| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull kvm updates from Paolo Bonzini:
"S390:
- Changes to FPU handling came in via the main s390 pull request
- Only deliver to the guest the SCLP events that userspace has
requested
- More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same)
- Fix selftests undefined behavior
x86:
- Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can
be programmed *using the architectural encoding*. The enumeration
does NOT say anything about the encoding when the CPU doesn't
report support the event *in general*. It might support it, and it
might support it using the same encoding that made it into the
architectural PMU spec
- Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly
emulates RDMPC, counter availability, and a variety of other
PMC-related behaviors that depend on guest CPUID and therefore are
easier to validate with selftests than with custom guests (aka
kvm-unit-tests)
- Zero out PMU state on AMD if the virtual PMU is disabled, it does
not cause any bug but it wastes time in various cases where KVM
would check if a PMC event needs to be synthesized
- Optimize triggering of emulated events, with a nice ~10%
performance improvement in VM-Exit microbenchmarks when a vPMU is
exposed to the guest
- Tighten the check for "PMI in guest" to reduce false positives if
an NMI arrives in the host while KVM is handling an IRQ VM-Exit
- Fix a bug where KVM would report stale/bogus exit qualification
information when exiting to userspace with an internal error exit
code
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support
- Rework TDP MMU root unload, free, and alloc to run with mmu_lock
held for read, e.g. to avoid serializing vCPUs when userspace
deletes a memslot
- Tear down TDP MMU page tables at 4KiB granularity (used to be
1GiB). KVM doesn't support yielding in the middle of processing a
zap, and 1GiB granularity resulted in multi-millisecond lags that
are quite impolite for CONFIG_PREEMPT kernels
- Allocate write-tracking metadata on-demand to avoid the memory
overhead when a kernel is built with i915 virtualization support
but the workloads use neither shadow paging nor i915 virtualization
- Explicitly initialize a variety of on-stack variables in the
emulator that triggered KMSAN false positives
- Fix the debugregs ABI for 32-bit KVM
- Rework the "force immediate exit" code so that vendor code
ultimately decides how and when to force the exit, which allowed
some optimization for both Intel and AMD
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left
elevated if vCPU creation ultimately failed, causing extra
unnecessary work
- Cleanup the logic for checking if the currently loaded vCPU is
in-kernel
- Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere
in the kernel) are detected earlier and are less likely to hang the
kernel
x86 Xen emulation:
- Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the gpa
but the underlying host virtual address remains the same
- When possible, use a single host TSC value when computing the
deadline for Xen timers in order to improve the accuracy of the
timer emulation
- Inject pending upcall events when the vCPU software-enables its
APIC to fix a bug where an upcall can be lost (and to follow Xen's
behavior)
- Fall back to the slow path instead of warning if "fast" IRQ
delivery of Xen events fails, e.g. if the guest has aliased xAPIC
IDs
RISC-V:
- Support exception and interrupt handling in selftests
- New self test for RISC-V architectural timer (Sstc extension)
- New extension support (Ztso, Zacas)
- Support userspace emulation of random number seed CSRs
ARM:
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized
to address serialization some of the serialization on the LPI
injection path
- Support for _architectural_ VHE-only systems, advertised through
the absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
- Set reserved bits as zero in CPUCFG
- Start SW timer only when vcpu is blocking
- Do not restart SW timer when it is expired
- Remove unnecessary CSR register saving during enter guest
- Misc cleanups and fixes as usual
Generic:
- Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
always true on all architectures except MIPS (where Kconfig
determines the available depending on CPU capabilities). It is
replaced either by an architecture-dependent symbol for MIPS, and
IS_ENABLED(CONFIG_KVM) everywhere else
- Factor common "select" statements in common code instead of
requiring each architecture to specify it
- Remove thoroughly obsolete APIs from the uapi headers
- Move architecture-dependent stuff to uapi/asm/kvm.h
- Always flush the async page fault workqueue when a work item is
being removed, especially during vCPU destruction, to ensure that
there are no workers running in KVM code when all references to
KVM-the-module are gone, i.e. to prevent a very unlikely
use-after-free if kvm.ko is unloaded
- Grab a reference to the VM's mm_struct in the async #PF worker
itself instead of gifting the worker a reference, so that there's
no need to remember to *conditionally* clean up after the worker
Selftests:
- Reduce boilerplate especially when utilize selftest TAP
infrastructure
- Add basic smoke tests for SEV and SEV-ES, along with a pile of
library support for handling private/encrypted/protected memory
- Fix benign bugs where tests neglect to close() guest_memfd files"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
selftests: kvm: remove meaningless assignments in Makefiles
KVM: riscv: selftests: Add Zacas extension to get-reg-list test
RISC-V: KVM: Allow Zacas extension for Guest/VM
KVM: riscv: selftests: Add Ztso extension to get-reg-list test
RISC-V: KVM: Allow Ztso extension for Guest/VM
RISC-V: KVM: Forward SEED CSR access to user space
KVM: riscv: selftests: Add sstc timer test
KVM: riscv: selftests: Change vcpu_has_ext to a common function
KVM: riscv: selftests: Add guest helper to get vcpu id
KVM: riscv: selftests: Add exception handling support
LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
LoongArch: KVM: Do not restart SW timer when it is expired
LoongArch: KVM: Start SW timer only when vcpu is blocking
LoongArch: KVM: Set reserved bits as zero in CPUCFG
KVM: selftests: Explicitly close guest_memfd files in some gmem tests
KVM: x86/xen: fix recursive deadlock in timer injection
KVM: pfncache: simplify locking and make more self-contained
KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
KVM: x86/xen: improve accuracy of Xen timers
...
