| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
show_cpuinfo()
Some data were printed into a sequence by two separate function calls.
Print the same data by a single function call instead.
This issue was detected by using the Coccinelle software.
Link: http://lkml.kernel.org/r/ddcfff3a-9502-6ce0-b08a-365eb55ce958@users.sourceforge.net
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
There are several functions that do find_task_by_vpid() followed by
get_task_struct(). We can use a helper function instead.
Link: http://lkml.kernel.org/r/1509602027-11337-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We've measured that we spend ~0.6% of sys cpu time in cpumask_next_and().
It's essentially a joined iteration in search for a non-zero bit, which is
currently implemented as a lookup join (find a nonzero bit on the lhs,
lookup the rhs to see if it's set there).
Implement a direct join (find a nonzero bit on the incrementally built
join). Also add generic bitmap benchmarks in the new `test_find_bit`
module for new function (see `find_next_and_bit` in [2] and [3] below).
For cpumask_next_and, direct benchmarking shows that it's 1.17x to 14x
faster with a geometric mean of 2.1 on 32 CPUs [1]. No impact on memory
usage. Note that on Arm, the new pure-C implementation still outperforms
the old one that uses a mix of C and asm (`find_next_bit`) [3].
[1] Approximate benchmark code:
```
unsigned long src1p[nr_cpumask_longs] = {pattern1};
unsigned long src2p[nr_cpumask_longs] = {pattern2};
for (/*a bunch of repetitions*/) {
for (int n = -1; n <= nr_cpu_ids; ++n) {
asm volatile("" : "+rm"(src1p)); // prevent any optimization
asm volatile("" : "+rm"(src2p));
unsigned long result = cpumask_next_and(n, src1p, src2p);
asm volatile("" : "+rm"(result));
}
}
```
Results:
pattern1 pattern2 time_before/time_after
0x0000ffff 0x0000ffff 1.65
0x0000ffff 0x00005555 2.24
0x0000ffff 0x00001111 2.94
0x0000ffff 0x00000000 14.0
0x00005555 0x0000ffff 1.67
0x00005555 0x00005555 1.71
0x00005555 0x00001111 1.90
0x00005555 0x00000000 6.58
0x00001111 0x0000ffff 1.46
0x00001111 0x00005555 1.49
0x00001111 0x00001111 1.45
0x00001111 0x00000000 3.10
0x00000000 0x0000ffff 1.18
0x00000000 0x00005555 1.18
0x00000000 0x00001111 1.17
0x00000000 0x00000000 1.25
-----------------------------
geo.mean 2.06
[2] test_find_next_bit, X86 (skylake)
[ 3913.477422] Start testing find_bit() with random-filled bitmap
[ 3913.477847] find_next_bit: 160868 cycles, 16484 iterations
[ 3913.477933] find_next_zero_bit: 169542 cycles, 16285 iterations
[ 3913.478036] find_last_bit: 201638 cycles, 16483 iterations
[ 3913.480214] find_first_bit: 4353244 cycles, 16484 iterations
[ 3913.480216] Start testing find_next_and_bit() with random-filled
bitmap
[ 3913.481074] find_next_and_bit: 89604 cycles, 8216 iterations
[ 3913.481075] Start testing find_bit() with sparse bitmap
[ 3913.481078] find_next_bit: 2536 cycles, 66 iterations
[ 3913.481252] find_next_zero_bit: 344404 cycles, 32703 iterations
[ 3913.481255] find_last_bit: 2006 cycles, 66 iterations
[ 3913.481265] find_first_bit: 17488 cycles, 66 iterations
[ 3913.481266] Start testing find_next_and_bit() with sparse bitmap
[ 3913.481272] find_next_and_bit: 764 cycles, 1 iterations
[3] test_find_next_bit, arm (v7 odroid XU3).
[ 267.206928] Start testing find_bit() with random-filled bitmap
[ 267.214752] find_next_bit: 4474 cycles, 16419 iterations
[ 267.221850] find_next_zero_bit: 5976 cycles, 16350 iterations
[ 267.229294] find_last_bit: 4209 cycles, 16419 iterations
[ 267.279131] find_first_bit: 1032991 cycles, 16420 iterations
[ 267.286265] Start testing find_next_and_bit() with random-filled
bitmap
[ 267.302386] find_next_and_bit: 2290 cycles, 8140 iterations
[ 267.309422] Start testing find_bit() with sparse bitmap
[ 267.316054] find_next_bit: 191 cycles, 66 iterations
[ 267.322726] find_next_zero_bit: 8758 cycles, 32703 iterations
[ 267.329803] find_last_bit: 84 cycles, 66 iterations
[ 267.336169] find_first_bit: 4118 cycles, 66 iterations
[ 267.342627] Start testing find_next_and_bit() with sparse bitmap
[ 267.356919] find_next_and_bit: 91 cycles, 1 iterations
[courbet@google.com: v6]
Link: http://lkml.kernel.org/r/20171129095715.23430-1-courbet@google.com
[geert@linux-m68k.org: m68k/bitops: always include <asm-generic/bitops/find.h>]
Link: http://lkml.kernel.org/r/1512556816-28627-1-git-send-email-geert@linux-m68k.org
Link: http://lkml.kernel.org/r/20171128131334.23491-1-courbet@google.com
Signed-off-by: Clement Courbet <courbet@google.com>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Yury Norov <ynorov@caviumnetworks.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
with bitmap_{from,to}_arr32 over the kernel. Additionally to it:
* __check_eq_bitmap() now takes single nbits argument.
