summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/cpu/bugs.c
blob: 95507448e781401de6ca092f908fa58820558e94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
// SPDX-License-Identifier: GPL-2.0
/*
 *  Copyright (C) 1994  Linus Torvalds
 *
 *  Cyrix stuff, June 1998 by:
 *	- Rafael R. Reilova (moved everything from head.S),
 *        <rreilova@ececs.uc.edu>
 *	- Channing Corn (tests & fixes),
 *	- Andrew D. Balsa (code cleanup).
 */
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/nospec.h>
#include <linux/prctl.h>
#include <linux/sched/smt.h>
#include <linux/pgtable.h>
#include <linux/bpf.h>

#include <asm/spec-ctrl.h>
#include <asm/cmdline.h>
#include <asm/bugs.h>
#include <asm/processor.h>
#include <asm/processor-flags.h>
#include <asm/fpu/api.h>
#include <asm/msr.h>
#include <asm/vmx.h>
#include <asm/paravirt.h>
#include <asm/intel-family.h>
#include <asm/e820/api.h>
#include <asm/hypervisor.h>
#include <asm/tlbflush.h>
#include <asm/cpu.h>

#include "cpu.h"

static void __init spectre_v1_select_mitigation(void);
static void __init spectre_v2_select_mitigation(void);
static void __init retbleed_select_mitigation(void);
static void __init spectre_v2_user_select_mitigation(void);
static void __init ssb_select_mitigation(void);
static void __init l1tf_select_mitigation(void);
static void __init mds_select_mitigation(void);
static void __init md_clear_update_mitigation(void);
static void __init md_clear_select_mitigation(void);
static void __init taa_select_mitigation(void);
static void __init mmio_select_mitigation(void);
static void __init srbds_select_mitigation(void);
static void __init l1d_flush_select_mitigation(void);

/* The base value of the SPEC_CTRL MSR without task-specific bits set */
u64 x86_spec_ctrl_base;
EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);

/* The current value of the SPEC_CTRL MSR with task-specific bits set */
DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);

static DEFINE_MUTEX(spec_ctrl_mutex);

/* Update SPEC_CTRL MSR and its cached copy unconditionally */
static void update_spec_ctrl(u64 val)
{
	this_cpu_write(x86_spec_ctrl_current, val);
	wrmsrl(MSR_IA32_SPEC_CTRL, val);
}

/*
 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
 */
void update_spec_ctrl_cond(u64 val)
{
	if (this_cpu_read(x86_spec_ctrl_current) == val)
		return;

	this_cpu_write(x86_spec_ctrl_current, val);

	/*
	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
	 * forced the update can be delayed until that time.
	 */
	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
		wrmsrl(MSR_IA32_SPEC_CTRL, val);
}

noinstr u64 spec_ctrl_current(void)
{
	return this_cpu_read(x86_spec_ctrl_current);
}
EXPORT_SYMBOL_GPL(spec_ctrl_current);

/*
 * AMD specific MSR info for Speculative Store Bypass control.
 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
 */
u64 __ro_after_init x86_amd_ls_cfg_base;
u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;

/* Control conditional STIBP in switch_to() */
DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
/* Control conditional IBPB in switch_mm() */
DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
/* Control unconditional IBPB in switch_mm() */
DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);

/* Control MDS CPU buffer clear before returning to user space */
DEFINE_STATIC_KEY_FALSE(mds_user_clear);
EXPORT_SYMBOL_GPL(mds_user_clear);
/* Control MDS CPU buffer clear before idling (halt, mwait) */
DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
EXPORT_SYMBOL_GPL(mds_idle_clear);

/*
 * Controls whether l1d flush based mitigations are enabled,
 * based on hw features and admin setting via boot parameter
 * defaults to false
 */
DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);

/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
EXPORT_SYMBOL_GPL(mmio_stale_data_clear);

void __init cpu_select_mitigations(void)
{
	/*
	 * Read the SPEC_CTRL MSR to account for reserved bits which may
	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
	 * init code as it is not enumerated and depends on the family.
	 */
	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);

		/*
		 * Previously running kernel (kexec), may have some controls
		 * turned ON. Clear them and let the mitigations setup below
		 * rediscover them based on configuration.
		 */
		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
	}

	/* Select the proper CPU mitigations before patching alternatives: */
	spectre_v1_select_mitigation();
	spectre_v2_select_mitigation();
	/*
	 * retbleed_select_mitigation() relies on the state set by
	 * spectre_v2_select_mitigation(); specifically it wants to know about
	 * spectre_v2=ibrs.
	 */
	retbleed_select_mitigation();
	/*
	 * spectre_v2_user_select_mitigation() relies on the state set by
	 * retbleed_select_mitigation(); specifically the STIBP selection is
	 * forced for UNRET or IBPB.
	 */
	spectre_v2_user_select_mitigation();
	ssb_select_mitigation();
	l1tf_select_mitigation();
	md_clear_select_mitigation();
	srbds_select_mitigation();
	l1d_flush_select_mitigation();
}

/*
 * NOTE: This function is *only* called for SVM, since Intel uses
 * MSR_IA32_SPEC_CTRL for SSBD.
 */
void
x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
{
	u64 guestval, hostval;
	struct thread_info *ti = current_thread_info();

	/*
	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
	 */
	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
		return;

	/*
	 * If the host has SSBD mitigation enabled, force it in the host's
	 * virtual MSR value. If its not permanently enabled, evaluate
	 * current's TIF_SSBD thread flag.
	 */
	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
		hostval = SPEC_CTRL_SSBD;
	else
		hostval = ssbd_tif_to_spec_ctrl(ti->flags);

