
- 1);
- BUG();
- }
-}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
-#define check_slabp(x,y) do { } while(0)
#endif
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
@@ -2989,7 +2854,7 @@ retry:
while (batchcount > 0) {
struct list_head *entry;
- struct slab *slabp;
+ struct page *page;
/* Get slab alloc is to come from. */
entry = n->slabs_partial.next;
if (entry == &n->slabs_partial) {
@@ -2999,8 +2864,7 @@ retry:
goto must_grow;
}
- slabp = list_entry(entry, struct slab, list);
- check_slabp(cachep, slabp);
+ page = list_entry(entry, struct page, lru);
check_spinlock_acquired(cachep);
/*
@@ -3008,24 +2872,23 @@ retry:
* there must be at least one object available for
* allocation.
*/
- BUG_ON(slabp->inuse >= cachep->num);
+ BUG_ON(page->active >= cachep->num);
- while (slabp->inuse < cachep->num && batchcount--) {
+ while (page->active < cachep->num && batchcount--) {
STATS_INC_ALLOCED(cachep);
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
- ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
+ ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
node));
}
- check_slabp(cachep, slabp);
/* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &n->slabs_full);
+ list_del(&page->lru);
+ if (page->active == cachep->num)
+ list_add(&page->list, &n->slabs_full);
else
- list_add(&slabp->list, &n->slabs_partial);
+ list_add(&page->list, &n->slabs_partial);
}
must_grow:
@@ -3097,16 +2960,6 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
*dbg_redzone1(cachep, objp) = RED_ACTIVE;
*dbg_redzone2(cachep, objp) = RED_ACTIVE;
}
-#ifdef CONFIG_DEBUG_SLAB_LEAK
- {
- struct slab *slabp;
- unsigned objnr;
-
- slabp = virt_to_head_page(objp)->slab_page;
- objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
- slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
- }
-#endif
objp += obj_offset(cachep);
if (cachep->ctor && cachep->flags & SLAB_POISON)
cachep->ctor(objp);
@@ -3248,18 +3101,20 @@ retry:
* We may trigger various forms of reclaim on the allowed
* set and go into memory reserves if necessary.
*/
+ struct page *page;
+
if (local_flags & __GFP_WAIT)
local_irq_enable();
kmem_flagcheck(cache, flags);
- obj = kmem_getpages(cache, local_flags, numa_mem_id());
+ page = kmem_getpages(cache, local_flags, numa_mem_id());
if (local_flags & __GFP_WAIT)
local_irq_disable();
- if (obj) {
+ if (page) {
/*
* Insert into the appropriate per node queues
*/
- nid = page_to_nid(virt_to_page(obj));
- if (cache_grow(cache, flags, nid, obj)) {
+ nid = page_to_nid(page);
+ if (cache_grow(cache, flags, nid, page)) {
obj = ____cache_alloc_node(cache,
flags | GFP_THISNODE, nid);
if (!obj)
@@ -3288,7 +3143,7 @@ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
int nodeid)
{
struct list_head *entry;
- struct slab *slabp;
+ struct page *page;
struct kmem_cache_node *n;
void *obj;
int x;
@@ -3308,26 +3163,24 @@ retry:
goto must_grow;
}
- slabp = list_entry(entry, struct slab, list);
+ page = list_entry(entry, struct page, lru);
check_spinlock_acquired_node(cachep, nodeid);
- check_slabp(cachep, slabp);
STATS_INC_NODEALLOCS(cachep);
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
- BUG_ON(slabp->inuse == cachep->num);
+ BUG_ON(page->active == cachep->num);
- obj = slab_get_obj(cachep, slabp, nodeid);
- check_slabp(cachep, slabp);
+ obj = slab_get_obj(cachep, page, nodeid);
n->free_objects--;
/* move slabp to correct slabp list: */
- list_del(&slabp->list);
+ list_del(&page->lru);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &n->slabs_full);
+ if (page->active == cachep->num)
+ list_add(&page->lru, &n->slabs_full);
else
- list_add(&slabp->list, &n->slabs_partial);
+ list_add(&page->lru, &n->slabs_partial);
spin_unlock(&n->list_lock);
goto done;
@@ -3477,23 +3330,21 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
for (i = 0; i < nr_objects; i++) {
void *objp;
- struct slab *slabp;
+ struct page *page;
clear_obj_pfmemalloc(&objpp[i]);
objp = objpp[i];
- slabp = virt_to_slab(objp);
+ page = virt_to_head_page(objp);
n = cachep->node[node];
- list_del(&slabp->list);
+ list_del(&page->lru);
check_spinlock_acquired_node(cachep, node);
- check_slabp(cachep, slabp);
- slab_put_obj(cachep, slabp, objp, node);
+ slab_put_obj(cachep, page, objp, node);
STATS_DEC_ACTIVE(cachep);
n->free_objects++;
- check_slabp(cachep, slabp);
/* fixup slab chains */
- if (slabp->inuse == 0) {
+ if (page->active == 0) {
if (n->free_objects > n->free_limit) {
n->free_objects -= cachep->num;
/* No need to drop any previously held
@@ -3502,16 +3353,16 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
* a different cache, refer to comments before
* alloc_slabmgmt.
*/
- slab_destroy(cachep, slabp);
+ slab_destroy(cachep, page);
} else {
- list_add(&slabp->list, &n->slabs_free);
+ list_add(&page->lru, &n->slabs_free);
}
} else {
/* Unconditionally move a slab to the end of the
* partial list on free - maximum time for the
* other objects to be freed, too.