* __check_eq_u32_array is not used in new test but may be used in
future. So I don't remove it here, but annotate as __used.
Tested on arm64 and 32-bit BE mips.
[arnd@arndb.de: perf: arm_dsu_pmu: convert to bitmap_from_arr32]
Link: http://lkml.kernel.org/r/20180201172508.5739-2-ynorov@caviumnetworks.com
[ynorov@caviumnetworks.com: fix net/core/ethtool.c]
Link: http://lkml.kernel.org/r/20180205071747.4ekxtsbgxkj5b2fz@yury-thinkpad
Link: http://lkml.kernel.org/r/20171228150019.27953-2-ynorov@caviumnetworks.com
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: David Decotigny <decot@googlers.com>,
Cc: David S. Miller <davem@davemloft.net>,
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Nearly all modern compilers support a stack-protector option, and nearly
all modern distributions enable the kernel stack-protector, so enabling
this by default in kernel builds would make sense. However, Kconfig does
not have knowledge of available compiler features, so it isn't safe to
force on, as this would unconditionally break builds for the compilers or
architectures that don't have support. Instead, this introduces a new
option, CONFIG_CC_STACKPROTECTOR_AUTO, which attempts to discover the best
possible stack-protector available, and will allow builds to proceed even
if the compiler doesn't support any stack-protector.
This option is made the default so that kernels built with modern
compilers will be protected-by-default against stack buffer overflows,
avoiding things like the recent BlueBorne attack. Selection of a specific
stack-protector option remains available, including disabling it.
Additionally, tiny.config is adjusted to use CC_STACKPROTECTOR_NONE, since
that's the option with the least code size (and it used to be the default,
so we have to explicitly choose it there now).
Link: http://lkml.kernel.org/r/1510076320-69931-4-git-send-email-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Various portions of the kernel, especially per-architecture pieces,
need to know if the compiler is building with the stack protector.
This was done in the arch/Kconfig with 'select', but this doesn't
allow a way to do auto-detected compiler support. In preparation for
creating an on-if-available default, move the logic for the definition of
CONFIG_CC_STACKPROTECTOR into the Makefile.
Link: http://lkml.kernel.org/r/1510076320-69931-3-git-send-email-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Right now the fact that KASAN uses a single shadow byte for 8 bytes of
memory is scattered all over the code.
This change defines KASAN_SHADOW_SCALE_SHIFT early in asm include files
and makes use of this constant where necessary.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/34937ca3b90736eaad91b568edf5684091f662e3.1515775666.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull spectre/meltdown updates from Thomas Gleixner:
"The next round of updates related to melted spectrum:
- The initial set of spectre V1 mitigations:
- Array index speculation blocker and its usage for syscall,
fdtable and the n180211 driver.
- Speculation barrier and its usage in user access functions
- Make indirect calls in KVM speculation safe
- Blacklisting of known to be broken microcodes so IPBP/IBSR are not
touched.
- The initial IBPB support and its usage in context switch
- The exposure of the new speculation MSRs to KVM guests.
- A fix for a regression in x86/32 related to the cpu entry area
- Proper whitelisting for known to be safe CPUs from the mitigations.
- objtool fixes to deal proper with retpolines and alternatives
- Exclude __init functions from retpolines which speeds up the boot
process.
- Removal of the syscall64 fast path and related cleanups and
simplifications
- Removal of the unpatched paravirt mode which is yet another source
of indirect unproteced calls.
- A new and undisputed version of the module mismatch warning
- A couple of cleanup and correctness fixes all over the place
Yet another step towards full mitigation. There are a few things still
missing like the RBS underflow mitigation for Skylake and other small
details, but that's being worked on.
