1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
Copyright 2009 Jonathan Corbet <corbet@lwn.net>
Debugfs exists as a simple way for kernel developers to make information
available to user space. Unlike /proc, which is only meant for information
about a process, or sysfs, which has strict one-value-per-file rules,
debugfs has no rules at all. Developers can put any information they want
there. The debugfs filesystem is also intended to not serve as a stable
ABI to user space; in theory, there are no stability constraints placed on
files exported there. The real world is not always so simple, though [1];
even debugfs interfaces are best designed with the idea that they will need
to be maintained forever.
Debugfs is typically mounted with a command like:
mount -t debugfs none /sys/kernel/debug
(Or an equivalent /etc/fstab line).
The debugfs root directory is accessible only to the root user by
default. To change access to the tree the "uid", "gid" and "mode" mount
options can be used.
Note that the debugfs API is exported GPL-only to modules.
Code using debugfs should include <linux/debugfs.h>. Then, the first order
of business will be to create at least one directory to hold a set of
debugfs files:
struct dentry *debugfs_create_dir(const char *name, struct dentry *parent);
This call, if successful, will make a directory called name underneath the
indicated parent directory. If parent is NULL, the directory will be
created in the debugfs root. On success, the return value is a struct
dentry pointer which can be used to create files in the directory (and to
clean it up at the end). An ERR_PTR(-ERROR) return value indicates that
something went wrong. If ERR_PTR(-ENODEV) is returned, that is an
indication that the kernel has been built without debugfs support and none
of the functions described below will work.
The most general way to create a file within a debugfs directory is with:
struct dentry *debugfs_create_file(const char *name, umode_t mode,
struct dentry *parent, void *data,
const struct file_operations *fops);
Here, name is the name of the file to create, mode describes the access
permissions the file should have, parent indicates the directory which
should hold the file, data will be stored in the i_private field of the
resulting inode structure, and fops is a set of file operations which
implement the file's behavior. At a minimum, the read() and/or write()
operations should be provided; others can be included as needed. Again,
the return value will be a dentry pointer to the created file,
ERR_PTR(-ERROR) on error, or ERR_PTR(-ENODEV) if debugfs support is
missing.
Create a file with an initial size, the following function can be used
instead:
struct dentry *debugfs_create_file_size(const char *name, umode_t mode,
struct dentry *parent, void *data,
const struct file_operations *fops,
loff_t file_size);
file_size is the initial file size. The other parameters are the same
as the function debugfs_create_file.
In a number of cases, the creation of a set of file operations is not
actually necessary; the debugfs code provides a number of helper functions
for simple situations. Files containing a single integer value can be
created with any of:
void debugfs_create_u8(const char *name, umode_t mode,
struct dentry *parent, u8 *value);
void debugfs_create_u16(const char *name, umode_t mode,
struct dentry *parent, u16 *value);
struct dentry *debugfs_create_u32(const char *name, umode_t mode,
struct dentry *parent, u32 *value);
void debugfs_create_u64(const char *name, umode_t mode,
struct dentry *parent, u64 *value);
These files support both reading and writing the given value; if a specific
file should not be written to, simply set the mode bits accordingly. The
values in these files are in decimal; if hexadecimal is more appropriate,
the following functions can be used instead:
void debugfs_create_x8(const char *name, umode_t mode,
struct dentry *parent, u8 *value);
void debugfs_create_x16(const char *name, umode_t mode,
struct dentry *parent, u16 *value);
void debugfs_create_x32(const char *name, umode_t mode,
struct dentry *parent, u32 *value);
void debugfs_create_x64(const char *name, umode_t mode,
struct dentry *parent, u64 *value);
These functions are useful as long as the developer knows the size of the
value to be exported. Some types can have different widths on different
architectures, though, complicating the situation somewhat. There is a
function meant to help out in one special case:
void debugfs_create_size_t(const char *name, umode_t mode,
struct dentry *parent, size_t *value);
As might be expected, this function will create a debugfs file to represent
a variable of type size_t.