*/
- list_add_tail(&slabp->list, &n->slabs_partial);
+ list_add_tail(&page->lru, &n->slabs_partial);
}
}
}
@@ -3551,10 +3402,10 @@ free_done:
p = n->slabs_free.next;
while (p != &(n->slabs_free)) {
- struct slab *slabp;
+ struct page *page;
- slabp = list_entry(p, struct slab, list);
- BUG_ON(slabp->inuse);
+ page = list_entry(p, struct page, lru);
+ BUG_ON(page->active);
i++;
p = p->next;
@@ -3982,7 +3833,7 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
VM_BUG_ON(!mutex_is_locked(&slab_mutex));
for_each_memcg_cache_index(i) {
- c = cache_from_memcg(cachep, i);
+ c = cache_from_memcg_idx(cachep, i);
if (c)
/* return value determined by the parent cache only */
__do_tune_cpucache(c, limit, batchcount, shared, gfp);
@@ -4158,7 +4009,7 @@ out:
#ifdef CONFIG_SLABINFO
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
{
- struct slab *slabp;
+ struct page *page;
unsigned long active_objs;
unsigned long num_objs;
unsigned long active_slabs = 0;
@@ -4178,23 +4029,23 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
check_irq_on();
spin_lock_irq(&n->list_lock);
- list_for_each_entry(slabp, &n->slabs_full, list) {
- if (slabp->inuse != cachep->num && !error)
+ list_for_each_entry(page, &n->slabs_full, lru) {
+ if (page->active != cachep->num && !error)
error = "slabs_full accounting error";
active_objs += cachep->num;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_partial, list) {
- if (slabp->inuse == cachep->num && !error)
- error = "slabs_partial inuse accounting error";
- if (!slabp->inuse && !error)
- error = "slabs_partial/inuse accounting error";
- active_objs += slabp->inuse;
+ list_for_each_entry(page, &n->slabs_partial, lru) {
+ if (page->active == cachep->num && !error)
+ error = "slabs_partial accounting error";
+ if (!page->active && !error)
+ error = "slabs_partial accounting error";
+ active_objs += page->active;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_free, list) {
- if (slabp->inuse && !error)
- error = "slabs_free/inuse accounting error";
+ list_for_each_entry(page, &n->slabs_free, lru) {
+ if (page->active && !error)
+ error = "slabs_free accounting error";
num_slabs++;
}
free_objects += n->free_objects;
@@ -4346,15 +4197,27 @@ static inline int add_caller(unsigned long *n, unsigned long v)
return 1;
}
-static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
+static void handle_slab(unsigned long *n, struct kmem_cache *c,
+ struct page *page)
{
void *p;
- int i;
+ int i, j;
+
if (n[0] == n[1])
return;
- for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
- if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
+ for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
+ bool active = true;
+
+ for (j = page->active; j < c->num; j++) {
+ /* Skip freed item */
+ if (slab_freelist(page)[j] == i) {
+ active = false;
+ break;
+ }
+ }
+ if (!active)
continue;
+
if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
return;
}
@@ -4379,7 +4242,7 @@ static void show_symbol(struct seq_file *m, unsigned long address)
static int leaks_show(struct seq_file *m, void *p)
{
struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
- struct slab *slabp;
+ struct page *page;
struct kmem_cache_node *n;
const char *name;
unsigned long *x = m->private;
@@ -4403,10 +4266,10 @@ static int leaks_show(struct seq_file *m, void *p)
check_irq_on();
spin_lock_irq(&n->list_lock);
- list_for_each_entry(slabp, &n->slabs_full, list)
- handle_slab(x, cachep, slabp);
- list_for_each_entry(slabp, &n->slabs_partial, list)
- handle_slab(x, cachep, slabp);
+ list_for_each_entry(page, &n->slabs_full, lru)
+ handle_slab(x, cachep, page);
+ list_for_each_entry(page, &n->slabs_partial, lru)
+ handle_slab(x, cachep, page);
spin_unlock_irq(&n->list_lock);
}
name = cachep->name;
diff --git a/mm/slab.h b/mm/slab.h
index a535033f7e9a..0859c4241ba1 100644
--- a/mm/slab.h
+++ b/mm/slab.h
@@ -160,7 +160,8 @@ static inline const char *cache_name(struct kmem_cache *s)
return s->name;
}
-static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
+static inline struct kmem_cache *
+cache_from_memcg_idx(struct kmem_cache *s, int idx)
{
if (!s->memcg_params)
return NULL;
@@ -204,7 +205,8 @@ static inline const char *cache_name(struct kmem_cache *s)
return s->name;
}
-static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
+static inline struct kmem_cache *
+cache_from_memcg_idx(struct kmem_cache *s, int idx)
{
return NULL;
}
diff --git a/mm/slab_common.c b/mm/slab_common.c
index e2e98af703ea..0b7bb399b0e4 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -571,7 +571,7 @@ memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
return;
for_each_memcg_cache_index(i) {
- c = cache_from_memcg(s, i);
+ c = cache_from_memcg_idx(s, i);
if (!c)
continue;
diff --git a/mm/slub.c b/mm/slub.c
index c3eb3d3ca835..545a170ebf9f 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -155,7 +155,7 @@ static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
/*
* Maximum number of desirable partial slabs.
* The existence of more partial slabs makes kmem_cache_shrink
- * sort the partial list by the number of objects in the.
+ * sort the partial list by the number of objects in use.
*/
#define MAX_PARTIAL 10
@@ -933,6 +933,16 @@ static void trace(struct kmem_cache *s, struct page *page, void *object,
* Hooks for other subsystems that check memory allocations. In a typical
* production configuration these hooks all should produce no code at all.
