1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
/*
* arch/arm64/kernel/topology.c
*
* Copyright (C) 2011,2013,2014 Linaro Limited.
*
* Based on the arm32 version written by Vincent Guittot in turn based on
* arch/sh/kernel/topology.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/acpi.h>
#include <linux/arch_topology.h>
#include <linux/cacheinfo.h>
#include <linux/cpufreq.h>
#include <linux/cpu_smt.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/sched/isolation.h>
#include <linux/xarray.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/topology.h>
#ifdef CONFIG_ACPI
static bool __init acpi_cpu_is_threaded(int cpu)
{
int is_threaded = acpi_pptt_cpu_is_thread(cpu);
/*
* if the PPTT doesn't have thread information, assume a homogeneous
* machine and return the current CPU's thread state.
*/
if (is_threaded < 0)
is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
return !!is_threaded;
}
struct cpu_smt_info {
unsigned int thread_num;
int core_id;
};
/*
* Propagate the topology information of the processor_topology_node tree to the
* cpu_topology array.
*/
int __init parse_acpi_topology(void)
{
unsigned int max_smt_thread_num = 1;
struct cpu_smt_info *entry;
struct xarray hetero_cpu;
unsigned long hetero_id;
int cpu, topology_id;
if (acpi_disabled)
return 0;
xa_init(&hetero_cpu);
for_each_possible_cpu(cpu) {
topology_id = find_acpi_cpu_topology(cpu, 0);
if (topology_id < 0)
return topology_id;
if (acpi_cpu_is_threaded(cpu)) {
cpu_topology[cpu].thread_id = topology_id;
topology_id = find_acpi_cpu_topology(cpu, 1);
cpu_topology[cpu].core_id = topology_id;
/*
* In the PPTT, CPUs below a node with the 'identical
* implementation' flag have the same number of threads.
* Count the number of threads for only one CPU (i.e.
* one core_id) among those with the same hetero_id.
* See the comment of find_acpi_cpu_topology_hetero_id()
* for more details.
*
* One entry is created for each node having:
* - the 'identical implementation' flag
* - its parent not having the flag
*/
hetero_id = find_acpi_cpu_topology_hetero_id(cpu);
entry = xa_load(&hetero_cpu, hetero_id);
if (!entry) {
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
WARN_ON_ONCE(!entry);
if (entry) {
entry->core_id = topology_id;
entry->thread_num = 1;
xa_store(&hetero_cpu, hetero_id,
entry, GFP_KERNEL);
}
} else if (entry->core_id == topology_id) {
entry->thread_num++;
}
} else {
cpu_topology[cpu].thread_id = -1;
cpu_topology[cpu].core_id = topology_id;
}
topology_id = find_acpi_cpu_topology_cluster(cpu);
cpu_topology[cpu].cluster_id = topology_id;
topology_id = find_acpi_cpu_topology_package(cpu);
cpu_topology[cpu].package_id = topology_id;
}
/*
* This is a short loop since the number of XArray elements is the
* number of heterogeneous CPU clusters. On a homogeneous system
* there's only one entry in the XArray.
*/
xa_for_each(&hetero_cpu, hetero_id, entry) {
max_smt_thread_num = max(max_smt_thread_num, entry->thread_num);
xa_erase(&hetero_cpu, hetero_id);
kfree(entry);
}
cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num);
xa_destroy(&hetero_cpu);
return 0;
}
#endif
#ifdef CONFIG_ARM64_AMU_EXTN
#define read_corecnt() read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)
#define read_constcnt() read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)
#else
#define read_corecnt() (0UL)
#define read_constcnt() (0UL)
#endif
#undef pr_fmt
#define pr_fmt(fmt) "AMU: " fmt
/*
* Ensure that amu_scale_freq_tick() will return SCHED_CAPACITY_SCALE until
* the CPU capacity and its associated frequency have been correctly
* initialized.
*/
static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale) = 1UL << (2 * SCHED_CAPACITY_SHIFT);
static cpumask_var_t amu_fie_cpus;
struct amu_cntr_sample {
u64 arch_const_cycles_prev;
u64 arch_core_cycles_prev;
unsigned long last_scale_update;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct amu_cntr_sample, cpu_amu_samples);
void update_freq_counters_refs(void)
{
struct amu_cntr_sample *amu_sample = this_cpu_ptr(&cpu_amu_samples);
amu_sample->arch_core_cycles_prev = read_corecnt();
amu_sample->arch_const_cycles_prev = read_constcnt();
}
static inline bool freq_counters_valid(int cpu)
{
struct amu_cntr_sample *amu_sample = per_cpu_ptr(&cpu_amu_samples, cpu);
if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
return false;
if (!cpu_has_amu_feat(cpu)) {
pr_debug("CPU%d: counters are not supported.\n", cpu);
return false;
}
if (unlikely(!amu_sample->arch_const_cycles_prev ||
!amu_sample->arch_core_cycles_prev)) {
pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
return false;
}
return true;
}
void freq_inv_set_max_ratio(int cpu, u64 max_rate)
{
u64 ratio, ref_rate = arch_timer_get_rate();
if (unlikely(!max_rate || !ref_rate)) {
WARN_ONCE(1, "CPU%d: invalid maximum or reference frequency.\n",
cpu);
return;
}
/*
* Pre-compute the fixed ratio between the frequency of the constant
* reference counter and the maximum frequency of the CPU.