That said, I'm taking a belated christmas vacation for a week and hope
that everything is magically solved when I'm back on Feb 12th"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
KVM/SVM: Allow direct access to MSR_IA32_SPEC_CTRL
KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL
KVM/VMX: Emulate MSR_IA32_ARCH_CAPABILITIES
KVM/x86: Add IBPB support
KVM/x86: Update the reverse_cpuid list to include CPUID_7_EDX
x86/speculation: Fix typo IBRS_ATT, which should be IBRS_ALL
x86/pti: Mark constant arrays as __initconst
x86/spectre: Simplify spectre_v2 command line parsing
x86/retpoline: Avoid retpolines for built-in __init functions
x86/kvm: Update spectre-v1 mitigation
KVM: VMX: make MSR bitmaps per-VCPU
x86/paravirt: Remove 'noreplace-paravirt' cmdline option
x86/speculation: Use Indirect Branch Prediction Barrier in context switch
x86/cpuid: Fix up "virtual" IBRS/IBPB/STIBP feature bits on Intel
x86/spectre: Fix spelling mistake: "vunerable"-> "vulnerable"
x86/spectre: Report get_user mitigation for spectre_v1
nl80211: Sanitize array index in parse_txq_params
vfs, fdtable: Prevent bounds-check bypass via speculative execution
x86/syscall: Sanitize syscall table de-references under speculation
x86/get_user: Use pointer masking to limit speculation
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
[ Based on a patch from Paolo Bonzini <pbonzini@redhat.com> ]
... basically doing exactly what we do for VMX:
- Passthrough SPEC_CTRL to guests (if enabled in guest CPUID)
- Save and restore SPEC_CTRL around VMExit and VMEntry only if the guest
actually used it.
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: kvm@vger.kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ashok Raj <ashok.raj@intel.com>
Link: https://lkml.kernel.org/r/1517669783-20732-1-git-send-email-karahmed@amazon.de
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
[ Based on a patch from Ashok Raj <ashok.raj@intel.com> ]
Add direct access to MSR_IA32_SPEC_CTRL for guests. This is needed for
guests that will only mitigate Spectre V2 through IBRS+IBPB and will not
be using a retpoline+IBPB based approach.
To avoid the overhead of saving and restoring the MSR_IA32_SPEC_CTRL for
guests that do not actually use the MSR, only start saving and restoring
when a non-zero is written to it.
No attempt is made to handle STIBP here, intentionally. Filtering STIBP
may be added in a future patch, which may require trapping all writes
if we don't want to pass it through directly to the guest.
[dwmw2: Clean up CPUID bits, save/restore manually, handle reset]
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: kvm@vger.kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ashok Raj <ashok.raj@intel.com>
Link: https://lkml.kernel.org/r/1517522386-18410-5-git-send-email-karahmed@amazon.de
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Intel processors use MSR_IA32_ARCH_CAPABILITIES MSR to indicate RDCL_NO
(bit 0) and IBRS_ALL (bit 1). This is a read-only MSR. By default the
contents will come directly from the hardware, but user-space can still
override it.
[dwmw2: The bit in kvm_cpuid_7_0_edx_x86_features can be unconditional]
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: kvm@vger.kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Link: https://lkml.kernel.org/r/1517522386-18410-4-git-send-email-karahmed@amazon.de
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The Indirect Branch Predictor Barrier (IBPB) is an indirect branch
control mechanism. It keeps earlier branches from influencing
later ones.
Unlike IBRS and STIBP, IBPB does not define a new mode of operation.
It's a command that ensures predicted branch targets aren't used after
the barrier. Although IBRS and IBPB are enumerated by the same CPUID
enumeration, IBPB is very different.
IBPB helps mitigate against three potential attacks:
* Mitigate guests from being attacked by other guests.
- This is addressed by issing IBPB when we do a guest switch.
* Mitigate attacks from guest/ring3->host/ring3.
These would require a IBPB during context switch in host, or after
VMEXIT. The host process has two ways to mitigate
- Either it can be compiled with retpoline
- If its going through context switch, and has set !dumpable then
there is a IBPB in that path.
(Tim's patch: https://patchwork.kernel.org/patch/10192871)
- The case where after a VMEXIT you return back to Qemu might make
Qemu attackable from guest when Qemu isn't compiled with retpoline.
There are issues reported when doing IBPB on every VMEXIT that resulted
in some tsc calibration woes in guest.
* Mitigate guest/ring0->host/ring0 attacks.
When host kernel is using retpoline it is safe against these attacks.
If host kernel isn't using retpoline we might need to do a IBPB flush on
every VMEXIT.
Even when using retpoline for indirect calls, in certain conditions 'ret'
can use the BTB on Skylake-era CPUs. There are other mitigations
available like RSB stuffing/clearing.
* IBPB is issued only for SVM during svm_free_vcpu().
VMX has a vmclear and SVM doesn't. Follow discussion here:
https://lkml.org/lkml/2018/1/15/146
Please refer to the following spec for more details on the enumeration
and control.