*/
+static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
+{
+ kmemleak_alloc(ptr, size, 1, flags);
+}
+
+static inline void kfree_hook(const void *x)
+{
+ kmemleak_free(x);
+}
+
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
flags &= gfp_allowed_mask;
@@ -955,7 +965,7 @@ static inline void slab_free_hook(struct kmem_cache *s, void *x)
kmemleak_free_recursive(x, s->flags);
/*
- * Trouble is that we may no longer disable interupts in the fast path
+ * Trouble is that we may no longer disable interrupts in the fast path
* So in order to make the debug calls that expect irqs to be
* disabled we need to disable interrupts temporarily.
*/
@@ -1217,8 +1227,8 @@ static unsigned long kmem_cache_flags(unsigned long object_size,
/*
* Enable debugging if selected on the kernel commandline.
*/
- if (slub_debug && (!slub_debug_slabs ||
- !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
+ if (slub_debug && (!slub_debug_slabs || (name &&
+ !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
flags |= slub_debug;
return flags;
@@ -1260,13 +1270,30 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node,
static inline void dec_slabs_node(struct kmem_cache *s, int node,
int objects) {}
+static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
+{
+ kmemleak_alloc(ptr, size, 1, flags);
+}
+
+static inline void kfree_hook(const void *x)
+{
+ kmemleak_free(x);
+}
+
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{ return 0; }
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
- void *object) {}
+ void *object)
+{
+ kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
+ flags & gfp_allowed_mask);
+}
-static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
+static inline void slab_free_hook(struct kmem_cache *s, void *x)
+{
+ kmemleak_free_recursive(x, s->flags);
+}
#endif /* CONFIG_SLUB_DEBUG */
@@ -2829,8 +2856,8 @@ static struct kmem_cache *kmem_cache_node;
* slab on the node for this slabcache. There are no concurrent accesses
* possible.
*
- * Note that this function only works on the kmalloc_node_cache
- * when allocating for the kmalloc_node_cache. This is used for bootstrapping
+ * Note that this function only works on the kmem_cache_node
+ * when allocating for the kmem_cache_node. This is used for bootstrapping
* memory on a fresh node that has no slab structures yet.
*/
static void early_kmem_cache_node_alloc(int node)
@@ -3272,7 +3299,7 @@ static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
if (page)
ptr = page_address(page);
- kmemleak_alloc(ptr, size, 1, flags);
+ kmalloc_large_node_hook(ptr, size, flags);
return ptr;
}
@@ -3336,7 +3363,7 @@ void kfree(const void *x)
page = virt_to_head_page(x);
if (unlikely(!PageSlab(page))) {
BUG_ON(!PageCompound(page));
- kmemleak_free(x);
+ kfree_hook(x);
__free_memcg_kmem_pages(page, compound_order(page));
return;
}
@@ -4983,7 +5010,7 @@ static ssize_t slab_attr_store(struct kobject *kobj,
* through the descendants with best-effort propagation.
*/
for_each_memcg_cache_index(i) {
- struct kmem_cache *c = cache_from_memcg(s, i);
+ struct kmem_cache *c = cache_from_memcg_idx(s, i);
if (c)
attribute->store(c, buf, len);
}
diff --git a/mm/sparse.c b/mm/sparse.c
index 4ac1d7ef548f..8cc7be0e9590 100644
--- a/mm/sparse.c
+++ b/mm/sparse.c
@@ -590,33 +590,32 @@ void __init sparse_init(void)
#ifdef CONFIG_MEMORY_HOTPLUG
#ifdef CONFIG_SPARSEMEM_VMEMMAP
-static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
- unsigned long nr_pages)
+static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
{
/* This will make the necessary allocations eventually. */
return sparse_mem_map_populate(pnum, nid);
}
-static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
+static void __kfree_section_memmap(struct page *memmap)
{
unsigned long start = (unsigned long)memmap;
- unsigned long end = (unsigned long)(memmap + nr_pages);
+ unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
vmemmap_free(start, end);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
-static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
+static void free_map_bootmem(struct page *memmap)
{
unsigned long start = (unsigned long)memmap;
- unsigned long end = (unsigned long)(memmap + nr_pages);
+ unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
vmemmap_free(start, end);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#else
-static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
+static struct page *__kmalloc_section_memmap(void)
{
struct page *page, *ret;
- unsigned long memmap_size = sizeof(struct page) * nr_pages;
+ unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
if (page)
@@ -634,28 +633,30 @@ got_map_ptr:
return ret;
}
-static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
- unsigned long nr_pages)
+static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
{
- return __kmalloc_section_memmap(nr_pages);
+ return __kmalloc_section_memmap();
}
-static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
+static void __kfree_section_memmap(struct page *memmap)
{
if (is_vmalloc_addr(memmap))
vfree(memmap);
else
free_pages((unsigned long)memmap,
- get_order(sizeof(struct page) * nr_pages));
+ get_order(sizeof(struct page) * PAGES_PER_SECTION));
}
#ifdef CONFIG_MEMORY_HOTREMOVE
-static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
+static void free_map_bootmem(struct page *memmap)
{
unsigned long maps_section_nr, removing_section_nr, i;
- unsigned long magic;
+ unsigned long magic, nr_pages;
struct page *page = virt_to_page(memmap);
+ nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
+ >> PAGE_SHIFT;
+
for (i = 0; i < nr_pages; i++, page++) {
magic = (unsigned long) page->lru.next;
@@ -684,8 +685,7 @@ static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
* set. If this is <=0, then that means that the passed-in
* map was not consumed and must be freed.