	/* Sanitize the guest value */
	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;

	if (hostval != guestval) {
		unsigned long tif;

		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
				 ssbd_spec_ctrl_to_tif(hostval);

		speculation_ctrl_update(tif);
	}
}
EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);

static void x86_amd_ssb_disable(void)
{
	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;

	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
		wrmsrl(MSR_AMD64_LS_CFG, msrval);
}

#undef pr_fmt
#define pr_fmt(fmt)	"MDS: " fmt

/* Default mitigation for MDS-affected CPUs */
static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
static bool mds_nosmt __ro_after_init = false;

static const char * const mds_strings[] = {
	[MDS_MITIGATION_OFF]	= "Vulnerable",
	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
};

static void __init mds_select_mitigation(void)
{
	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
		mds_mitigation = MDS_MITIGATION_OFF;
		return;
	}

	if (mds_mitigation == MDS_MITIGATION_FULL) {
		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
			mds_mitigation = MDS_MITIGATION_VMWERV;

		static_branch_enable(&mds_user_clear);

		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
			cpu_smt_disable(false);
	}
}

static int __init mds_cmdline(char *str)
{
	if (!boot_cpu_has_bug(X86_BUG_MDS))
		return 0;

	if (!str)
		return -EINVAL;

	if (!strcmp(str, "off"))
		mds_mitigation = MDS_MITIGATION_OFF;
	else if (!strcmp(str, "full"))
		mds_mitigation = MDS_MITIGATION_FULL;
	else if (!strcmp(str, "full,nosmt")) {
		mds_mitigation = MDS_MITIGATION_FULL;
		mds_nosmt = true;
	}

	return 0;
}
early_param("mds", mds_cmdline);

#undef pr_fmt
#define pr_fmt(fmt)	"TAA: " fmt

enum taa_mitigations {
	TAA_MITIGATION_OFF,
	TAA_MITIGATION_UCODE_NEEDED,
	TAA_MITIGATION_VERW,
	TAA_MITIGATION_TSX_DISABLED,
};

/* Default mitigation for TAA-affected CPUs */
static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
static bool taa_nosmt __ro_after_init;

static const char * const taa_strings[] = {
	[TAA_MITIGATION_OFF]		= "Vulnerable",
	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
};

static void __init taa_select_mitigation(void)
{
	u64 ia32_cap;

	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
		taa_mitigation = TAA_MITIGATION_OFF;
		return;
	}

	/* TSX previously disabled by tsx=off */
	if (!boot_cpu_has(X86_FEATURE_RTM)) {
		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
		return;
	}

	if (cpu_mitigations_off()) {
		taa_mitigation = TAA_MITIGATION_OFF;
		return;
	}

	/*
	 * TAA mitigation via VERW is turned off if both
	 * tsx_async_abort=off and mds=off are specified.
	 */
	if (taa_mitigation == TAA_MITIGATION_OFF &&
	    mds_mitigation == MDS_MITIGATION_OFF)
		return;

	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
		taa_mitigation = TAA_MITIGATION_VERW;
	else
		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;

	/*
	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
	 * A microcode update fixes this behavior to clear CPU buffers. It also
	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
	 * ARCH_CAP_TSX_CTRL_MSR bit.
	 *
	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
	 * update is required.
	 */
	ia32_cap = x86_read_arch_cap_msr();
	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;

	/*
	 * TSX is enabled, select alternate mitigation for TAA which is
	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
	 *
	 * For guests that can't determine whether the correct microcode is
	 * present on host, enable the mitigation for UCODE_NEEDED as well.
	 */
	static_branch_enable(&mds_user_clear);

	if (taa_nosmt || cpu_mitigations_auto_nosmt())
		cpu_smt_disable(false);
}

static int __init tsx_async_abort_parse_cmdline(char *str)
{
	if (!boot_cpu_has_bug(X86_BUG_TAA))
		return 0;

	if (!str)
		return -EINVAL;

	if (!strcmp(str, "off")) {
		taa_mitigation = TAA_MITIGATION_OFF;
	} else if (!strcmp(str, "full")) {
		taa_mitigation = TAA_MITIGATION_VERW;
	} else if (!strcmp(str, "full,nosmt")) {
		taa_mitigation = TAA_MITIGATION_VERW;
		taa_nosmt = true;
	}

	return 0;
}
early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);

#undef pr_fmt
#define pr_fmt(fmt)	"MMIO Stale Data: " fmt

enum mmio_mitigations {
	MMIO_MITIGATION_OFF,
	MMIO_MITIGATION_UCODE_NEEDED,
	MMIO_MITIGATION_VERW,
};

/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
static bool mmio_nosmt __ro_after_init = false;

static const char * const mmio_strings[] = {
	[MMIO_MITIGATION_OFF]		= "Vulnerable",
	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
};

static void __init mmio_select_mitigation(void)
{
	u64 ia32_cap;

	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
	     cpu_mitigations_off()) {
		mmio_mitigation = MMIO_MITIGATION_OFF;
		return;
	}

	if (mmio_mitigation == MMIO_MITIGATION_OFF)
		return;

	ia32_cap = x86_read_arch_cap_msr();

	/*
	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
	 */
	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
					      boot_cpu_has(X86_FEATURE_RTM)))
		static_branch_enable(&mds_user_clear);
	else
		static_branch_enable(&mmio_stale_data_clear);

	/*
	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
	 * be propagated to uncore buffers, clearing the Fill buffers on idle
	 * is required irrespective of SMT state.
	 */
	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
		static_branch_enable(&mds_idle_clear);