Refer here to get documentation about mitigations.
https://software.intel.com/en-us/side-channel-security-support
[peterz: rebase and changelog rewrite]
[karahmed: - rebase
- vmx: expose PRED_CMD if guest has it in CPUID
- svm: only pass through IBPB if guest has it in CPUID
- vmx: support !cpu_has_vmx_msr_bitmap()]
- vmx: support nested]
[dwmw2: Expose CPUID bit too (AMD IBPB only for now as we lack IBRS)
PRED_CMD is a write-only MSR]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: kvm@vger.kernel.org
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/1515720739-43819-6-git-send-email-ashok.raj@intel.com
Link: https://lkml.kernel.org/r/1517522386-18410-3-git-send-email-karahmed@amazon.de
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
[dwmw2: Stop using KF() for bits in it, too]
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Link: https://lkml.kernel.org/r/1517522386-18410-2-git-send-email-karahmed@amazon.de
|
| |\
| | |
| | |
| | |
| | |
| | | |
x86/pti
Pull the KVM prerequisites so the IBPB patches apply.
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Place the MSR bitmap in struct loaded_vmcs, and update it in place
every time the x2apic or APICv state can change. This is rare and
the loop can handle 64 MSRs per iteration, in a similar fashion as
nested_vmx_prepare_msr_bitmap.
This prepares for choosing, on a per-VM basis, whether to intercept
the SPEC_CTRL and PRED_CMD MSRs.
Cc: stable@vger.kernel.org # prereq for Spectre mitigation
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Group together the calls to alloc_vmcs and loaded_vmcs_init. Soon we'll also
allocate an MSR bitmap there.
Cc: stable@vger.kernel.org # prereq for Spectre mitigation
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The potential performance advantages of a vmcs02 pool have never been
realized. To simplify the code, eliminate the pool. Instead, a single
vmcs02 is allocated per VCPU when the VCPU enters VMX operation.
Cc: stable@vger.kernel.org # prereq for Spectre mitigation
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Ameya More <ameya.more@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Fixes: 117cc7a908c83 ("x86/retpoline: Fill return stack buffer on vmexit")
Signed-off-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180202191220.blvgkgutojecxr3b@starbug-vm.ie.oracle.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
I'm seeing build failures from the two newly introduced arrays that
are marked 'const' and '__initdata', which are mutually exclusive:
arch/x86/kernel/cpu/common.c:882:43: error: 'cpu_no_speculation' causes a section type conflict with 'e820_table_firmware_init'
arch/x86/kernel/cpu/common.c:895:43: error: 'cpu_no_meltdown' causes a section type conflict with 'e820_table_firmware_init'
The correct annotation is __initconst.
Fixes: fec9434a12f3 ("x86/pti: Do not enable PTI on CPUs which are not vulnerable to Meltdown")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180202213959.611210-1-arnd@arndb.de
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
[dwmw2: Use ARRAY_SIZE]
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: peterz@infradead.org
Cc: bp@alien8.de
Link: https://lkml.kernel.org/r/1517484441-1420-3-git-send-email-dwmw@amazon.co.uk
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit 75f139aaf896 "KVM: x86: Add memory barrier on vmcs field lookup"
added a raw 'asm("lfence");' to prevent a bounds check bypass of
'vmcs_field_to_offset_table'.
The lfence can be avoided in this path by using the array_index_nospec()
helper designed for these types of fixes.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andrew Honig <ahonig@google.com>
Cc: kvm@vger.kernel.org
Cc: Jim Mattson <jmattson@google.com>
Link: https://lkml.kernel.org/r/151744959670.6342.3001723920950249067.stgit@dwillia2-desk3.amr.corp.intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The 'noreplace-paravirt' option disables paravirt patching, leaving the
original pv indirect calls in place.
That's highly incompatible with retpolines, unless we want to uglify
paravirt even further and convert the paravirt calls to retpolines.
As far as I can tell, the option doesn't seem to be useful for much
other than introducing surprising corner cases and making the kernel
vulnerable to Spectre v2. It was probably a debug option from the early
paravirt days. So just remove it.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: https://lkml.kernel.org/r/20180131041333.2x6blhxirc2kclrq@treble
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Flush indirect branches when switching into a process that marked itself
non dumpable. This protects high value processes like gpg better,
without having too high performance overhead.
If done naïvely, we could switch to a kernel idle thread and then back
to the original process, such as:
process A -> idle -> process A
In such scenario, we do not have to do IBPB here even though the process
is non-dumpable, as we are switching back to the same process after a
hiatus.
To avoid the redundant IBPB, which is expensive, we track the last mm
user context ID. The cost is to have an extra u64 mm context id to track
the last mm we were using before switching to the init_mm used by idle.
Avoiding the extra IBPB is probably worth the extra memory for this
common scenario.
For those cases where tlb_defer_switch_to_init_mm() returns true (non
PCID), lazy tlb will defer switch to init_mm, so we will not be changing
the mm for the process A -> idle -> process A switch. So IBPB will be
skipped for this case.
