1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
// SPDX-License-Identifier: GPL-2.0
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/clockchips.h>
#include <linux/acpi.h>
#include <linux/hyperv.h>
#include <linux/slab.h>
#include <linux/cpuhotplug.h>
#include <linux/minmax.h>
#include <asm/hypervisor.h>
#include <asm/mshyperv.h>
#include <asm/apic.h>
#include <asm/trace/hyperv.h>
/*
* See struct hv_deposit_memory. The first u64 is partition ID, the rest
* are GPAs.
*/
#define HV_DEPOSIT_MAX (HV_HYP_PAGE_SIZE / sizeof(u64) - 1)
/* Deposits exact number of pages. Must be called with interrupts enabled. */
int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages)
{
struct page **pages, *page;
int *counts;
int num_allocations;
int i, j, page_count;
int order;
u64 status;
int ret;
u64 base_pfn;
struct hv_deposit_memory *input_page;
unsigned long flags;
if (num_pages > HV_DEPOSIT_MAX)
return -E2BIG;
if (!num_pages)
return 0;
/* One buffer for page pointers and counts */
page = alloc_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
pages = page_address(page);
counts = kcalloc(HV_DEPOSIT_MAX, sizeof(int), GFP_KERNEL);
if (!counts) {
free_page((unsigned long)pages);
return -ENOMEM;
}
/* Allocate all the pages before disabling interrupts */
i = 0;
while (num_pages) {
/* Find highest order we can actually allocate */
order = 31 - __builtin_clz(num_pages);
while (1) {
pages[i] = alloc_pages_node(node, GFP_KERNEL, order);
if (pages[i])
break;
if (!order) {
ret = -ENOMEM;
num_allocations = i;
goto err_free_allocations;
}
--order;
}
split_page(pages[i], order);
counts[i] = 1 << order;
num_pages -= counts[i];
i++;
}
num_allocations = i;
local_irq_save(flags);
input_page = *this_cpu_ptr(hyperv_pcpu_input_arg);
input_page->partition_id = partition_id;
/* Populate gpa_page_list - these will fit on the input page */
for (i = 0, page_count = 0; i < num_allocations; ++i) {
base_pfn = page_to_pfn(pages[i]);
for (j = 0; j < counts[i]; ++j, ++page_count)
input_page->gpa_page_list[page_count] = base_pfn + j;
}
status = hv_do_rep_hypercall(HVCALL_DEPOSIT_MEMORY,
page_count, 0, input_page, NULL);
local_irq_restore(flags);
if (!hv_result_success(status)) {
pr_err("Failed to deposit pages: %lld\n", status);
ret = hv_result(status);
goto err_free_allocations;
}
ret = 0;
goto free_buf;
err_free_allocations:
for (i = 0; i < num_allocations; ++i) {
base_pfn = page_to_pfn(pages[i]);
for (j = 0; j < counts[i]; ++j)
__free_page(pfn_to_page(base_pfn + j));
}
free_buf:
free_page((unsigned long)pages);
kfree(counts);
return ret;
}
int hv_call_add_logical_proc(int node, u32 lp_index, u32 apic_id)
{
struct hv_add_logical_processor_in *input;
struct hv_add_logical_processor_out *output;
u64 status;
unsigned long flags;
int ret = HV_STATUS_SUCCESS;
int pxm = node_to_pxm(node);
/*
* When adding a logical processor, the hypervisor may return
* HV_STATUS_INSUFFICIENT_MEMORY. When that happens, we deposit more
* pages and retry.
*/
do {
local_irq_save(flags);
input = *this_cpu_ptr(hyperv_pcpu_input_arg);
/* We don't do anything with the output right now */
output = *this_cpu_ptr(hyperv_pcpu_output_arg);
input->lp_index = lp_index;
input->apic_id = apic_id;
input->flags = 0;
input->proximity_domain_info.domain_id = pxm;
input->proximity_domain_info.flags.reserved = 0;
input->proximity_domain_info.flags.proximity_info_valid = 1;
input->proximity_domain_info.flags.proximity_preferred = 1;
status = hv_do_hypercall(HVCALL_ADD_LOGICAL_PROCESSOR,
input, output);
local_irq_restore(flags);
if (hv_result(status) != HV_STATUS_INSUFFICIENT_MEMORY) {
if (!hv_result_success(status)) {
pr_err("%s: cpu %u apic ID %u, %lld\n", __func__,
lp_index, apic_id, status);
ret = hv_result(status);
}
break;
}
ret = hv_call_deposit_pages(node, hv_current_partition_id, 1);
} while (!ret);
return ret;
}
int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags)
{
struct hv_create_vp *input;
u64 status;
unsigned long irq_flags;
int ret = HV_STATUS_SUCCESS;
int pxm = node_to_pxm(node);
/* Root VPs don't seem to need pages deposited */
if (partition_id != hv_current_partition_id) {
/* The value 90 is empirically determined. It may change. */
ret = hv_call_deposit_pages(node, partition_id, 90);
if (ret)
return ret;
}
do {
local_irq_save(irq_flags);
input = *this_cpu_ptr(hyperv_pcpu_input_arg);
input->partition_id = partition_id;
input->vp_index = vp_index;
input->flags = flags;
input->subnode_type = HvSubnodeAny;
if (node != NUMA_NO_NODE) {
input->proximity_domain_info.domain_id = pxm;
input->proximity_domain_info.flags.reserved = 0;
input->proximity_domain_info.flags.proximity_info_valid = 1;
input->proximity_domain_info.flags.proximity_preferred = 1;
} else {
input->proximity_domain_info.as_uint64 = 0;
}
status = hv_do_hypercall(HVCALL_CREATE_VP, input, NULL);
local_irq_restore(irq_flags);
if (hv_result(status) != HV_STATUS_INSUFFICIENT_MEMORY) {
if (!hv_result_success(status)) {
pr_err("%s: vcpu %u, lp %u, %lld\n", __func__,
vp_index, flags, status);
ret = hv_result(status);
}
break;
}
ret = hv_call_deposit_pages(node, partition_id, 1);
} while (!ret);
return ret;
}
|