	/*
	 * Check if the system has the right microcode.
	 *
	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
	 * affected systems.
	 */
	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
	     !(ia32_cap & ARCH_CAP_MDS_NO)))
		mmio_mitigation = MMIO_MITIGATION_VERW;
	else
		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;

	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
		cpu_smt_disable(false);
}

static int __init mmio_stale_data_parse_cmdline(char *str)
{
	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
		return 0;

	if (!str)
		return -EINVAL;

	if (!strcmp(str, "off")) {
		mmio_mitigation = MMIO_MITIGATION_OFF;
	} else if (!strcmp(str, "full")) {
		mmio_mitigation = MMIO_MITIGATION_VERW;
	} else if (!strcmp(str, "full,nosmt")) {
		mmio_mitigation = MMIO_MITIGATION_VERW;
		mmio_nosmt = true;
	}

	return 0;
}
early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);

#undef pr_fmt
#define pr_fmt(fmt)     "" fmt

static void __init md_clear_update_mitigation(void)
{
	if (cpu_mitigations_off())
		return;

	if (!static_key_enabled(&mds_user_clear))
		goto out;

	/*
	 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
	 * mitigation, if necessary.
	 */
	if (mds_mitigation == MDS_MITIGATION_OFF &&
	    boot_cpu_has_bug(X86_BUG_MDS)) {
		mds_mitigation = MDS_MITIGATION_FULL;
		mds_select_mitigation();
	}
	if (taa_mitigation == TAA_MITIGATION_OFF &&
	    boot_cpu_has_bug(X86_BUG_TAA)) {
		taa_mitigation = TAA_MITIGATION_VERW;
		taa_select_mitigation();
	}
	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
		mmio_mitigation = MMIO_MITIGATION_VERW;
		mmio_select_mitigation();
	}
out:
	if (boot_cpu_has_bug(X86_BUG_MDS))
		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
	if (boot_cpu_has_bug(X86_BUG_TAA))
		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
}

static void __init md_clear_select_mitigation(void)
{
	mds_select_mitigation();
	taa_select_mitigation();
	mmio_select_mitigation();

	/*
	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
	 * and print their mitigation after MDS, TAA and MMIO Stale Data
	 * mitigation selection is done.
	 */
	md_clear_update_mitigation();
}

#undef pr_fmt
#define pr_fmt(fmt)	"SRBDS: " fmt

enum srbds_mitigations {
	SRBDS_MITIGATION_OFF,
	SRBDS_MITIGATION_UCODE_NEEDED,
	SRBDS_MITIGATION_FULL,
	SRBDS_MITIGATION_TSX_OFF,
	SRBDS_MITIGATION_HYPERVISOR,
};

static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;

static const char * const srbds_strings[] = {
	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
};

static bool srbds_off;

void update_srbds_msr(void)
{
	u64 mcu_ctrl;

	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
		return;

	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
		return;

	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
		return;

	/*
	 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
	 * being disabled and it hasn't received the SRBDS MSR microcode.
	 */
	if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
		return;

	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);

	switch (srbds_mitigation) {
	case SRBDS_MITIGATION_OFF:
	case SRBDS_MITIGATION_TSX_OFF:
		mcu_ctrl |= RNGDS_MITG_DIS;
		break;
	case SRBDS_MITIGATION_FULL:
		mcu_ctrl &= ~RNGDS_MITG_DIS;
		break;
	default:
		break;
	}

	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
}

static void __init srbds_select_mitigation(void)
{
	u64 ia32_cap;

	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
		return;

	/*
	 * Check to see if this is one of the MDS_NO systems supporting TSX that
	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
	 * by Processor MMIO Stale Data vulnerability.
	 */
	ia32_cap = x86_read_arch_cap_msr();
	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
	else if (cpu_mitigations_off() || srbds_off)
		srbds_mitigation = SRBDS_MITIGATION_OFF;

	update_srbds_msr();
	pr_info("%s\n", srbds_strings[srbds_mitigation]);
}

static int __init srbds_parse_cmdline(char *str)
{
	if (!str)
		return -EINVAL;

	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
		return 0;

	srbds_off = !strcmp(str, "off");
	return 0;
}
early_param("srbds", srbds_parse_cmdline);

#undef pr_fmt
#define pr_fmt(fmt)     "L1D Flush : " fmt

enum l1d_flush_mitigations {
	L1D_FLUSH_OFF = 0,
	L1D_FLUSH_ON,
};

static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;

static void __init l1d_flush_select_mitigation(void)
{
	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
		return;

	static_branch_enable(&switch_mm_cond_l1d_flush);
	pr_info("Conditional flush on switch_mm() enabled\n");
}

static int __init l1d_flush_parse_cmdline(char *str)
{
	if (!strcmp(str, "on"))
		l1d_flush_mitigation = L1D_FLUSH_ON;

	return 0;
}
early_param("l1d_flush", l1d_flush_parse_cmdline);

#undef pr_fmt
#define pr_fmt(fmt)     "Spectre V1 : " fmt

enum spectre_v1_mitigation {
	SPECTRE_V1_MITIGATION_NONE,
	SPECTRE_V1_MITIGATION_AUTO,
};

static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
	SPECTRE_V1_MITIGATION_AUTO;

static const char * const spectre_v1_strings[] = {
	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
};

/*
 * Does SMAP provide full mitigation against speculative kernel access to
 * userspace?
 */
static bool smap_works_speculatively(void)
{
	if (!boot_cpu_has(X86_FEATURE_SMAP))
		return false;