*/
-int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
- int nr_pages)
+int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
{
unsigned long section_nr = pfn_to_section_nr(start_pfn);
struct pglist_data *pgdat = zone->zone_pgdat;
@@ -702,12 +702,12 @@ int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
ret = sparse_index_init(section_nr, pgdat->node_id);
if (ret < 0 && ret != -EEXIST)
return ret;
- memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
+ memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
if (!memmap)
return -ENOMEM;
usemap = __kmalloc_section_usemap();
if (!usemap) {
- __kfree_section_memmap(memmap, nr_pages);
+ __kfree_section_memmap(memmap);
return -ENOMEM;
}
@@ -719,7 +719,7 @@ int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
goto out;
}
- memset(memmap, 0, sizeof(struct page) * nr_pages);
+ memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
ms->section_mem_map |= SECTION_MARKED_PRESENT;
@@ -729,7 +729,7 @@ out:
pgdat_resize_unlock(pgdat, &flags);
if (ret <= 0) {
kfree(usemap);
- __kfree_section_memmap(memmap, nr_pages);
+ __kfree_section_memmap(memmap);
}
return ret;
}
@@ -759,7 +759,6 @@ static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
static void free_section_usemap(struct page *memmap, unsigned long *usemap)
{
struct page *usemap_page;
- unsigned long nr_pages;
if (!usemap)
return;
@@ -771,7 +770,7 @@ static void free_section_usemap(struct page *memmap, unsigned long *usemap)
if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
kfree(usemap);
if (memmap)
- __kfree_section_memmap(memmap, PAGES_PER_SECTION);
+ __kfree_section_memmap(memmap);
return;
}
@@ -780,12 +779,8 @@ static void free_section_usemap(struct page *memmap, unsigned long *usemap)
* on the section which has pgdat at boot time. Just keep it as is now.
*/
- if (memmap) {
- nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
- >> PAGE_SHIFT;
-
- free_map_bootmem(memmap, nr_pages);
- }
+ if (memmap)
+ free_map_bootmem(memmap);
}
void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
diff --git a/mm/swap.c b/mm/swap.c
index 759c3caf44bd..84b26aaabd03 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -82,19 +82,6 @@ static void __put_compound_page(struct page *page)
static void put_compound_page(struct page *page)
{
- /*
- * hugetlbfs pages cannot be split from under us. If this is a
- * hugetlbfs page, check refcount on head page and release the page if
- * the refcount becomes zero.
- */
- if (PageHuge(page)) {
- page = compound_head(page);
- if (put_page_testzero(page))
- __put_compound_page(page);
-
- return;
- }
-
if (unlikely(PageTail(page))) {
/* __split_huge_page_refcount can run under us */
struct page *page_head = compound_trans_head(page);
@@ -111,14 +98,31 @@ static void put_compound_page(struct page *page)
* still hot on arches that do not support
* this_cpu_cmpxchg_double().
*/
- if (PageSlab(page_head)) {
- if (PageTail(page)) {
+ if (PageSlab(page_head) || PageHeadHuge(page_head)) {
+ if (likely(PageTail(page))) {
+ /*
+ * __split_huge_page_refcount
+ * cannot race here.
+ */
+ VM_BUG_ON(!PageHead(page_head));
+ atomic_dec(&page->_mapcount);
if (put_page_testzero(page_head))
VM_BUG_ON(1);
-
- atomic_dec(&page->_mapcount);
- goto skip_lock_tail;
+ if (put_page_testzero(page_head))
+ __put_compound_page(page_head);
+ return;
} else
+ /*
+ * __split_huge_page_refcount
+ * run before us, "page" was a
+ * THP tail. The split
+ * page_head has been freed
+ * and reallocated as slab or
+ * hugetlbfs page of smaller
+ * order (only possible if
+ * reallocated as slab on
+ * x86).
+ */
goto skip_lock;
}
/*
@@ -132,8 +136,27 @@ static void put_compound_page(struct page *page)
/* __split_huge_page_refcount run before us */
compound_unlock_irqrestore(page_head, flags);
skip_lock:
- if (put_page_testzero(page_head))
- __put_single_page(page_head);
+ if (put_page_testzero(page_head)) {
+ /*
+ * The head page may have been
+ * freed and reallocated as a
+ * compound page of smaller
+ * order and then freed again.
+ * All we know is that it
+ * cannot have become: a THP
+ * page, a compound page of
+ * higher order, a tail page.
+ * That is because we still
+ * hold the refcount of the
+ * split THP tail and
+ * page_head was the THP head
+ * before the split.
+ */
+ if (PageHead(page_head))
+ __put_compound_page(page_head);
+ else
+ __put_single_page(page_head);
+ }
out_put_single:
if (put_page_testzero(page))
__put_single_page(page);
@@ -155,7 +178,6 @@ out_put_single:
VM_BUG_ON(atomic_read(&page->_count) != 0);
compound_unlock_irqrestore(page_head, flags);
-skip_lock_tail:
if (put_page_testzero(page_head)) {
if (PageHead(page_head))
__put_compound_page(page_head);
@@ -198,51 +220,52 @@ bool __get_page_tail(struct page *page)
* proper PT lock that already serializes against
* split_huge_page().
*/
+ unsigned long flags;
bool got = false;
- struct page *page_head;
-
- /*
- * If this is a hugetlbfs page it cannot be split under us. Simply
- * increment refcount for the head page.