Thanks to the reviewers and Andy Lutomirski for the suggestion of
using ctx_id which got rid of the problem of mm pointer recycling.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ak@linux.intel.com
Cc: karahmed@amazon.de
Cc: arjan@linux.intel.com
Cc: torvalds@linux-foundation.org
Cc: linux@dominikbrodowski.net
Cc: peterz@infradead.org
Cc: bp@alien8.de
Cc: luto@kernel.org
Cc: pbonzini@redhat.com
Cc: gregkh@linux-foundation.org
Link: https://lkml.kernel.org/r/1517263487-3708-1-git-send-email-dwmw@amazon.co.uk
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Despite the fact that all the other code there seems to be doing it, just
using set_cpu_cap() in early_intel_init() doesn't actually work.
For CPUs with PKU support, setup_pku() calls get_cpu_cap() after
c->c_init() has set those feature bits. That resets those bits back to what
was queried from the hardware.
Turning the bits off for bad microcode is easy to fix. That can just use
setup_clear_cpu_cap() to force them off for all CPUs.
I was less keen on forcing the feature bits *on* that way, just in case
of inconsistencies. I appreciate that the kernel is going to get this
utterly wrong if CPU features are not consistent, because it has already
applied alternatives by the time secondary CPUs are brought up.
But at least if setup_force_cpu_cap() isn't being used, we might have a
chance of *detecting* the lack of the corresponding bit and either
panicking or refusing to bring the offending CPU online.
So ensure that the appropriate feature bits are set within get_cpu_cap()
regardless of how many extra times it's called.
Fixes: 2961298e ("x86/cpufeatures: Clean up Spectre v2 related CPUID flags")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: karahmed@amazon.de
Cc: peterz@infradead.org
Cc: bp@alien8.de
Link: https://lkml.kernel.org/r/1517322623-15261-1-git-send-email-dwmw@amazon.co.uk
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Trivial fix to spelling mistake in pr_err error message text.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: kernel-janitors@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180130193218.9271-1-colin.king@canonical.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Reflect the presence of get_user(), __get_user(), and 'syscall' protections
in sysfs. The expectation is that new and better tooling will allow the
kernel to grow more usages of array_index_nospec(), for now, only claim
mitigation for __user pointer de-references.
Reported-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: torvalds@linux-foundation.org
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727420158.33451.11658324346540434635.stgit@dwillia2-desk3.amr.corp.intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The syscall table base is a user controlled function pointer in kernel
space. Use array_index_nospec() to prevent any out of bounds speculation.
While retpoline prevents speculating into a userspace directed target it
does not stop the pointer de-reference, the concern is leaking memory
relative to the syscall table base, by observing instruction cache
behavior.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727417984.33451.1216731042505722161.stgit@dwillia2-desk3.amr.corp.intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Quoting Linus:
I do think that it would be a good idea to very expressly document
the fact that it's not that the user access itself is unsafe. I do
agree that things like "get_user()" want to be protected, but not
because of any direct bugs or problems with get_user() and friends,
but simply because get_user() is an excellent source of a pointer
that is obviously controlled from a potentially attacking user
space. So it's a prime candidate for then finding _subsequent_
accesses that can then be used to perturb the cache.
Unlike the __get_user() case get_user() includes the address limit check
near the pointer de-reference. With that locality the speculation can be
mitigated with pointer narrowing rather than a barrier, i.e.
array_index_nospec(). Where the narrowing is performed by:
cmp %limit, %ptr
sbb %mask, %mask
and %mask, %ptr
With respect to speculation the value of %ptr is either less than %limit
or NULL.
Co-developed-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Kees Cook <keescook@chromium.org>
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: torvalds@linux-foundation.org
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727417469.33451.11804043010080838495.stgit@dwillia2-desk3.amr.corp.intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Quoting Linus:
I do think that it would be a good idea to very expressly document
the fact that it's not that the user access itself is unsafe. I do
agree that things like "get_user()" want to be protected, but not
because of any direct bugs or problems with get_user() and friends,
but simply because get_user() is an excellent source of a pointer
that is obviously controlled from a potentially attacking user
space. So it's a prime candidate for then finding _subsequent_
accesses that can then be used to perturb the cache.
__uaccess_begin_nospec() covers __get_user() and copy_from_iter() where the
limit check is far away from the user pointer de-reference. In those cases
a barrier_nospec() prevents speculation with a potential pointer to
privileged memory. uaccess_try_nospec covers get_user_try.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Suggested-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Kees Cook <keescook@chromium.org>
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727416953.33451.10508284228526170604.stgit@dwillia2-desk3.amr.corp.intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In preparation for converting some __uaccess_begin() instances to
__uacess_begin_nospec(), make sure all 'from user' uaccess paths are
using the _begin(), _end() helpers rather than open-coded stac() and
clac().