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.9
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized to
address serialization some of the serialization on the LPI injection
path
- Support for _architectural_ VHE-only systems, advertised through the
absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Using this_cpu_has_cap() has the potential to go wrong when
used system-wide on a preemptible kernel. Instead, use the
__system_matches_cap() helper when checking for FEAT_NV in the
FEAT_NV1 probing helper.
Fixes: 3673d01a2f55 ("arm64: cpufeatures: Only check for NV1 if NV is present")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Link: https://lore.kernel.org/kvmarm/86bk8k5ts3.wl-maz@kernel.org/
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We handle ID_AA64MMFR4_EL1.E2H0 being 0 as NV1 being present.
However, this is only true if FEAT_NV is implemented.
Add the required check to has_nv1(), avoiding spuriously advertising
NV1 on HW that doesn't have NV at all.
Fixes: da9af5071b25 ("arm64: cpufeature: Detect HCR_EL2.NV1 being RES0")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240212144736.1933112-3-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When triggering a CPU hotplug scenario, we reparse the CPU feature
with SCOPE_LOCAL_CPU, for which we use __read_sysreg_by_encoding()
to get the HW value for this CPU.
As it turns out, we're missing the handling for ID_AA64MMFR4_EL1,
and trigger a BUG(). Funnily enough, Marek isn't completely happy
about that.
Add the damn register to the list.
Fixes: 805bb61f8279 ("arm64: cpufeature: Add ID_AA64MMFR4_EL1 handling")
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240212144736.1933112-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Although the Apple M2 family of CPUs can have HCR_EL2.NV1 being
set and clear, with the change in trap behaviour being OK, they
explode spectacularily on an EL2 S1 page table using the nVHE
format. This is no good.
Let's pretend this HW doesn't have NV1, and move along.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20240122181344.258974-11-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
For CPUs that have ID_AA64MMFR4_EL1.E2H0 as negative, it is important
to avoid the boot path that sets HCR_EL2.E2H=0. Fortunately, we
already have this path to cope with fruity CPUs.
Tweak init_el2 to look at ID_AA64MMFR4_EL1.E2H0 first.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20240122181344.258974-8-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
A variant of FEAT_E2H0 not being implemented exists in the form of
HCR_EL2.E2H being RES1 *and* HCR_EL2.NV1 being RES0 (indicating that
only VHE is supported on the host and nested guests).
Add the necessary infrastructure for this new CPU capability.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20240122181344.258974-7-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Add ID_AA64MMFR4_EL1 to the list of idregs the kernel knows about,
and describe the E2H0 field.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20240122181344.258974-6-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When a field gets overriden, the kernel indicates the result of
the override in dmesg. This works well with unsigned fields, but
results in a pretty ugly output when the field is signed.