Boolean values can be placed in debugfs with:
struct dentry *debugfs_create_bool(const char *name, umode_t mode,
struct dentry *parent, bool *value);
A read on the resulting file will yield either Y (for non-zero values) or
N, followed by a newline. If written to, it will accept either upper- or
lower-case values, or 1 or 0. Any other input will be silently ignored.
Also, atomic_t values can be placed in debugfs with:
struct dentry *debugfs_create_atomic_t(const char *name, umode_t mode,
struct dentry *parent, atomic_t *value)
A read of this file will get atomic_t values, and a write of this file
will set atomic_t values.
Another option is exporting a block of arbitrary binary data, with
this structure and function:
struct debugfs_blob_wrapper {
void *data;
unsigned long size;
};
struct dentry *debugfs_create_blob(const char *name, umode_t mode,
struct dentry *parent,
struct debugfs_blob_wrapper *blob);
A read of this file will return the data pointed to by the
debugfs_blob_wrapper structure. Some drivers use "blobs" as a simple way
to return several lines of (static) formatted text output. This function
can be used to export binary information, but there does not appear to be
any code which does so in the mainline. Note that all files created with
debugfs_create_blob() are read-only.
If you want to dump a block of registers (something that happens quite
often during development, even if little such code reaches mainline.
Debugfs offers two functions: one to make a registers-only file, and
another to insert a register block in the middle of another sequential
file.
struct debugfs_reg32 {
char *name;
unsigned long offset;
};
struct debugfs_regset32 {
struct debugfs_reg32 *regs;
int nregs;
void __iomem *base;
};
struct dentry *debugfs_create_regset32(const char *name, umode_t mode,
struct dentry *parent,
struct debugfs_regset32 *regset);
void debugfs_print_regs32(struct seq_file *s, struct debugfs_reg32 *regs,
int nregs, void __iomem *base, char *prefix);
The "base" argument may be 0, but you may want to build the reg32 array
using __stringify, and a number of register names (macros) are actually
byte offsets over a base for the register block.
If you want to dump an u32 array in debugfs, you can create file with:
void debugfs_create_u32_array(const char *name, umode_t mode,
struct dentry *parent,
u32 *array, u32 elements);
The "array" argument provides data, and the "elements" argument is
the number of elements in the array. Note: Once array is created its
size can not be changed.
There is a helper function to create device related seq_file:
struct dentry *debugfs_create_devm_seqfile(struct device *dev,
const char *name,
struct dentry *parent,
int (*read_fn)(struct seq_file *s,
void *data));
The "dev" argument is the device related to this debugfs file, and
the "read_fn" is a function pointer which to be called to print the
seq_file content.
There are a couple of other directory-oriented helper functions:
struct dentry *debugfs_rename(struct dentry *old_dir,
struct dentry *old_dentry,
struct dentry *new_dir,
const char *new_name);
struct dentry *debugfs_create_symlink(const char *name,
struct dentry *parent,
const char *target);
A call to debugfs_rename() will give a new name to an existing debugfs
file, possibly in a different directory. The new_name must not exist prior
to the call; the return value is old_dentry with updated information.
Symbolic links can be created with debugfs_create_symlink().
There is one important thing that all debugfs users must take into account:
there is no automatic cleanup of any directories created in debugfs. If a
module is unloaded without explicitly removing debugfs entries, the result
will be a lot of stale pointers and no end of highly antisocial behavior.
So all debugfs users - at least those which can be built as modules - must
be prepared to remove all files and directories they create there. A file
can be removed with:
void debugfs_remove(struct dentry *dentry);
The dentry value can be NULL or an error value, in which case nothing will
be removed.
Once upon a time, debugfs users were required to remember the dentry
pointer for every debugfs file they created so that all files could be
cleaned up. We live in more civilized times now, though, and debugfs users
can call:
void debugfs_remove_recursive(struct dentry *dentry);
If this function is passed a pointer for the dentry corresponding to the
top-level directory, the entire hierarchy below that directory will be
removed.
Notes:
[1] http://lwn.net/Articles/309298/
|