No functional changes.
Suggested-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: torvalds@linux-foundation.org
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727416438.33451.17309465232057176966.stgit@dwillia2-desk3.amr.corp.intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
For __get_user() paths, do not allow the kernel to speculate on the value
of a user controlled pointer. In addition to the 'stac' instruction for
Supervisor Mode Access Protection (SMAP), a barrier_nospec() causes the
access_ok() result to resolve in the pipeline before the CPU might take any
speculative action on the pointer value. Given the cost of 'stac' the
speculation barrier is placed after 'stac' to hopefully overlap the cost of
disabling SMAP with the cost of flushing the instruction pipeline.
Since __get_user is a major kernel interface that deals with user
controlled pointers, the __uaccess_begin_nospec() mechanism will prevent
speculative execution past an access_ok() permission check. While
speculative execution past access_ok() is not enough to lead to a kernel
memory leak, it is a necessary precondition.
To be clear, __uaccess_begin_nospec() is addressing a class of potential
problems near __get_user() usages.
Note, that while the barrier_nospec() in __uaccess_begin_nospec() is used
to protect __get_user(), pointer masking similar to array_index_nospec()
will be used for get_user() since it incorporates a bounds check near the
usage.
uaccess_try_nospec provides the same mechanism for get_user_try.
No functional changes.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Suggested-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727415922.33451.5796614273104346583.stgit@dwillia2-desk3.amr.corp.intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Rename the open coded form of this instruction sequence from
rdtsc_ordered() into a generic barrier primitive, barrier_nospec().
One of the mitigations for Spectre variant1 vulnerabilities is to fence
speculative execution after successfully validating a bounds check. I.e.
force the result of a bounds check to resolve in the instruction pipeline
to ensure speculative execution honors that result before potentially
operating on out-of-bounds data.
No functional changes.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Suggested-by: Andi Kleen <ak@linux.intel.com>
Suggested-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727415361.33451.9049453007262764675.stgit@dwillia2-desk3.amr.corp.intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
array_index_nospec() uses a mask to sanitize user controllable array
indexes, i.e. generate a 0 mask if 'index' >= 'size', and a ~0 mask
otherwise. While the default array_index_mask_nospec() handles the
carry-bit from the (index - size) result in software.
The x86 array_index_mask_nospec() does the same, but the carry-bit is
handled in the processor CF flag without conditional instructions in the
control flow.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727414808.33451.1873237130672785331.stgit@dwillia2-desk3.amr.corp.intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The TS_COMPAT bit is very hot and is accessed from code paths that mostly
also touch thread_info::flags. Move it into struct thread_info to improve
cache locality.
The only reason it was in thread_struct is that there was a brief period
during which arch-specific fields were not allowed in struct thread_info.
Linus suggested further changing:
ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
to:
if (unlikely(ti->status & (TS_COMPAT|TS_I386_REGS_POKED)))
ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
on the theory that frequently dirtying the cacheline even in pure 64-bit
code that never needs to modify status hurts performance. That could be a
reasonable followup patch, but I suspect it matters less on top of this
patch.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/03148bcc1b217100e6e8ecf6a5468c45cf4304b6.1517164461.git.luto@kernel.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
With the fast path removed there is no point in splitting the push of the
normal and the extra register set. Just push the extra regs right away.
[ tglx: Split out from 'x86/entry/64: Remove the SYSCALL64 fast path' ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/462dff8d4d64dfbfc851fbf3130641809d980ecd.1517164461.git.luto@kernel.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The SYCALLL64 fast path was a nice, if small, optimization back in the good
old days when syscalls were actually reasonably fast. Now there is PTI to
slow everything down, and indirect branches are verboten, making everything
messier. The retpoline code in the fast path is particularly nasty.
Just get rid of the fast path. The slow path is barely slower.
[ tglx: Split out the 'push all extra regs' part ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/462dff8d4d64dfbfc851fbf3130641809d980ecd.1517164461.git.luto@kernel.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The spectre_v2 option 'auto' does not check whether CONFIG_RETPOLINE is
enabled. As a consequence it fails to emit the appropriate warning and sets
feature flags which have no effect at all.
Add the missing IS_ENABLED() check.
Fixes: da285121560e ("x86/spectre: Add boot time option to select Spectre v2 mitigation")
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ak@linux.intel.com
Cc: peterz@infradead.org
Cc: Tomohiro" <misono.tomohiro@jp.fujitsu.com>
Cc: dave.hansen@intel.com
Cc: bp@alien8.de
Cc: arjan@linux.intel.com
Cc: dwmw@amazon.co.uk
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/f5892721-7528-3647-08fb-f8d10e65ad87@cn.fujitsu.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Since commit 92a0f81d8957 ("x86/cpu_entry_area: Move it out of the
fixmap"), i386's CPU_ENTRY_AREA has been mapped to the memory area just
below FIXADDR_START. But already immediately before FIXADDR_START is the
FIX_BTMAP area, which means that early_ioremap can collide with the entry
area.