	/*
	 * On CPUs which are vulnerable to Meltdown, SMAP does not
	 * prevent speculative access to user data in the L1 cache.
	 * Consider SMAP to be non-functional as a mitigation on these
	 * CPUs.
	 */
	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
		return false;

	return true;
}

static void __init spectre_v1_select_mitigation(void)
{
	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
		return;
	}

	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
		/*
		 * With Spectre v1, a user can speculatively control either
		 * path of a conditional swapgs with a user-controlled GS
		 * value.  The mitigation is to add lfences to both code paths.
		 *
		 * If FSGSBASE is enabled, the user can put a kernel address in
		 * GS, in which case SMAP provides no protection.
		 *
		 * If FSGSBASE is disabled, the user can only put a user space
		 * address in GS.  That makes an attack harder, but still
		 * possible if there's no SMAP protection.
		 */
		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
		    !smap_works_speculatively()) {
			/*
			 * Mitigation can be provided from SWAPGS itself or
			 * PTI as the CR3 write in the Meltdown mitigation
			 * is serializing.
			 *
			 * If neither is there, mitigate with an LFENCE to
			 * stop speculation through swapgs.
			 */
			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
			    !boot_cpu_has(X86_FEATURE_PTI))
				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);

			/*
			 * Enable lfences in the kernel entry (non-swapgs)
			 * paths, to prevent user entry from speculatively
			 * skipping swapgs.
			 */
			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
		}
	}

	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
}

static int __init nospectre_v1_cmdline(char *str)
{
	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
	return 0;
}
early_param("nospectre_v1", nospectre_v1_cmdline);

enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;

#undef pr_fmt
#define pr_fmt(fmt)     "RETBleed: " fmt

enum retbleed_mitigation {
	RETBLEED_MITIGATION_NONE,
	RETBLEED_MITIGATION_UNRET,
	RETBLEED_MITIGATION_IBPB,
	RETBLEED_MITIGATION_IBRS,
	RETBLEED_MITIGATION_EIBRS,
	RETBLEED_MITIGATION_STUFF,
};

enum retbleed_mitigation_cmd {
	RETBLEED_CMD_OFF,
	RETBLEED_CMD_AUTO,
	RETBLEED_CMD_UNRET,
	RETBLEED_CMD_IBPB,
	RETBLEED_CMD_STUFF,
};

static const char * const retbleed_strings[] = {
	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
	[RETBLEED_MITIGATION_STUFF]	= "Mitigation: Stuffing",
};

static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
	RETBLEED_MITIGATION_NONE;
static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
	RETBLEED_CMD_AUTO;

static int __ro_after_init retbleed_nosmt = false;

static int __init retbleed_parse_cmdline(char *str)
{
	if (!str)
		return -EINVAL;

	while (str) {
		char *next = strchr(str, ',');
		if (next) {
			*next = 0;
			next++;
		}

		if (!strcmp(str, "off")) {
			retbleed_cmd = RETBLEED_CMD_OFF;
		} else if (!strcmp(str, "auto")) {
			retbleed_cmd = RETBLEED_CMD_AUTO;
		} else if (!strcmp(str, "unret")) {
			retbleed_cmd = RETBLEED_CMD_UNRET;
		} else if (!strcmp(str, "ibpb")) {
			retbleed_cmd = RETBLEED_CMD_IBPB;
		} else if (!strcmp(str, "stuff")) {
			retbleed_cmd = RETBLEED_CMD_STUFF;
		} else if (!strcmp(str, "nosmt")) {
			retbleed_nosmt = true;
		} else if (!strcmp(str, "force")) {
			setup_force_cpu_bug(X86_BUG_RETBLEED);
		} else {
			pr_err("Ignoring unknown retbleed option (%s).", str);
		}

		str = next;
	}

	return 0;
}
early_param("retbleed", retbleed_parse_cmdline);

#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"

static void __init retbleed_select_mitigation(void)
{
	bool mitigate_smt = false;

	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
		return;

	switch (retbleed_cmd) {
	case RETBLEED_CMD_OFF:
		return;

	case RETBLEED_CMD_UNRET:
		if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
		} else {
			pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
			goto do_cmd_auto;
		}
		break;

	case RETBLEED_CMD_IBPB:
		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
			pr_err("WARNING: CPU does not support IBPB.\n");
			goto do_cmd_auto;
		} else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
		} else {
			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
			goto do_cmd_auto;
		}
		break;

	case RETBLEED_CMD_STUFF:
		if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
		    spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
			retbleed_mitigation = RETBLEED_MITIGATION_STUFF;

		} else {
			if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
				pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
			else
				pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");

			goto do_cmd_auto;
		}
		break;

do_cmd_auto:
	case RETBLEED_CMD_AUTO:
	default:
		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
			if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
			else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
		}

		/*
		 * The Intel mitigation (IBRS or eIBRS) was already selected in
		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
		 * be set accordingly below.
		 */

		break;
	}

	switch (retbleed_mitigation) {
	case RETBLEED_MITIGATION_UNRET:
		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
		setup_force_cpu_cap(X86_FEATURE_UNRET);

		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
			pr_err(RETBLEED_UNTRAIN_MSG);

		mitigate_smt = true;
		break;

	case RETBLEED_MITIGATION_IBPB:
		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
		mitigate_smt = true;
		break;

	case RETBLEED_MITIGATION_STUFF:
		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
		setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
		x86_set_skl_return_thunk();
		break;

	default:
		break;
	}

	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
		cpu_smt_disable(false);