- */
- if (PageHuge(page)) {
- page_head = compound_head(page);
- atomic_inc(&page_head->_count);
- got = true;
- } else {
- unsigned long flags;
+ struct page *page_head = compound_trans_head(page);
- page_head = compound_trans_head(page);
- if (likely(page != page_head &&
- get_page_unless_zero(page_head))) {
-
- /* Ref to put_compound_page() comment. */
- if (PageSlab(page_head)) {
- if (likely(PageTail(page))) {
- __get_page_tail_foll(page, false);
- return true;
- } else {
- put_page(page_head);
- return false;
- }
- }
-
- /*
- * page_head wasn't a dangling pointer but it
- * may not be a head page anymore by the time
- * we obtain the lock. That is ok as long as it
- * can't be freed from under us.
- */
- flags = compound_lock_irqsave(page_head);
- /* here __split_huge_page_refcount won't run anymore */
+ if (likely(page != page_head && get_page_unless_zero(page_head))) {
+ /* Ref to put_compound_page() comment. */
+ if (PageSlab(page_head) || PageHeadHuge(page_head)) {
if (likely(PageTail(page))) {
+ /*
+ * This is a hugetlbfs page or a slab
+ * page. __split_huge_page_refcount
+ * cannot race here.
+ */
+ VM_BUG_ON(!PageHead(page_head));
__get_page_tail_foll(page, false);
- got = true;
- }
- compound_unlock_irqrestore(page_head, flags);
- if (unlikely(!got))
+ return true;
+ } else {
+ /*
+ * __split_huge_page_refcount run
+ * before us, "page" was a THP
+ * tail. The split page_head has been
+ * freed and reallocated as slab or
+ * hugetlbfs page of smaller order
+ * (only possible if reallocated as
+ * slab on x86).
+ */
put_page(page_head);
+ return false;
+ }
+ }
+
+ /*
+ * page_head wasn't a dangling pointer but it
+ * may not be a head page anymore by the time
+ * we obtain the lock. That is ok as long as it
+ * can't be freed from under us.
+ */
+ flags = compound_lock_irqsave(page_head);
+ /* here __split_huge_page_refcount won't run anymore */
+ if (likely(PageTail(page))) {
+ __get_page_tail_foll(page, false);
+ got = true;
}
+ compound_unlock_irqrestore(page_head, flags);
+ if (unlikely(!got))
+ put_page(page_head);
}
return got;
}
@@ -934,7 +957,8 @@ void __init swap_setup(void)
#ifdef CONFIG_SWAP
int i;
- bdi_init(swapper_spaces[0].backing_dev_info);
+ if (bdi_init(swapper_spaces[0].backing_dev_info))
+ panic("Failed to init swap bdi");
for (i = 0; i < MAX_SWAPFILES; i++) {
spin_lock_init(&swapper_spaces[i].tree_lock);
INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
diff --git a/mm/swapfile.c b/mm/swapfile.c
index de7c904e52e5..612a7c9795f6 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -707,7 +707,7 @@ noswap:
return (swp_entry_t) {0};
}
-/* The only caller of this function is now susupend routine */
+/* The only caller of this function is now suspend routine */
swp_entry_t get_swap_page_of_type(int type)
{
struct swap_info_struct *si;
@@ -845,7 +845,7 @@ static unsigned char swap_entry_free(struct swap_info_struct *p,
}
/*
- * Caller has made sure that the swapdevice corresponding to entry
+ * Caller has made sure that the swap device corresponding to entry
* is still around or has not been recycled.
*/
void swap_free(swp_entry_t entry)
@@ -947,7 +947,7 @@ int try_to_free_swap(struct page *page)
* original page might be freed under memory pressure, then
* later read back in from swap, now with the wrong data.
*
- * Hibration suspends storage while it is writing the image
+ * Hibernation suspends storage while it is writing the image
* to disk so check that here.
*/
if (pm_suspended_storage())
@@ -1179,7 +1179,7 @@ static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
* some architectures (e.g. x86_32 with PAE) we might catch a glimpse
* of unmatched parts which look like swp_pte, so unuse_pte must
* recheck under pte lock. Scanning without pte lock lets it be
- * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
+ * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
*/
pte = pte_offset_map(pmd, addr);
do {
@@ -1924,17 +1924,17 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
p->cluster_info = NULL;
p->flags = 0;
frontswap_map = frontswap_map_get(p);
- frontswap_map_set(p, NULL);
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
frontswap_invalidate_area(type);
+ frontswap_map_set(p, NULL);
mutex_unlock(&swapon_mutex);
free_percpu(p->percpu_cluster);
p->percpu_cluster = NULL;
vfree(swap_map);
vfree(cluster_info);
vfree(frontswap_map);
- /* Destroy swap account informatin */
+ /* Destroy swap account information */
swap_cgroup_swapoff(type);
inode = mapping->host;
@@ -2786,8 +2786,8 @@ int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
/*
* We are fortunate that although vmalloc_to_page uses pte_offset_map,
- * no architecture is using highmem pages for kernel pagetables: so it
- * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
+ * no architecture is using highmem pages for kernel page tables: so it
+ * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
*/
head = vmalloc_to_page(si->swap_map + offset);
offset &= ~PAGE_MASK;
diff --git a/mm/util.c b/mm/util.c
index eaf63fc2c92f..808f375648e7 100644
--- a/mm/util.c
+++ b/mm/util.c
@@ -7,6 +7,9 @@
#include <linux/security.h>
#include <linux/swap.h>
#include <linux/swapops.h>
+#include <linux/mman.h>
+#include <linux/hugetlb.h>
+
#include <asm/uaccess.h>
#include "internal.h"
@@ -387,7 +390,10 @@ struct address_space *page_mapping(struct page *page)
{
struct address_space *mapping = page->mapping;
- VM_BUG_ON(PageSlab(page));
+ /* This happens if someone calls flush_dcache_page on slab page */
+ if (unlikely(PageSlab(page)))
+ return NULL;
+
if (unlikely(PageSwapCache(page))) {
swp_entry_t entry;
@@ -398,6 +404,16 @@ struct address_space *page_mapping(struct page *page)
return mapping;
}
+/*
+ * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
+ */
+unsigned long vm_commit_limit(void)
+{
+ return ((totalram_pages - hugetlb_total_pages())
+ * sysctl_overcommit_ratio / 100) + total_swap_pages;
+}
+
+
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 107454312d5e..0fdf96803c5b 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -359,6 +359,12 @@ static struct vmap_area *alloc_vmap_area(unsigned long size,
if (unlikely(!va))
return ERR_PTR(-ENOMEM);
+ /*
+ * Only scan the relevant parts containing pointers to other objects
+ * to avoid false negatives.