It's especially bad on PAE where FIX_BTMAP_BEGIN gets aligned to exactly
match CPU_ENTRY_AREA_BASE, so the first early_ioremap slot clobbers the
IDT and causes interrupts during early boot to reset the system.
The overlap wasn't a problem before the CPU entry area was introduced,
as the fixmap has classically been preceded by the pkmap or vmalloc
areas, neither of which is used until early_ioremap is out of the
picture.
Relocate CPU_ENTRY_AREA to below FIX_BTMAP, not just below the permanent
fixmap area.
Fixes: commit 92a0f81d8957 ("x86/cpu_entry_area: Move it out of the fixmap")
Signed-off-by: William Grant <william.grant@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/7041d181-a019-e8b9-4e4e-48215f841e2c@canonical.com
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Time has come to switch PTI development over to a v4.15 base - we'll still
try to make sure that all PTI fixes backport cleanly to v4.14 and earlier.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A small set of changes:
- a fixup for kexec related to 5-level paging mode. That covers most
of the cases except kexec from a 5-level kernel to a 4-level
kernel. The latter needs more work and is going to come in 4.17
- two trivial fixes for build warnings triggered by LTO and gcc-8"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/power: Fix swsusp_arch_resume prototype
x86/dumpstack: Avoid uninitlized variable
x86/kexec: Make kexec (mostly) work in 5-level paging mode
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The declaration for swsusp_arch_resume marks it as 'asmlinkage', but the
definition in x86-32 does not, and it fails to include the header with the
declaration. This leads to a warning when building with
link-time-optimizations:
kernel/power/power.h:108:23: error: type of 'swsusp_arch_resume' does not match original declaration [-Werror=lto-type-mismatch]
extern asmlinkage int swsusp_arch_resume(void);
^
arch/x86/power/hibernate_32.c:148:0: note: 'swsusp_arch_resume' was previously declared here
int swsusp_arch_resume(void)
This moves the declaration into a globally visible header file and fixes up
both x86 definitions to match it.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Len Brown <len.brown@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: linux-pm@vger.kernel.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Bart Van Assche <bart.vanassche@wdc.com>
Link: https://lkml.kernel.org/r/20180202145634.200291-2-arnd@arndb.de
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
In some configurations, 'partial' does not get initialized, as shown by
this gcc-8 warning:
arch/x86/kernel/dumpstack.c: In function 'show_trace_log_lvl':
arch/x86/kernel/dumpstack.c:156:4: error: 'partial' may be used uninitialized in this function [-Werror=maybe-uninitialized]
show_regs_if_on_stack(&stack_info, regs, partial);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This initializes it to false, to get the previous behavior in this case.
Fixes: a9cdbe72c4e8 ("x86/dumpstack: Fix partial register dumps")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: https://lkml.kernel.org/r/20180202145634.200291-1-arnd@arndb.de
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Currently kexec() will crash when switching into a 5-level paging
enabled kernel.
I missed that we need to change relocate_kernel() to set CR4.LA57
flag if the kernel has 5-level paging enabled.
I avoided using #ifdef CONFIG_X86_5LEVEL here and inferred if we need to
enable 5-level paging from previous CR4 value. This way the code is
ready for boot-time switching between paging modes.
With this patch applied, in addition to kexec 4-to-4 which always worked,
we can kexec 4-to-5 and 5-to-5 - while 5-to-4 will need more work.
Reported-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Baoquan He <bhe@redhat.com>
Cc: <stable@vger.kernel.org> # v4.14+
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Fixes: 77ef56e4f0fb ("x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y")
Link: http://lkml.kernel.org/r/20180129110845.26633-1-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|\ \ \ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux
Pull i2c updates from Wolfram Sang:
"I2C has the following changes for you:
- new flag to mark DMA safe buffers in i2c_msg. Also, some
infrastructure around it. And docs.
- huge refactoring of the at24 driver led by the new maintainer
Bartosz
- update I2C bus recovery to send STOP after recovery
- conversion from gpio to gpiod for I2C bus recovery
- adding a fault-injector to the i2c-gpio driver
- lots of small driver improvements, and bigger ones to
i2c-sh_mobile"
* 'i2c/for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux: (99 commits)
i2c: mv64xxx: Add myself as maintainer for this driver
i2c: mv64xxx: Fix clock resource by adding an optional bus clock
i2c: mv64xxx: Remove useless test before clk_disable_unprepare
i2c: mxs: use true and false for boolean values
i2c: meson: update doc description to fix build warnings
i2c: meson: add configurable divider factors
dt-bindings: i2c: update documentation for the Meson-AXG
i2c: imx-lpi2c: add runtime pm support
i2c: rcar: fix some trivial typos in comments
i2c: davinci: fix the cpufreq transition
i2c: rk3x: add proper kerneldoc header
i2c: rk3x: account for const type of of_device_id.data
i2c: acorn: remove outdated path from file header
i2c: acorn: add MODULE_LICENSE tag
i2c: rcar: implement bus recovery
i2c: send STOP after successful bus recovery
i2c: ensure SDA is released in recovery if SDA is controllable
i2c: add 'set_sda' to bus_recovery_info
i2c: add identifier in declarations for i2c_bus_recovery
i2c: make kerneldoc about bus recovery more precise
...