	/*
	 * Let IBRS trump all on Intel without affecting the effects of the
	 * retbleed= cmdline option except for call depth based stuffing
	 */
	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
		switch (spectre_v2_enabled) {
		case SPECTRE_V2_IBRS:
			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
			break;
		case SPECTRE_V2_EIBRS:
		case SPECTRE_V2_EIBRS_RETPOLINE:
		case SPECTRE_V2_EIBRS_LFENCE:
			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
			break;
		default:
			if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
				pr_err(RETBLEED_INTEL_MSG);
		}
	}

	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
}

#undef pr_fmt
#define pr_fmt(fmt)     "Spectre V2 : " fmt

static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
	SPECTRE_V2_USER_NONE;
static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
	SPECTRE_V2_USER_NONE;

#ifdef CONFIG_RETPOLINE
static bool spectre_v2_bad_module;

bool retpoline_module_ok(bool has_retpoline)
{
	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
		return true;

	pr_err("System may be vulnerable to spectre v2\n");
	spectre_v2_bad_module = true;
	return false;
}

static inline const char *spectre_v2_module_string(void)
{
	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
}
#else
static inline const char *spectre_v2_module_string(void) { return ""; }
#endif

#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"

#ifdef CONFIG_BPF_SYSCALL
void unpriv_ebpf_notify(int new_state)
{
	if (new_state)
		return;

	/* Unprivileged eBPF is enabled */

	switch (spectre_v2_enabled) {
	case SPECTRE_V2_EIBRS:
		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
		break;
	case SPECTRE_V2_EIBRS_LFENCE:
		if (sched_smt_active())
			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
		break;
	default:
		break;
	}
}
#endif

static inline bool match_option(const char *arg, int arglen, const char *opt)
{
	int len = strlen(opt);

	return len == arglen && !strncmp(arg, opt, len);
}

/* The kernel command line selection for spectre v2 */
enum spectre_v2_mitigation_cmd {
	SPECTRE_V2_CMD_NONE,
	SPECTRE_V2_CMD_AUTO,
	SPECTRE_V2_CMD_FORCE,
	SPECTRE_V2_CMD_RETPOLINE,
	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
	SPECTRE_V2_CMD_EIBRS,
	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
	SPECTRE_V2_CMD_EIBRS_LFENCE,
	SPECTRE_V2_CMD_IBRS,
};

enum spectre_v2_user_cmd {
	SPECTRE_V2_USER_CMD_NONE,
	SPECTRE_V2_USER_CMD_AUTO,
	SPECTRE_V2_USER_CMD_FORCE,
	SPECTRE_V2_USER_CMD_PRCTL,
	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
	SPECTRE_V2_USER_CMD_SECCOMP,
	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
};

static const char * const spectre_v2_user_strings[] = {
	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
};

static const struct {
	const char			*option;
	enum spectre_v2_user_cmd	cmd;
	bool				secure;
} v2_user_options[] __initconst = {
	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
};

static void __init spec_v2_user_print_cond(const char *reason, bool secure)
{
	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
}

static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;

static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(void)
{
	char arg[20];
	int ret, i;

	switch (spectre_v2_cmd) {
	case SPECTRE_V2_CMD_NONE:
		return SPECTRE_V2_USER_CMD_NONE;
	case SPECTRE_V2_CMD_FORCE:
		return SPECTRE_V2_USER_CMD_FORCE;
	default:
		break;
	}

	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
				  arg, sizeof(arg));
	if (ret < 0)
		return SPECTRE_V2_USER_CMD_AUTO;

	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
		if (match_option(arg, ret, v2_user_options[i].option)) {
			spec_v2_user_print_cond(v2_user_options[i].option,
						v2_user_options[i].secure);
			return v2_user_options[i].cmd;
		}
	}

	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
	return SPECTRE_V2_USER_CMD_AUTO;
}

static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
{
	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
}

static void __init
spectre_v2_user_select_mitigation(void)
{
	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
	bool smt_possible = IS_ENABLED(CONFIG_SMP);
	enum spectre_v2_user_cmd cmd;

	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
		return;

	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
		smt_possible = false;

	cmd = spectre_v2_parse_user_cmdline();
	switch (cmd) {
	case SPECTRE_V2_USER_CMD_NONE:
		goto set_mode;
	case SPECTRE_V2_USER_CMD_FORCE:
		mode = SPECTRE_V2_USER_STRICT;
		break;
	case SPECTRE_V2_USER_CMD_AUTO:
	case SPECTRE_V2_USER_CMD_PRCTL:
	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
		mode = SPECTRE_V2_USER_PRCTL;
		break;
	case SPECTRE_V2_USER_CMD_SECCOMP:
	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
		if (IS_ENABLED(CONFIG_SECCOMP))
			mode = SPECTRE_V2_USER_SECCOMP;
		else
			mode = SPECTRE_V2_USER_PRCTL;
		break;
	}

	/* Initialize Indirect Branch Prediction Barrier */
	if (boot_cpu_has(X86_FEATURE_IBPB)) {
		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);

		spectre_v2_user_ibpb = mode;
		switch (cmd) {
		case SPECTRE_V2_USER_CMD_FORCE:
		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
			static_branch_enable(&switch_mm_always_ibpb);
			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
			break;
		case SPECTRE_V2_USER_CMD_PRCTL:
		case SPECTRE_V2_USER_CMD_AUTO:
		case SPECTRE_V2_USER_CMD_SECCOMP:
			static_branch_enable(&switch_mm_cond_ibpb);
			break;
		default:
			break;
		}