Truncate the field to its width before displaying it.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20240122181344.258974-4-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Although we've had signed values for some features such as PMUv3
and FP, the code that handles the comparaison with some limit
has a couple of annoying issues:
- the min_field_value is always unsigned, meaning that we cannot
easily compare it with a negative value
- it is not possible to have a range of values, let alone a range
of negative values
Fix this by:
- adding an upper limit to the comparison, defaulting to all bits
being set to the maximum positive value
- ensuring that the signess of the min and max values are taken into
account
A ARM64_CPUID_FIELDS_NEG() macro is provided for signed features, but
nothing is using it yet.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20240122181344.258974-3-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Now crash codes under kernel/ folder has been split out from kexec
code, crash dumping can be separated from kexec reboot in config
items on arm64 with some adjustments.
Here wrap up crash dumping codes with CONFIG_CRASH_DUMP ifdeffery.
[bhe@redhat.com: fix building error in generic codes]
Link: https://lkml.kernel.org/r/20240129135033.157195-2-bhe@redhat.com
Link: https://lkml.kernel.org/r/20240124051254.67105-8-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Now move the relevant codes into separate files:
kernel/crash_reserve.c, include/linux/crash_reserve.h.
And add config item CRASH_RESERVE to control its enabling.
And also update the old ifdeffery of CONFIG_CRASH_CORE, including of
<linux/crash_core.h> and config item dependency on CRASH_CORE
accordingly.
And also do renaming as follows:
- arch/xxx/kernel/{crash_core.c => vmcore_info.c}
because they are only related to vmcoreinfo exporting on x86, arm64,
riscv.
And also Remove config item CRASH_CORE, and rely on CONFIG_KEXEC_CORE to
decide if build in crash_core.c.
[yang.lee@linux.alibaba.com: remove duplicated include in vmcore_info.c]
Link: https://lkml.kernel.org/r/20240126005744.16561-1-yang.lee@linux.alibaba.com
Link: https://lkml.kernel.org/r/20240124051254.67105-3-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Earlier, vmap_area_list is exported to vmcoreinfo so that makedumpfile get
the base address of vmalloc area. Now, vmap_area_list is empty, so export
VMALLOC_START to vmcoreinfo instead, and remove vmap_area_list.
[urezki@gmail.com: fix a warning in the crash_save_vmcoreinfo_init()]
Link: https://lkml.kernel.org/r/20240111192329.449189-1-urezki@gmail.com
Link: https://lkml.kernel.org/r/20240102184633.748113-6-urezki@gmail.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Kazuhito Hagio <k-hagio-ab@nec.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sony.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Create a new layer for the in-table PTE manipulation APIs. For now, The
existing API is prefixed with double underscore to become the arch-private
API and the public API is just a simple wrapper that calls the private
API.
The public API implementation will subsequently be used to transparently
manipulate the contiguous bit where appropriate. But since there are
already some contig-aware users (e.g. hugetlb, kernel mapper), we must
first ensure those users use the private API directly so that the future
contig-bit manipulations in the public API do not interfere with those
existing uses.
The following APIs are treated this way:
- ptep_get
- set_pte
- set_ptes
- pte_clear
- ptep_get_and_clear
- ptep_test_and_clear_young
- ptep_clear_flush_young
- ptep_set_wrprotect
- ptep_set_access_flags
Link: https://lkml.kernel.org/r/20240215103205.2607016-11-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Since set_ptes() was introduced, set_pte_at() has been implemented as a
generic macro around set_ptes(..., 1). So this change should continue to
generate the same code. However, making this change prepares us for the
transparent contpte support. It means we can reroute set_ptes() to
__set_ptes(). Since set_pte_at() is a generic macro, there will be no
equivalent __set_pte_at() to reroute to.
Note that a couple of calls to set_pte_at() remain in the arch code. This
is intentional, since those call sites are acting on behalf of core-mm and
should continue to call into the public set_ptes() rather than the
arch-private __set_ptes().
Link: https://lkml.kernel.org/r/20240215103205.2607016-9-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
There are a number of places in the arch code that read a pte by using the
READ_ONCE() macro. Refactor these call sites to instead use the
ptep_get() helper, which itself is a READ_ONCE(). Generated code should
be the same.
This will benefit us when we shortly introduce the transparent contpte
support. In this case, ptep_get() will become more complex so we now have
all the code abstracted through it.
Link: https://lkml.kernel.org/r/20240215103205.2607016-8-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"The major features are support for LPA2 (52-bit VA/PA with 4K and 16K
pages), the dpISA extension and Rust enabled on arm64. The changes are
mostly contained within the usual arch/arm64/, drivers/perf, the arm64
Documentation and kselftests. The exception is the Rust support which
touches some generic build files.