*
* ref_rate
* arch_max_freq_scale = ---------- * SCHED_CAPACITY_SCALE²
* max_rate
*
* We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
* in order to ensure a good resolution for arch_max_freq_scale for
* very low reference frequencies (down to the KHz range which should
* be unlikely).
*/
ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT);
ratio = div64_u64(ratio, max_rate);
if (!ratio) {
WARN_ONCE(1, "Reference frequency too low.\n");
return;
}
WRITE_ONCE(per_cpu(arch_max_freq_scale, cpu), (unsigned long)ratio);
}
static void amu_scale_freq_tick(void)
{
struct amu_cntr_sample *amu_sample = this_cpu_ptr(&cpu_amu_samples);
u64 prev_core_cnt, prev_const_cnt;
u64 core_cnt, const_cnt, scale;
prev_const_cnt = amu_sample->arch_const_cycles_prev;
prev_core_cnt = amu_sample->arch_core_cycles_prev;
update_freq_counters_refs();
const_cnt = amu_sample->arch_const_cycles_prev;
core_cnt = amu_sample->arch_core_cycles_prev;
/*
* This should not happen unless the AMUs have been reset and the
* counter values have not been restored - unlikely
*/
if (unlikely(core_cnt <= prev_core_cnt ||
const_cnt <= prev_const_cnt))
return;
/*
* /\core arch_max_freq_scale
* scale = ------- * --------------------
* /\const SCHED_CAPACITY_SCALE
*
* See validate_cpu_freq_invariance_counters() for details on
* arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
*/
scale = core_cnt - prev_core_cnt;
scale *= this_cpu_read(arch_max_freq_scale);
scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
const_cnt - prev_const_cnt);
scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
this_cpu_write(arch_freq_scale, (unsigned long)scale);
amu_sample->last_scale_update = jiffies;
}
static struct scale_freq_data amu_sfd = {
.source = SCALE_FREQ_SOURCE_ARCH,
.set_freq_scale = amu_scale_freq_tick,
};
static __always_inline bool amu_fie_cpu_supported(unsigned int cpu)
{
return cpumask_available(amu_fie_cpus) &&
cpumask_test_cpu(cpu, amu_fie_cpus);
}
void arch_cpu_idle_enter(void)
{
unsigned int cpu = smp_processor_id();
if (!amu_fie_cpu_supported(cpu))
return;
/* Kick in AMU update but only if one has not happened already */
if (housekeeping_cpu(cpu, HK_TYPE_TICK) &&
time_is_before_jiffies(per_cpu(cpu_amu_samples.last_scale_update, cpu)))
amu_scale_freq_tick();
}
#define AMU_SAMPLE_EXP_MS 20
int arch_freq_get_on_cpu(int cpu)
{
struct amu_cntr_sample *amu_sample;
unsigned int start_cpu = cpu;
unsigned long last_update;
unsigned int freq = 0;
u64 scale;
if (!amu_fie_cpu_supported(cpu) || !arch_scale_freq_ref(cpu))
return -EOPNOTSUPP;
while (1) {
amu_sample = per_cpu_ptr(&cpu_amu_samples, cpu);
last_update = amu_sample->last_scale_update;
/*
* For those CPUs that are in full dynticks mode, or those that have
* not seen tick for a while, try an alternative source for the counters
* (and thus freq scale), if available, for given policy: this boils
* down to identifying an active cpu within the same freq domain, if any.