		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
			static_key_enabled(&switch_mm_always_ibpb) ?
			"always-on" : "conditional");
	}

	/*
	 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
	 * is not required.
	 *
	 * Intel's Enhanced IBRS also protects against cross-thread branch target
	 * injection in user-mode as the IBRS bit remains always set which
	 * implicitly enables cross-thread protections.  However, in legacy IBRS
	 * mode, the IBRS bit is set only on kernel entry and cleared on return
	 * to userspace.  AMD Automatic IBRS also does not protect userspace.
	 * These modes therefore disable the implicit cross-thread protection,
	 * so allow for STIBP to be selected in those cases.
	 */
	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
	    !smt_possible ||
	    (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
	     !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
		return;

	/*
	 * At this point, an STIBP mode other than "off" has been set.
	 * If STIBP support is not being forced, check if STIBP always-on
	 * is preferred.
	 */
	if (mode != SPECTRE_V2_USER_STRICT &&
	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
		mode = SPECTRE_V2_USER_STRICT_PREFERRED;

	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
		if (mode != SPECTRE_V2_USER_STRICT &&
		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
	}

	spectre_v2_user_stibp = mode;

set_mode:
	pr_info("%s\n", spectre_v2_user_strings[mode]);
}

static const char * const spectre_v2_strings[] = {
	[SPECTRE_V2_NONE]			= "Vulnerable",
	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced / Automatic IBRS",
	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced / Automatic IBRS + LFENCE",
	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced / Automatic IBRS + Retpolines",
	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
};

static const struct {
	const char *option;
	enum spectre_v2_mitigation_cmd cmd;
	bool secure;
} mitigation_options[] __initconst = {
	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
};

static void __init spec_v2_print_cond(const char *reason, bool secure)
{
	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
		pr_info("%s selected on command line.\n", reason);
}

static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
{
	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
	char arg[20];
	int ret, i;

	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
	    cpu_mitigations_off())
		return SPECTRE_V2_CMD_NONE;

	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
	if (ret < 0)
		return SPECTRE_V2_CMD_AUTO;

	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
		if (!match_option(arg, ret, mitigation_options[i].option))
			continue;
		cmd = mitigation_options[i].cmd;
		break;
	}

	if (i >= ARRAY_SIZE(mitigation_options)) {
		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
		return SPECTRE_V2_CMD_AUTO;
	}

	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
	    !IS_ENABLED(CONFIG_RETPOLINE)) {
		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
		       mitigation_options[i].option);
		return SPECTRE_V2_CMD_AUTO;
	}

	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
		pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
		       mitigation_options[i].option);
		return SPECTRE_V2_CMD_AUTO;
	}

	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
		       mitigation_options[i].option);
		return SPECTRE_V2_CMD_AUTO;
	}

	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
		       mitigation_options[i].option);
		return SPECTRE_V2_CMD_AUTO;
	}

	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
		       mitigation_options[i].option);
		return SPECTRE_V2_CMD_AUTO;
	}

	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
		       mitigation_options[i].option);
		return SPECTRE_V2_CMD_AUTO;
	}

	if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
		       mitigation_options[i].option);
		return SPECTRE_V2_CMD_AUTO;
	}

	spec_v2_print_cond(mitigation_options[i].option,
			   mitigation_options[i].secure);
	return cmd;
}

static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
{
	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
		pr_err("Kernel not compiled with retpoline; no mitigation available!");
		return SPECTRE_V2_NONE;
	}

	return SPECTRE_V2_RETPOLINE;
}

/* Disable in-kernel use of non-RSB RET predictors */
static void __init spec_ctrl_disable_kernel_rrsba(void)
{
	u64 ia32_cap;

	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
		return;

	ia32_cap = x86_read_arch_cap_msr();

	if (ia32_cap & ARCH_CAP_RRSBA) {
		x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
		update_spec_ctrl(x86_spec_ctrl_base);
	}
}

static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
{
	/*
	 * Similar to context switches, there are two types of RSB attacks
	 * after VM exit:
	 *
	 * 1) RSB underflow
	 *
	 * 2) Poisoned RSB entry
	 *
	 * When retpoline is enabled, both are mitigated by filling/clearing
	 * the RSB.
	 *
	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
	 * prediction isolation protections, RSB still needs to be cleared
	 * because of #2.  Note that SMEP provides no protection here, unlike
	 * user-space-poisoned RSB entries.
	 *
	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
	 * bug is present then a LITE version of RSB protection is required,
	 * just a single call needs to retire before a RET is executed.
	 */
	switch (mode) {
	case SPECTRE_V2_NONE:
		return;

	case SPECTRE_V2_EIBRS_LFENCE:
	case SPECTRE_V2_EIBRS:
		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
		}
		return;

	case SPECTRE_V2_EIBRS_RETPOLINE:
	case SPECTRE_V2_RETPOLINE:
	case SPECTRE_V2_LFENCE:
	case SPECTRE_V2_IBRS:
		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
		return;
	}

	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
	dump_stack();
}

static void __init spectre_v2_select_mitigation(void)
{
	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;

	/*
	 * If the CPU is not affected and the command line mode is NONE or AUTO
	 * then nothing to do.
	 */
	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
		return;

	switch (cmd) {
	case SPECTRE_V2_CMD_NONE:
		return;

	case SPECTRE_V2_CMD_FORCE:
	case SPECTRE_V2_CMD_AUTO:
		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
			mode = SPECTRE_V2_EIBRS;
			break;
		}

		if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
		    retbleed_cmd != RETBLEED_CMD_OFF &&
		    retbleed_cmd != RETBLEED_CMD_STUFF &&
		    boot_cpu_has(X86_FEATURE_IBRS) &&
		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
			mode = SPECTRE_V2_IBRS;
			break;
		}

		mode = spectre_v2_select_retpoline();
		break;