Summary:
- Reorganise the arm64 kernel VA space and add support for LPA2 (at
stage 1, KVM stage 2 was merged earlier) - 52-bit VA/PA address
range with 4KB and 16KB pages
- Enable Rust on arm64
- Support for the 2023 dpISA extensions (data processing ISA), host
only
- arm64 perf updates:
- StarFive's StarLink (integrates one or more CPU cores with a
shared L3 memory system) PMU support
- Enable HiSilicon Erratum 162700402 quirk for HIP09
- Several updates for the HiSilicon PCIe PMU driver
- Arm CoreSight PMU support
- Convert all drivers under drivers/perf/ to use .remove_new()
- Miscellaneous:
- Don't enable workarounds for "rare" errata by default
- Clean up the DAIF flags handling for EL0 returns (in preparation
for NMI support)
- Kselftest update for ptrace()
- Update some of the sysreg field definitions
- Slight improvement in the code generation for inline asm I/O
accessors to permit offset addressing
- kretprobes: acquire regs via a BRK exception (previously done
via a trampoline handler)
- SVE/SME cleanups, comment updates
- Allow CALL_OPS+CC_OPTIMIZE_FOR_SIZE with clang (previously
disabled due to gcc silently ignoring -falign-functions=N)"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (134 commits)
Revert "mm: add arch hook to validate mmap() prot flags"
Revert "arm64: mm: add support for WXN memory translation attribute"
Revert "ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512"
ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512
kselftest/arm64: Add 2023 DPISA hwcap test coverage
kselftest/arm64: Add basic FPMR test
kselftest/arm64: Handle FPMR context in generic signal frame parser
arm64/hwcap: Define hwcaps for 2023 DPISA features
arm64/ptrace: Expose FPMR via ptrace
arm64/signal: Add FPMR signal handling
arm64/fpsimd: Support FEAT_FPMR
arm64/fpsimd: Enable host kernel access to FPMR
arm64/cpufeature: Hook new identification registers up to cpufeature
docs: perf: Fix build warning of hisi-pcie-pmu.rst
perf: starfive: Only allow COMPILE_TEST for 64-bit architectures
MAINTAINERS: Add entry for StarFive StarLink PMU
docs: perf: Add description for StarFive's StarLink PMU
dt-bindings: perf: starfive: Add JH8100 StarLink PMU
perf: starfive: Add StarLink PMU support
docs: perf: Update usage for target filter of hisi-pcie-pmu
...
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This reverts commit 50e3ed0f93f4f62ed2aa83de5db6cb84ecdd5707.
The SCTLR_EL1.WXN control forces execute-never when a page has write
permissions. While the idea of hardening such write/exec combinations is
good, with permissions indirection enabled (FEAT_PIE) this control
becomes RES0. FEAT_PIE introduces a slightly different form of WXN which
only has an effect when the base permission is RWX and the write is
toggled by the permission overlay (FEAT_POE, not yet supported by the
arm64 kernel). Revert the patch for now.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/ZfGESD3a91lxH367@arm.com
|
| |\ \ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
* for-next/stage1-lpa2: (48 commits)
: Add support for LPA2 and WXN and stage 1
arm64/mm: Avoid ID mapping of kpti flag if it is no longer needed
arm64/mm: Use generic __pud_free() helper in pud_free() implementation
arm64: gitignore: ignore relacheck
arm64: Use Signed/Unsigned enums for TGRAN{4,16,64} and VARange
arm64: mm: Make PUD folding check in set_pud() a runtime check
arm64: mm: add support for WXN memory translation attribute
mm: add arch hook to validate mmap() prot flags
arm64: defconfig: Enable LPA2 support
arm64: Enable 52-bit virtual addressing for 4k and 16k granule configs
arm64: kvm: avoid CONFIG_PGTABLE_LEVELS for runtime levels
arm64: ptdump: Deal with translation levels folded at runtime
arm64: ptdump: Disregard unaddressable VA space
arm64: mm: Add support for folding PUDs at runtime
arm64: kasan: Reduce minimum shadow alignment and enable 5 level paging
arm64: mm: Add 5 level paging support to fixmap and swapper handling
arm64: Enable LPA2 at boot if supported by the system
arm64: mm: add LPA2 and 5 level paging support to G-to-nG conversion
arm64: mm: Add definitions to support 5 levels of paging
arm64: mm: Add LPA2 support to phys<->pte conversion routines
arm64: mm: Wire up TCR.DS bit to PTE shareability fields
...