*/
if (!housekeeping_cpu(cpu, HK_TYPE_TICK) ||
time_is_before_jiffies(last_update + msecs_to_jiffies(AMU_SAMPLE_EXP_MS))) {
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
int ref_cpu;
if (!policy)
return -EINVAL;
if (!cpumask_intersects(policy->related_cpus,
housekeeping_cpumask(HK_TYPE_TICK))) {
cpufreq_cpu_put(policy);
return -EOPNOTSUPP;
}
for_each_cpu_wrap(ref_cpu, policy->cpus, cpu + 1) {
if (ref_cpu == start_cpu) {
/* Prevent verifying same CPU twice */
ref_cpu = nr_cpu_ids;
break;
}
if (!idle_cpu(ref_cpu))
break;
}
cpufreq_cpu_put(policy);
if (ref_cpu >= nr_cpu_ids)
/* No alternative to pull info from */
return -EAGAIN;
cpu = ref_cpu;
} else {
break;
}
}
/*
* Reversed computation to the one used to determine
* the arch_freq_scale value
* (see amu_scale_freq_tick for details)
*/
scale = arch_scale_freq_capacity(cpu);
freq = scale * arch_scale_freq_ref(cpu);
freq >>= SCHED_CAPACITY_SHIFT;
return freq;
}
static void amu_fie_setup(const struct cpumask *cpus)
{
int cpu;
/* We are already set since the last insmod of cpufreq driver */
if (cpumask_available(amu_fie_cpus) &&
unlikely(cpumask_subset(cpus, amu_fie_cpus)))
return;
for_each_cpu(cpu, cpus)
if (!freq_counters_valid(cpu))
return;
if (!cpumask_available(amu_fie_cpus) &&
!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
WARN_ONCE(1, "Failed to allocate FIE cpumask for CPUs[%*pbl]\n",
cpumask_pr_args(cpus));
return;
}
cpumask_or(amu_fie_cpus, amu_fie_cpus, cpus);
topology_set_scale_freq_source(&amu_sfd, amu_fie_cpus);
pr_debug("CPUs[%*pbl]: counters will be used for FIE.",
cpumask_pr_args(cpus));
}
static int init_amu_fie_callback(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_policy *policy = data;
if (val == CPUFREQ_CREATE_POLICY)
amu_fie_setup(policy->related_cpus);
/*
* We don't need to handle CPUFREQ_REMOVE_POLICY event as the AMU
* counters don't have any dependency on cpufreq driver once we have
* initialized AMU support and enabled invariance. The AMU counters will
* keep on working just fine in the absence of the cpufreq driver, and
* for the CPUs for which there are no counters available, the last set
* value of arch_freq_scale will remain valid as that is the frequency
* those CPUs are running at.
*/
return 0;
}
static struct notifier_block init_amu_fie_notifier = {
.notifier_call = init_amu_fie_callback,
};
static int __init init_amu_fie(void)
{
return cpufreq_register_notifier(&init_amu_fie_notifier,
CPUFREQ_POLICY_NOTIFIER);
}
core_initcall(init_amu_fie);
#ifdef CONFIG_ACPI_CPPC_LIB
#include <acpi/cppc_acpi.h>
static void cpu_read_corecnt(void *val)
{
/*
* A value of 0 can be returned if the current CPU does not support AMUs
* or if the counter is disabled for this CPU. A return value of 0 at
* counter read is properly handled as an error case by the users of the
* counter.
*/
*(u64 *)val = read_corecnt();
}
static void cpu_read_constcnt(void *val)
{
/*
* Return 0 if the current CPU is affected by erratum 2457168. A value
* of 0 is also returned if the current CPU does not support AMUs or if
* the counter is disabled. A return value of 0 at counter read is
* properly handled as an error case by the users of the counter.
*/
*(u64 *)val = this_cpu_has_cap(ARM64_WORKAROUND_2457168) ?
0UL : read_constcnt();
}
static inline
int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val)
{
/*
* Abort call on counterless CPU or when interrupts are
* disabled - can lead to deadlock in smp sync call.
*/
if (!cpu_has_amu_feat(cpu))
return -EOPNOTSUPP;
if (WARN_ON_ONCE(irqs_disabled()))
return -EPERM;
smp_call_function_single(cpu, func, val, 1);
return 0;
}
/*
* Refer to drivers/acpi/cppc_acpi.c for the description of the functions
* below.
*/
bool cpc_ffh_supported(void)
{
int cpu = get_cpu_with_amu_feat();
/*
* FFH is considered supported if there is at least one present CPU that
* supports AMUs. Using FFH to read core and reference counters for CPUs
* that do not support AMUs, have counters disabled or that are affected
* by errata, will result in a return value of 0.
*
* This is done to allow any enabled and valid counters to be read
* through FFH, knowing that potentially returning 0 as counter value is
* properly handled by the users of these counters.
*/
if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
return false;
return true;
}
int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val)
{
int ret = -EOPNOTSUPP;
switch ((u64)reg->address) {
case 0x0:
ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val);
break;
case 0x1:
ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val);
break;
}
if (!ret) {
*val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
reg->bit_offset);
*val >>= reg->bit_offset;
}
return ret;
}
int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
return -EOPNOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
|