	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
		pr_err(SPECTRE_V2_LFENCE_MSG);
		mode = SPECTRE_V2_LFENCE;
		break;

	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
		mode = SPECTRE_V2_RETPOLINE;
		break;

	case SPECTRE_V2_CMD_RETPOLINE:
		mode = spectre_v2_select_retpoline();
		break;

	case SPECTRE_V2_CMD_IBRS:
		mode = SPECTRE_V2_IBRS;
		break;

	case SPECTRE_V2_CMD_EIBRS:
		mode = SPECTRE_V2_EIBRS;
		break;

	case SPECTRE_V2_CMD_EIBRS_LFENCE:
		mode = SPECTRE_V2_EIBRS_LFENCE;
		break;

	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
		mode = SPECTRE_V2_EIBRS_RETPOLINE;
		break;
	}

	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);

	if (spectre_v2_in_ibrs_mode(mode)) {
		if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
			msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
		} else {
			x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
			update_spec_ctrl(x86_spec_ctrl_base);
		}
	}

	switch (mode) {
	case SPECTRE_V2_NONE:
	case SPECTRE_V2_EIBRS:
		break;

	case SPECTRE_V2_IBRS:
		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
		break;

	case SPECTRE_V2_LFENCE:
	case SPECTRE_V2_EIBRS_LFENCE:
		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
		fallthrough;

	case SPECTRE_V2_RETPOLINE:
	case SPECTRE_V2_EIBRS_RETPOLINE:
		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
		break;
	}

	/*
	 * Disable alternate RSB predictions in kernel when indirect CALLs and
	 * JMPs gets protection against BHI and Intramode-BTI, but RET
	 * prediction from a non-RSB predictor is still a risk.
	 */
	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
	    mode == SPECTRE_V2_RETPOLINE)
		spec_ctrl_disable_kernel_rrsba();

	spectre_v2_enabled = mode;
	pr_info("%s\n", spectre_v2_strings[mode]);

	/*
	 * If Spectre v2 protection has been enabled, fill the RSB during a
	 * context switch.  In general there are two types of RSB attacks
	 * across context switches, for which the CALLs/RETs may be unbalanced.
	 *
	 * 1) RSB underflow
	 *
	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
	 *    speculated return targets may come from the branch predictor,
	 *    which could have a user-poisoned BTB or BHB entry.
	 *
	 *    AMD has it even worse: *all* returns are speculated from the BTB,
	 *    regardless of the state of the RSB.
	 *
	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
	 *    scenario is mitigated by the IBRS branch prediction isolation
	 *    properties, so the RSB buffer filling wouldn't be necessary to
	 *    protect against this type of attack.
	 *
	 *    The "user -> user" attack scenario is mitigated by RSB filling.
	 *
	 * 2) Poisoned RSB entry
	 *
	 *    If the 'next' in-kernel return stack is shorter than 'prev',
	 *    'next' could be tricked into speculating with a user-poisoned RSB
	 *    entry.
	 *
	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
	 *    eIBRS.
	 *
	 *    The "user -> user" scenario, also known as SpectreBHB, requires
	 *    RSB clearing.
	 *
	 * So to mitigate all cases, unconditionally fill RSB on context
	 * switches.
	 *
	 * FIXME: Is this pointless for retbleed-affected AMD?
	 */
	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");

	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);

	/*
	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
	 * and Enhanced IBRS protect firmware too, so enable IBRS around
	 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
	 * otherwise enabled.
	 *
	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
	 * the user might select retpoline on the kernel command line and if
	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
	 * enable IBRS around firmware calls.
	 */
	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
	    boot_cpu_has(X86_FEATURE_IBPB) &&
	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {

		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
			pr_info("Enabling Speculation Barrier for firmware calls\n");
		}

	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
		pr_info("Enabling Restricted Speculation for firmware calls\n");
	}

	/* Set up IBPB and STIBP depending on the general spectre V2 command */
	spectre_v2_cmd = cmd;
}

static void update_stibp_msr(void * __unused)
{
	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
	update_spec_ctrl(val);
}

/* Update x86_spec_ctrl_base in case SMT state changed. */
static void update_stibp_strict(void)
{
	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;

	if (sched_smt_active())
		mask |= SPEC_CTRL_STIBP;

	if (mask == x86_spec_ctrl_base)
		return;

	pr_info("Update user space SMT mitigation: STIBP %s\n",
		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
	x86_spec_ctrl_base = mask;
	on_each_cpu(update_stibp_msr, NULL, 1);
}

/* Update the static key controlling the evaluation of TIF_SPEC_IB */
static void update_indir_branch_cond(void)
{
	if (sched_smt_active())
		static_branch_enable(&switch_to_cond_stibp);
	else
		static_branch_disable(&switch_to_cond_stibp);
}

#undef pr_fmt
#define pr_fmt(fmt) fmt

/* Update the static key controlling the MDS CPU buffer clear in idle */
static void update_mds_branch_idle(void)
{
	u64 ia32_cap = x86_read_arch_cap_msr();

	/*
	 * Enable the idle clearing if SMT is active on CPUs which are
	 * affected only by MSBDS and not any other MDS variant.
	 *
	 * The other variants cannot be mitigated when SMT is enabled, so
	 * clearing the buffers on idle just to prevent the Store Buffer
	 * repartitioning leak would be a window dressing exercise.
	 */
	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
		return;

	if (sched_smt_active()) {
		static_branch_enable(&mds_idle_clear);
	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
		static_branch_disable(&mds_idle_clear);
	}
}