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Add the generated executable for relacheck to the list of ignored files.
Signed-off-by: Bartosz Golaszewski <bartosz.golaszewski@linaro.org>
Link: https://lore.kernel.org/r/20240222210441.33142-1-brgl@bgdev.pl
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Open-coding the feature matching parameters for LVA/LVA2 leads to
issues with upcoming changes to the cpufeature code.
By making TGRAN{4,16,64} and VARange signed/unsigned as per the
architecture, we can use the existing macros, making the feature
match robust against those changes.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The AArch64 virtual memory system supports a global WXN control, which
can be enabled to make all writable mappings implicitly no-exec. This is
a useful hardening feature, as it prevents mistakes in managing page
table permissions from being exploited to attack the system.
When enabled at EL1, the restrictions apply to both EL1 and EL0. EL1 is
completely under our control, and has been cleaned up to allow WXN to be
enabled from boot onwards. EL0 is not under our control, but given that
widely deployed security features such as selinux or PaX already limit
the ability of user space to create mappings that are writable and
executable at the same time, the impact of enabling this for EL0 is
expected to be limited. (For this reason, common user space libraries
that have a legitimate need for manipulating executable code already
carry fallbacks such as [0].)
If enabled at compile time, the feature can still be disabled at boot if
needed, by passing arm64.nowxn on the kernel command line.
[0] https://github.com/libffi/libffi/blob/master/src/closures.c#L440
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-88-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Update Kconfig to permit 4k and 16k granule configurations to be built
with 52-bit virtual addressing, now that all the prerequisites are in
place.
While at it, update the feature description so it matches on the
appropriate feature bits depending on the page size. For simplicity,
let's just keep ARM64_HAS_VA52 as the feature name.
Note that LPA2 based 52-bit virtual addressing requires 52-bit physical
addressing support to be enabled as well, as programming TCR.TxSZ to
values below 16 is not allowed unless TCR.DS is set, which is what
activates the 52-bit physical addressing support.
While supporting the converse (52-bit physical addressing without 52-bit
virtual addressing) would be possible in principle, let's keep things
simple, by only allowing these features to be enabled at the same time.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-85-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
In order to support LPA2 on 16k pages in a way that permits non-LPA2
systems to run the same kernel image, we have to be able to fall back to
at most 48 bits of virtual addressing.
Falling back to 48 bits would result in a level 0 with only 2 entries,
which is suboptimal in terms of TLB utilization. So instead, let's fall
back to 47 bits in that case. This means we need to be able to fold PUDs
dynamically, similar to how we fold P4Ds for 48 bit virtual addressing
on LPA2 with 4k pages.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-81-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Update the early kernel mapping code to take 52-bit virtual addressing
into account based on the LPA2 feature. This is a bit more involved than
LVA (which is supported with 64k pages only), given that some page table
descriptor bits change meaning in this case.
To keep the handling in asm to a minimum, the initial ID map is still
created with 48-bit virtual addressing, which implies that the kernel
image must be loaded into 48-bit addressable physical memory. This is
currently required by the boot protocol, even though we happen to
support placement outside of that for LVA/64k based configurations.
Enabling LPA2 involves more than setting TCR.T1SZ to a lower value,
there is also a DS bit in TCR that needs to be set, and which changes
the meaning of bits [9:8] in all page table descriptors. Since we cannot
enable DS and every live page table descriptor at the same time, let's
pivot through another temporary mapping. This avoids the need to
reintroduce manipulations of the page tables with the MMU and caches
disabled.
To permit the LPA2 feature to be overridden on the kernel command line,
which may be necessary to work around silicon errata, or to deal with
mismatched features on heterogeneous SoC designs, test for CPU feature
overrides first, and only then enable LPA2.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-78-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Add support for 5 level paging in the G-to-nG routine that creates its
own temporary page tables to traverse the swapper page tables. Also add
support for running the 5 level configuration with the top level folded
at runtime, to support CPUs that do not implement the LPA2 extension.
While at it, wire up the level skipping logic so it will also trigger on
4 level configurations with LPA2 enabled at build time but not active at
runtime, as we'll fall back to 3 level paging in that case.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-77-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Add support for overriding the VARange field of the MMFR2 CPU ID
register. This permits the associated LVA feature to be overridden early
enough for the boot code that creates the kernel mapping to take it into
account.