+ */
+ kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
+
retry:
spin_lock(&vmap_area_lock);
/*
@@ -1546,7 +1552,7 @@ static void *__vmalloc_node(unsigned long size, unsigned long align,
gfp_t gfp_mask, pgprot_t prot,
int node, const void *caller);
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
- pgprot_t prot, int node, const void *caller)
+ pgprot_t prot, int node)
{
const int order = 0;
struct page **pages;
@@ -1560,13 +1566,12 @@ static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
/* Please note that the recursion is strictly bounded. */
if (array_size > PAGE_SIZE) {
pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
- PAGE_KERNEL, node, caller);
+ PAGE_KERNEL, node, area->caller);
area->flags |= VM_VPAGES;
} else {
pages = kmalloc_node(array_size, nested_gfp, node);
}
area->pages = pages;
- area->caller = caller;
if (!area->pages) {
remove_vm_area(area->addr);
kfree(area);
@@ -1577,7 +1582,7 @@ static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
struct page *page;
gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
- if (node < 0)
+ if (node == NUMA_NO_NODE)
page = alloc_page(tmp_mask);
else
page = alloc_pages_node(node, tmp_mask, order);
@@ -1634,9 +1639,9 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align,
if (!area)
goto fail;
- addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
+ addr = __vmalloc_area_node(area, gfp_mask, prot, node);
if (!addr)
- goto fail;
+ return NULL;
/*
* In this function, newly allocated vm_struct has VM_UNINITIALIZED
@@ -1646,11 +1651,11 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align,
clear_vm_uninitialized_flag(area);
/*
- * A ref_count = 3 is needed because the vm_struct and vmap_area
- * structures allocated in the __get_vm_area_node() function contain
- * references to the virtual address of the vmalloc'ed block.
+ * A ref_count = 2 is needed because vm_struct allocated in
+ * __get_vm_area_node() contains a reference to the virtual address of
+ * the vmalloc'ed block.
*/
- kmemleak_alloc(addr, real_size, 3, gfp_mask);
+ kmemleak_alloc(addr, real_size, 2, gfp_mask);
return addr;
@@ -2563,6 +2568,11 @@ static void show_numa_info(struct seq_file *m, struct vm_struct *v)
if (!counters)
return;
+ /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
+ smp_rmb();
+ if (v->flags & VM_UNINITIALIZED)
+ return;
+
memset(counters, 0, nr_node_ids * sizeof(unsigned int));
for (nr = 0; nr < v->nr_pages; nr++)
@@ -2579,23 +2589,15 @@ static int s_show(struct seq_file *m, void *p)
struct vmap_area *va = p;
struct vm_struct *v;
- if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
+ /*
+ * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
+ * behalf of vmap area is being tear down or vm_map_ram allocation.
+ */
+ if (!(va->flags & VM_VM_AREA))
return 0;
- if (!(va->flags & VM_VM_AREA)) {
- seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
- (void *)va->va_start, (void *)va->va_end,
- va->va_end - va->va_start);
- return 0;
- }
-
v = va->vm;
- /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
- smp_rmb();
- if (v->flags & VM_UNINITIALIZED)
- return 0;
-
seq_printf(m, "0x%pK-0x%pK %7ld",
v->addr, v->addr + v->size, v->size);
diff --git a/mm/vmstat.c b/mm/vmstat.c
index 9bb314577911..72496140ac08 100644
--- a/mm/vmstat.c
+++ b/mm/vmstat.c
@@ -812,6 +812,7 @@ const char * const vmstat_text[] = {
#ifdef CONFIG_NUMA_BALANCING
"numa_pte_updates",
+ "numa_huge_pte_updates",
"numa_hint_faults",
"numa_hint_faults_local",
"numa_pages_migrated",
@@ -1229,6 +1230,20 @@ static void start_cpu_timer(int cpu)
schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
}
+static void vmstat_cpu_dead(int node)
+{
+ int cpu;
+
+ get_online_cpus();
+ for_each_online_cpu(cpu)
+ if (cpu_to_node(cpu) == node)
+ goto end;
+
+ node_clear_state(node, N_CPU);
+end:
+ put_online_cpus();
+}
+
/*
* Use the cpu notifier to insure that the thresholds are recalculated
* when necessary.