|
| |\ \ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/brgl/linux into i2c/for-4.16
"AT24 updates for 4.16 merge window
The driver has been converted to using regmap instead of raw i2c and
smbus calls which shrank the code significantly.
Device tree binding document has been cleaned up. Device tree support in
the driver has been improved and we now support all at24 models as well
as two new DT properties (no-read-rollover and wp-gpios).
We no longer user unreadable magic values for driver data as the way it
was implemented caused problems for some EEPROM models - we switched to
regular structs.
Aside from that, there's a bunch of coding style fixes and minor
improvements all over the place."
|
| |\ \ \ \ \ \
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
i2c/for-4.16
"A couple of patches this time. Just some more compatibles for the
pca954x driver and an error handling tweak for the reg driver."
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Alter the DaVinci GPIO recovery fetch to use descriptors
all the way down into the board files.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Sekhar Nori <nsekhar@ti.com>
Tested-by: Sekhar Nori <nsekhar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
|\ \ \ \ \ \ \ \
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardened usercopy whitelisting from Kees Cook:
"Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs.
To further restrict what memory is available for copying, this creates
a way to whitelist specific areas of a given slab cache object for
copying to/from userspace, allowing much finer granularity of access
control.
Slab caches that are never exposed to userspace can declare no
whitelist for their objects, thereby keeping them unavailable to
userspace via dynamic copy operations. (Note, an implicit form of
whitelisting is the use of constant sizes in usercopy operations and
get_user()/put_user(); these bypass all hardened usercopy checks since
these sizes cannot change at runtime.)
This new check is WARN-by-default, so any mistakes can be found over
the next several releases without breaking anyone's system.
The series has roughly the following sections:
- remove %p and improve reporting with offset
- prepare infrastructure and whitelist kmalloc
- update VFS subsystem with whitelists
- update SCSI subsystem with whitelists
- update network subsystem with whitelists
- update process memory with whitelists
- update per-architecture thread_struct with whitelists
- update KVM with whitelists and fix ioctl bug
- mark all other allocations as not whitelisted
- update lkdtm for more sensible test overage"
* tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits)
lkdtm: Update usercopy tests for whitelisting
usercopy: Restrict non-usercopy caches to size 0
kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
kvm: whitelist struct kvm_vcpu_arch
arm: Implement thread_struct whitelist for hardened usercopy
arm64: Implement thread_struct whitelist for hardened usercopy
x86: Implement thread_struct whitelist for hardened usercopy
fork: Provide usercopy whitelisting for task_struct
fork: Define usercopy region in thread_stack slab caches
fork: Define usercopy region in mm_struct slab caches
net: Restrict unwhitelisted proto caches to size 0
sctp: Copy struct sctp_sock.autoclose to userspace using put_user()
sctp: Define usercopy region in SCTP proto slab cache
caif: Define usercopy region in caif proto slab cache
ip: Define usercopy region in IP proto slab cache
net: Define usercopy region in struct proto slab cache
scsi: Define usercopy region in scsi_sense_cache slab cache
cifs: Define usercopy region in cifs_request slab cache
vxfs: Define usercopy region in vxfs_inode slab cache
ufs: Define usercopy region in ufs_inode_cache slab cache
...
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
This ioctl is obsolete (it was used by Xenner as far as I know) but
still let's not break it gratuitously... Its handler is copying
directly into struct kvm. Go through a bounce buffer instead, with
the added benefit that we can actually do something useful with the
flags argument---the previous code was exiting with -EINVAL but still
doing the copy.
This technically is a userspace ABI breakage, but since no one should be
using the ioctl, it's a good occasion to see if someone actually
complains.
Cc: kernel-hardening@lists.openwall.com
Cc: Kees Cook <keescook@chromium.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
While ARM32 carries FPU state in the thread structure that is saved and
restored during signal handling, it doesn't need to declare a usercopy
whitelist, since existing accessors are all either using a bounce buffer
(for which whitelisting isn't checking the slab), are statically sized
(which will bypass the hardened usercopy check), or both.
Cc: Russell King <linux@armlinux.org.uk>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Kees Cook <keescook@chromium.org>
|