Given that LPA2 implies LVA, disabling the latter should disable the
former as well. So override the ID_AA64MMFR0.TGran field of the current
page size as well if it advertises support for 52-bit addressing.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-71-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Currently, we detect CPU support for 52-bit virtual addressing (LVA)
extremely early, before creating the kernel page tables or enabling the
MMU. We cannot override the feature this early, and so large virtual
addressing is always enabled on CPUs that implement support for it if
the software support for it was enabled at build time. It also means we
rely on non-trivial code in asm to deal with this feature.
Given that both the ID map and the TTBR1 mapping of the kernel image are
guaranteed to be 48-bit addressable, it is not actually necessary to
enable support this early, and instead, we can model it as a CPU
feature. That way, we can rely on code patching to get the correct
TCR.T1SZ values programmed on secondary boot and resume from suspend.
On the primary boot path, we simply enable the MMU with 48-bit virtual
addressing initially, and update TCR.T1SZ if LVA is supported from C
code, right before creating the kernel mapping. Given that TTBR1 still
points to reserved_pg_dir at this point, updating TCR.T1SZ should be
safe without the need for explicit TLB maintenance.
Since this gets rid of all accesses to the vabits_actual variable from
asm code that occurred before TCR.T1SZ had been programmed, we no longer
have a need for this variable, and we can replace it with a C expression
that produces the correct value directly, based on the value of TCR.T1SZ.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-70-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Now that the early kernel mapping is created with all the right
attributes and segment boundaries, there is no longer a need to recreate
it and switch to it. This also means we no longer have to copy the kasan
shadow or some parts of the fixmap from one set of page tables to the
other.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-68-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The asm code that creates the initial ID map is rather intricate and
hard to follow. This is problematic because it makes adding support for
things like LPA2 or WXN more difficult than necessary. Also, it is
parameterized like the rest of the MM code to run with a configurable
number of levels, which is rather pointless, given that all AArch64 CPUs
implement support for 48-bit virtual addressing, and that many systems
exist with DRAM located outside of the 39-bit addressable range, which
is the only smaller VA size that is widely used, and we need additional
tricks to make things work in that combination.
So let's bite the bullet, and rip out all the asm macros, and fiddly
code, and replace it with a C implementation based on the newly added
routines for creating the early kernel VA mappings. And while at it,
create the initial ID map based on 48-bit virtual addressing as well,
regardless of the number of configured levels for the kernel proper.
Note that this code may execute with the MMU and caches disabled, and is
therefore not permitted to make unaligned accesses. This shouldn't
generally happen in any case for the algorithm as implemented, but to be
sure, let's pass -mstrict-align to the compiler just in case.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-66-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Even though we support loading kernels anywhere in 48-bit addressable
physical memory, we create the ID maps based on the number of levels
that we happened to configure for the kernel VA and user VA spaces.
The reason for this is that the PGD/PUD/PMD based classification of
translation levels, along with the associated folding when the number of
levels is less than 5, does not permit creating a page table hierarchy
of a set number of levels. This means that, for instance, on 39-bit VA
kernels we need to configure an additional level above PGD level on the
fly, and 36-bit VA kernels still only support 47-bit virtual addressing
with this trick applied.
Now that we have a separate helper to populate page table hierarchies
that does not define the levels in terms of PUDS/PMDS/etc at all, let's
reuse it to create the permanent ID map with a fixed VA size of 48 bits.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-64-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The asm version of the kernel mapping code works fine for creating a
coarse grained identity map, but for mapping the kernel down to its
exact boundaries with the right attributes, it is not suitable. This is
why we create a preliminary RWX kernel mapping first, and then rebuild
it from scratch later on.
So let's reimplement this in C, in a way that will make it unnecessary
to create the kernel page tables yet another time in paging_init().
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-63-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
In preparation for moving the first assignment of arm64_use_ng_mappings
to an earlier stage in the boot, ensure that kaslr_requires_kpti() is
accessible without relying on the core kernel's view on whether or not
KASLR is enabled. So make it a static inline, and move the
kaslr_enabled() check out of it and into the callers, one of which will
disappear in a subsequent patch.