@@ -1258,6 +1273,7 @@ static int vmstat_cpuup_callback(struct notifier_block *nfb,
case CPU_DEAD:
case CPU_DEAD_FROZEN:
refresh_zone_stat_thresholds();
+ vmstat_cpu_dead(cpu_to_node(cpu));
break;
default:
break;
@@ -1276,8 +1292,12 @@ static int __init setup_vmstat(void)
register_cpu_notifier(&vmstat_notifier);
- for_each_online_cpu(cpu)
+ get_online_cpus();
+ for_each_online_cpu(cpu) {
start_cpu_timer(cpu);
+ node_set_state(cpu_to_node(cpu), N_CPU);
+ }
+ put_online_cpus();
#endif
#ifdef CONFIG_PROC_FS
proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
diff --git a/mm/zswap.c b/mm/zswap.c
index d93510c6aa2d..5a63f78a5601 100644
--- a/mm/zswap.c
+++ b/mm/zswap.c
@@ -217,6 +217,7 @@ static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
if (!entry)
return NULL;
entry->refcount = 1;
+ RB_CLEAR_NODE(&entry->rbnode);
return entry;
}
@@ -225,19 +226,6 @@ static void zswap_entry_cache_free(struct zswap_entry *entry)
kmem_cache_free(zswap_entry_cache, entry);
}
-/* caller must hold the tree lock */
-static void zswap_entry_get(struct zswap_entry *entry)
-{
- entry->refcount++;
-}
-
-/* caller must hold the tree lock */
-static int zswap_entry_put(struct zswap_entry *entry)
-{
- entry->refcount--;
- return entry->refcount;
-}
-
/*********************************
* rbtree functions
**********************************/
@@ -285,6 +273,61 @@ static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
return 0;
}
+static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
+{
+ if (!RB_EMPTY_NODE(&entry->rbnode)) {
+ rb_erase(&entry->rbnode, root);
+ RB_CLEAR_NODE(&entry->rbnode);
+ }
+}
+
+/*
+ * Carries out the common pattern of freeing and entry's zsmalloc allocation,
+ * freeing the entry itself, and decrementing the number of stored pages.
+ */
+static void zswap_free_entry(struct zswap_tree *tree,
+ struct zswap_entry *entry)
+{
+ zbud_free(tree->pool, entry->handle);
+ zswap_entry_cache_free(entry);
+ atomic_dec(&zswap_stored_pages);
+ zswap_pool_pages = zbud_get_pool_size(tree->pool);
+}
+
+/* caller must hold the tree lock */
+static void zswap_entry_get(struct zswap_entry *entry)
+{
+ entry->refcount++;
+}
+
+/* caller must hold the tree lock
+* remove from the tree and free it, if nobody reference the entry
+*/
+static void zswap_entry_put(struct zswap_tree *tree,
+ struct zswap_entry *entry)
+{
+ int refcount = --entry->refcount;
+
+ BUG_ON(refcount < 0);
+ if (refcount == 0) {
+ zswap_rb_erase(&tree->rbroot, entry);
+ zswap_free_entry(tree, entry);
+ }
+}
+
+/* caller must hold the tree lock */
+static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
+ pgoff_t offset)
+{
+ struct zswap_entry *entry = NULL;
+
+ entry = zswap_rb_search(root, offset);
+ if (entry)
+ zswap_entry_get(entry);
+
+ return entry;
+}
+
/*********************************
* per-cpu code
**********************************/
@@ -368,18 +411,6 @@ static bool zswap_is_full(void)
zswap_pool_pages);
}
-/*
- * Carries out the common pattern of freeing and entry's zsmalloc allocation,
- * freeing the entry itself, and decrementing the number of stored pages.
- */
-static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry)
-{
- zbud_free(tree->pool, entry->handle);
- zswap_entry_cache_free(entry);
- atomic_dec(&zswap_stored_pages);
- zswap_pool_pages = zbud_get_pool_size(tree->pool);
-}
-
/*********************************
* writeback code
**********************************/
@@ -387,7 +418,7 @@ static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry)
enum zswap_get_swap_ret {
ZSWAP_SWAPCACHE_NEW,
ZSWAP_SWAPCACHE_EXIST,
- ZSWAP_SWAPCACHE_NOMEM
+ ZSWAP_SWAPCACHE_FAIL,
};
/*
@@ -401,9 +432,10 @@ enum zswap_get_swap_ret {
* added to the swap cache, and returned in retpage.
*
* If success, the swap cache page is returned in retpage
- * Returns 0 if page was already in the swap cache, page is not locked
- * Returns 1 if the new page needs to be populated, page is locked
- * Returns <0 on error
+ * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
+ * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
+ * the new page is added to swapcache and locked
+ * Returns ZSWAP_SWAPCACHE_FAIL on error
*/
static int zswap_get_swap_cache_page(swp_entry_t entry,
struct page **retpage)
@@ -475,7 +507,7 @@ static int zswap_get_swap_cache_page(swp_entry_t entry,
if (new_page)
page_cache_release(new_page);
if (!found_page)
- return ZSWAP_SWAPCACHE_NOMEM;
+ return ZSWAP_SWAPCACHE_FAIL;
*retpage = found_page;
return ZSWAP_SWAPCACHE_EXIST;
}
@@ -502,7 +534,7 @@ static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
struct page *page;
u8 *src, *dst;
unsigned int dlen;
- int ret, refcount;
+ int ret;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
};
@@ -517,23 +549,22 @@ static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
/* find and ref zswap entry */
spin_lock(&tree->lock);
- entry = zswap_rb_search(&tree->rbroot, offset);
+ entry = zswap_entry_find_get(&tree->rbroot, offset);
if (!entry) {
/* entry was invalidated */
spin_unlock(&tree->lock);
return 0;
}
- zswap_entry_get(entry);
spin_unlock(&tree->lock);
BUG_ON(offset != entry->offset);
/* try to allocate swap cache page */
switch (zswap_get_swap_cache_page(swpentry, &page)) {
- case ZSWAP_SWAPCACHE_NOMEM: /* no memory */
+ case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
ret = -ENOMEM;
goto fail;
- case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */
+ case ZSWAP_SWAPCACHE_EXIST:
/* page is already in the swap cache, ignore for now */
page_cache_release(page);
ret = -EEXIST;
@@ -556,43 +587,44 @@ static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
SetPageUptodate(page);
}
+ /* move it to the tail of the inactive list after end_writeback */
+ SetPageReclaim(page);
+
/* start writeback */
__swap_writepage(page, &wbc, end_swap_bio_write);
page_cache_release(page);
zswap_written_back_pages++;
spin_lock(&tree->lock);
-
/* drop local reference */
- zswap_entry_put(entry);
- /* drop the initial reference from entry creation */
- refcount = zswap_entry_put(entry);
+ zswap_entry_put(tree, entry);
/*
- * There are three possible values for refcount here:
- * (1) refcount is 1, load is in progress, unlink from rbtree,
- * load will free
- * (2) refcount is 0, (normal case) entry is valid,
- * remove from rbtree and free entry
- * (3) refcount is -1, invalidate happened during writeback,
- * free entry
- */
- if (refcount >= 0) {
- /* no invalidate yet, remove from rbtree */
- rb_erase(&entry->rbnode, &tree->rbroot);
- }
+ * There are two possible situations for entry here:
+ * (1) refcount is 1(normal case), entry is valid and on the tree
+ * (2) refcount is 0, entry is freed and not on the tree
+ * because invalidate happened during writeback
+ * search the tree and free the entry if find entry
+ */
+ if (entry == zswap_rb_search(&tree->rbroot, offset))
+ zswap_entry_put(tree, entry);
spin_unlock(&tree->lock);
- if (refcount <= 0) {
- /* free the entry */
- zswap_free_entry(tree, entry);
- return 0;
- }
- return -EAGAIN;
+ goto end;
+
+ /*
+ * if we get here due to ZSWAP_SWAPCACHE_EXIST
+ * a load may happening concurrently
+ * it is safe and okay to not free the entry
+ * if we free the entry in the following put
+ * it it either okay to return !0
+ */
fail:
spin_lock(&tree->lock);
- zswap_entry_put(entry);
+ zswap_entry_put(tree, entry);
spin_unlock(&tree->lock);
+
+end:
return ret;
}
@@ -676,11 +708,8 @@ static int zswap_frontswap_store(unsigned type, pgoff_t offset,
if (ret == -EEXIST) {
zswap_duplicate_entry++;
/* remove from rbtree */
- rb_erase(&dupentry->rbnode, &tree->rbroot);
- if (!zswap_entry_put(dupentry)) {
- /* free */
- zswap_free_entry(tree, dupentry);
- }
+ zswap_rb_erase(&tree->rbroot, dupentry);
+ zswap_entry_put(tree, dupentry);
}
} while (ret == -EEXIST);
spin_unlock(&tree->lock);
@@ -709,17 +738,16 @@ static int zswap_frontswap_load(unsigned type, pgoff_t offset,
struct zswap_entry *entry;
u8 *src, *dst;
unsigned int dlen;
- int refcount, ret;
+ int ret;
/* find */
spin_lock(&tree->lock);
- entry = zswap_rb_search(&tree->rbroot, offset);
+ entry = zswap_entry_find_get(&tree->rbroot, offset);
if (!entry) {
/* entry was written back */
spin_unlock(&tree->lock);
return -1;
}
- zswap_entry_get(entry);
spin_unlock(&tree->lock);
/* decompress */
@@ -734,22 +762,9 @@ static int zswap_frontswap_load(unsigned type, pgoff_t offset,
BUG_ON(ret);
spin_lock(&tree->lock);
- refcount = zswap_entry_put(entry);
- if (likely(refcount)) {
- spin_unlock(&tree->lock);
- return 0;
- }
+ zswap_entry_put(tree, entry);
spin_unlock(&tree->lock);
- /*
- * We don't have to unlink from the rbtree because
- * zswap_writeback_entry() or zswap_frontswap_invalidate page()
- * has already done this for us if we are the last reference.
- */
- /* free */
-
- zswap_free_entry(tree, entry);
-
return 0;
}
@@ -758,7 +773,6 @@ static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
{
struct zswap_tree *tree = zswap_trees[type];
struct zswap_entry *entry;
- int refcount;
/* find */
spin_lock(&tree->lock);
@@ -770,20 +784,12 @@ static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
}
/* remove from rbtree */
- rb_erase(&entry->rbnode, &tree->rbroot);
+ zswap_rb_erase(&tree->rbroot, entry);
/* drop the initial reference from entry creation */
- refcount = zswap_entry_put(entry);
+ zswap_entry_put(tree, entry);
spin_unlock(&tree->lock);
-
- if (refcount) {
- /* writeback in progress, writeback will free */
- return;
- }
-
- /* free */
- zswap_free_entry(tree, entry);
}
/* frees all zswap entries for the given swap type */
@@ -797,11 +803,8 @@ static void zswap_frontswap_invalidate_area(unsigned type)
/* walk the tree and free everything */
spin_lock(&tree->lock);
- rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) {
- zbud_free(tree->pool, entry->handle);
- zswap_entry_cache_free(entry);
- atomic_dec(&zswap_stored_pages);
- }
+ rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
+ zswap_free_entry(tree, entry);
tree->rbroot = RB_ROOT;
spin_unlock(&tree->lock);