Once/when support for the obsolete ThunderX 1 platform is dropped, this
check reduces to a E0PD feature check on the local CPU.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-61-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Now that we can set BSS variables from the early code running from the
ID map, we can set memstart_offset_seed directly from the C code that
derives the value instead of passing it back and forth between C and asm
code.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-60-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Add rodata=off to the set of kernel command line options that is parsed
early using the CPU feature override detection code, so we can easily
refer to it when creating the kernel mapping.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-57-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The early kaslr code open codes the detection of 'nokaslr' on the kernel
command line, and this is no longer necessary now that the feature
detection code, which also looks for the same string, executes before
this code.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-56-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Add some helpers to extract and apply feature overrides to the bare
idreg values. This involves inspecting the value and mask of the
specific field that we are interested in, given that an override
value/mask pair might be invalid for one field but valid for another.
Then, wire up the new helper for the hVHE test - note that we can drop
the sysreg test here, as the override will be invalid when trying to
enable hVHE on non-VHE capable hardware.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-55-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Once we update the early kernel mapping code to only map the kernel once
with the right permissions, we can no longer perform code patching via
this mapping.
So move this code to an earlier stage of the boot, right after applying
the relocations.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-54-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
To permit the feature overrides to be taken into account before the
KASLR init code runs and the kernel mapping is created, move the
detection code to an earlier stage in the boot.
In a subsequent patch, this will be taken advantage of by merging the
preliminary and permanent mappings of the kernel text and data into a
single one that gets created and relocated before start_kernel() is
called.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-53-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
In order to allow the CPU feature override detection code to run even
earlier, move the feature override global variables into BSS, which is
the only part of the static kernel image that is mapped read-write in
the initial ID map.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-52-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
We will move the CPU feature overrides into BSS in a subsequent patch,
and this requires that BSS is zeroed before the feature override
detection code runs. So let's map BSS read-write in the ID map, and zero
it via this mapping.
Since the kernel page tables are right next to it, and also zeroed via
the ID map, let's drop the separate clear_page_tables() function, and
just zero everything in one go.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-51-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The early FDT remap code is no longer used so let's drop it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-50-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
We will want to parse the ID register overrides even earlier, so that we
can take them into account before creating the kernel mapping. So
migrate the code and make it work in the context of the early C runtime.
We will move the invocation to an earlier stage in a subsequent patch.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-49-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Now that we have a mini C runtime before the kernel mapping is up, we
can move the non-trivial relocation processing code out of head.S and
reimplement it in C.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-48-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
We will add some code under pi/ that contains global variables that
should not end up in __initdata, as they will not be writable via the
initial ID map. So only rely on objcopy for making the libfdt code
__init, and use explicit annotations for the rest.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-47-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The mini C runtime runs before relocations are processed, and so it
cannot rely on statically initialized pointer variables.
Add a check to ensure that such code does not get introduced by
accident, by going over the relocations in each object, identifying the
ones that operate on data sections that are part of the executable
image, and raising an error if any relocations of type R_AARCH64_ABS64
exist. Note that such relocations are permitted in other places (e.g.,
debug sections) and will never occur in compiler generated code sections
when using the small code model, so only check sections that have
SHF_ALLOC set and SHF_EXECINSTR cleared.
To accommodate cases where statically initialized symbol references are
unavoidable, introduce a special case for ELF input data sections that
have ".rodata.prel64" in their names, and in these cases, instead of
rejecting any encountered ABS64 relocations, convert them into PREL64
relocations, which don't require any runtime fixups. Note that the code
in question must still be modified to deal with this, as it needs to
convert the 64-bit signed offsets into absolute addresses before use.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-46-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| | | | | | | |
| | \ \ \ \ | |
| | \ \ \ \ | |
| | \ \ \ \ | |
| | \ \ \ \ | |
| | \ \ \ \ | |
| |\ \ \ \ \ \ \ \
| | | |_|_|/ / / /
| | |/| | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
'for-next/misc', 'for-next/daif-cleanup', 'for-next/kselftest', 'for-next/documentation', 'for-next/sysreg' and 'for-next/dpisa', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf: (39 commits)
docs: perf: Fix build warning of hisi-pcie-pmu.rst
perf: starfive: Only allow COMPILE_TEST for 64-bit architectures
MAINTAINERS: Add entry for StarFive StarLink PMU
docs: perf: Add description for StarFive's StarLink PMU
dt-bindings: perf: starfive: Add JH8100 StarLink PMU
perf: starfive: Add StarLink PMU support
docs: perf: Update usage for target filter of hisi-pcie-pmu
drivers/perf: hisi_pcie: Merge find_related_event() and get_event_idx()
drivers/perf: hisi_pcie: Relax the check on related events
drivers/perf: hisi_pcie: Check the target filter properly
drivers/perf: hisi_pcie: Add more events for counting TLP bandwidth
drivers/perf: hisi_pcie: Fix incorrect counting under metric mode
drivers/perf: hisi_pcie: Introduce hisi_pcie_pmu_get_event_ctrl_val()
drivers/perf: hisi_pcie: Rename hisi_pcie_pmu_{config,clear}_filter()
drivers/perf: hisi: Enable HiSilicon Erratum 162700402 quirk for HIP09
perf/arm_cspmu: Add devicetree support
dt-bindings/perf: Add Arm CoreSight PMU
perf/arm_cspmu: Simplify counter reset
perf/arm_cspmu: Simplify attribute groups
perf/arm_cspmu: Simplify initialisation
...
* for-next/reorg-va-space:
: Reorganise the arm64 kernel VA space in preparation for LPA2 support
: (52-bit VA/PA).
arm64: kaslr: Adjust randomization range dynamically
arm64: mm: Reclaim unused vmemmap region for vmalloc use
arm64: vmemmap: Avoid base2 order of struct page size to dimension region
arm64: ptdump: Discover start of vmemmap region at runtime
arm64: ptdump: Allow all region boundaries to be defined at boot time
arm64: mm: Move fixmap region above vmemmap region
arm64: mm: Move PCI I/O emulation region above the vmemmap region
* for-next/rust-for-arm64:
: Enable Rust support for arm64
arm64: rust: Enable Rust support for AArch64
rust: Refactor the build target to allow the use of builtin targets
* for-next/misc:
: Miscellaneous arm64 patches
ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512
arm64: Remove enable_daif macro
arm64/hw_breakpoint: Directly use ESR_ELx_WNR for an watchpoint exception
arm64: cpufeatures: Clean up temporary variable to simplify code
arm64: Update setup_arch() comment on interrupt masking
arm64: remove unnecessary ifdefs around is_compat_task()
arm64: ftrace: Don't forbid CALL_OPS+CC_OPTIMIZE_FOR_SIZE with Clang
arm64/sme: Ensure that all fields in SMCR_EL1 are set to known values
arm64/sve: Ensure that all fields in ZCR_EL1 are set to known values
arm64/sve: Document that __SVE_VQ_MAX is much larger than needed
arm64: make member of struct pt_regs and it's offset macro in the same order
arm64: remove unneeded BUILD_BUG_ON assertion
arm64: kretprobes: acquire the regs via a BRK exception
arm64: io: permit offset addressing
arm64: errata: Don't enable workarounds for "rare" errata by default
* for-next/daif-cleanup:
: Clean up DAIF handling for EL0 returns
arm64: Unmask Debug + SError in do_notify_resume()
arm64: Move do_notify_resume() to entry-common.c
arm64: Simplify do_notify_resume() DAIF masking
* for-next/kselftest:
: Miscellaneous arm64 kselftest patches
kselftest/arm64: Test that ptrace takes effect in the target process
* for-next/documentation:
: arm64 documentation patches
arm64/sme: Remove spurious 'is' in SME documentation
arm64/fp: Clarify effect of setting an unsupported system VL
arm64/sme: Fix cut'n'paste in ABI document
arm64/sve: Remove bitrotted comment about syscall behaviour
* for-next/sysreg:
: sysreg updates
arm64/sysreg: Update ID_AA64DFR0_EL1 register
arm64/sysreg: Update ID_DFR0_EL1 register fields
arm64/sysreg: Add register fields for ID_AA64DFR1_EL1
* for-next/dpisa:
: Support for 2023 dpISA extensions
kselftest/arm64: Add 2023 DPISA hwcap test coverage
kselftest/arm64: Add basic FPMR test
kselftest/arm64: Handle FPMR context in generic signal frame parser
arm64/hwcap: Define hwcaps for 2023 DPISA features
arm64/ptrace: Expose FPMR via ptrace
arm64/signal: Add FPMR signal handling
arm64/fpsimd: Support FEAT_FPMR
arm64/fpsimd: Enable host kernel access to FPMR
arm64/cpufeature: Hook new identification registers up to cpufeature
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
The 2023 architecture extensions include a large number of floating point
features, most of which simply add new instructions. Add hwcaps so that
userspace can enumerate these features.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20240306-arm64-2023-dpisa-v5-6-c568edc8ed7f@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|