#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"

void cpu_bugs_smt_update(void)
{
	mutex_lock(&spec_ctrl_mutex);

	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);

	switch (spectre_v2_user_stibp) {
	case SPECTRE_V2_USER_NONE:
		break;
	case SPECTRE_V2_USER_STRICT:
	case SPECTRE_V2_USER_STRICT_PREFERRED:
		update_stibp_strict();
		break;
	case SPECTRE_V2_USER_PRCTL:
	case SPECTRE_V2_USER_SECCOMP:
		update_indir_branch_cond();
		break;
	}

	switch (mds_mitigation) {
	case MDS_MITIGATION_FULL:
	case MDS_MITIGATION_VMWERV:
		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
			pr_warn_once(MDS_MSG_SMT);
		update_mds_branch_idle();
		break;
	case MDS_MITIGATION_OFF:
		break;
	}

	switch (taa_mitigation) {
	case TAA_MITIGATION_VERW:
	case TAA_MITIGATION_UCODE_NEEDED:
		if (sched_smt_active())
			pr_warn_once(TAA_MSG_SMT);
		break;
	case TAA_MITIGATION_TSX_DISABLED:
	case TAA_MITIGATION_OFF:
		break;
	}

	switch (mmio_mitigation) {
	case MMIO_MITIGATION_VERW:
	case MMIO_MITIGATION_UCODE_NEEDED:
		if (sched_smt_active())
			pr_warn_once(MMIO_MSG_SMT);
		break;
	case MMIO_MITIGATION_OFF:
		break;
	}

	mutex_unlock(&spec_ctrl_mutex);
}

#undef pr_fmt
#define pr_fmt(fmt)	"Speculative Store Bypass: " fmt

static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;

/* The kernel command line selection */
enum ssb_mitigation_cmd {
	SPEC_STORE_BYPASS_CMD_NONE,
	SPEC_STORE_BYPASS_CMD_AUTO,
	SPEC_STORE_BYPASS_CMD_ON,
	SPEC_STORE_BYPASS_CMD_PRCTL,
	SPEC_STORE_BYPASS_CMD_SECCOMP,
};

static const char * const ssb_strings[] = {
	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
};

static const struct {
	const char *option;
	enum ssb_mitigation_cmd cmd;
} ssb_mitigation_options[]  __initconst = {
	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
};

static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
{
	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
	char arg[20];
	int ret, i;

	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
	    cpu_mitigations_off()) {
		return SPEC_STORE_BYPASS_CMD_NONE;
	} else {
		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
					  arg, sizeof(arg));
		if (ret < 0)
			return SPEC_STORE_BYPASS_CMD_AUTO;

		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
				continue;

			cmd = ssb_mitigation_options[i].cmd;
			break;
		}

		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
			return SPEC_STORE_BYPASS_CMD_AUTO;
		}
	}

	return cmd;
}

static enum ssb_mitigation __init __ssb_select_mitigation(void)
{
	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
	enum ssb_mitigation_cmd cmd;

	if (!boot_cpu_has(X86_FEATURE_SSBD))
		return mode;

	cmd = ssb_parse_cmdline();
	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
		return mode;

	switch (cmd) {
	case SPEC_STORE_BYPASS_CMD_SECCOMP:
		/*
		 * Choose prctl+seccomp as the default mode if seccomp is
		 * enabled.
		 */
		if (IS_ENABLED(CONFIG_SECCOMP))
			mode = SPEC_STORE_BYPASS_SECCOMP;
		else
			mode = SPEC_STORE_BYPASS_PRCTL;
		break;
	case SPEC_STORE_BYPASS_CMD_ON:
		mode = SPEC_STORE_BYPASS_DISABLE;
		break;
	case SPEC_STORE_BYPASS_CMD_AUTO:
	case SPEC_STORE_BYPASS_CMD_PRCTL:
		mode = SPEC_STORE_BYPASS_PRCTL;
		break;
	case SPEC_STORE_BYPASS_CMD_NONE:
		break;
	}

	/*
	 * We have three CPU feature flags that are in play here:
	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
	 */
	if (mode == SPEC_STORE_BYPASS_DISABLE) {
		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
		/*
		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
		 * use a completely different MSR and bit dependent on family.
		 */
		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
			x86_amd_ssb_disable();
		} else {
			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
			update_spec_ctrl(x86_spec_ctrl_base);
		}
	}

	return mode;
}

static void ssb_select_mitigation(void)
{
	ssb_mode = __ssb_select_mitigation();

	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
		pr_info("%s\n", ssb_strings[ssb_mode]);
}

#undef pr_fmt
#define pr_fmt(fmt)     "Speculation prctl: " fmt

static void task_update_spec_tif(struct task_struct *tsk)
{
	/* Force the update of the real TIF bits */
	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);

	/*
	 * Immediately update the speculation control MSRs for the current
	 * task, but for a non-current task delay setting the CPU
	 * mitigation until it is scheduled next.
	 *
	 * This can only happen for SECCOMP mitigation. For PRCTL it's
	 * always the current task.
	 */
	if (tsk == current)
		speculation_ctrl_update_current();
}

static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
{

	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
		return -EPERM;

	switch (ctrl) {
	case PR_SPEC_ENABLE:
		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
		return 0;
	case PR_SPEC_DISABLE:
		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
		return 0;
	default:
		return -ERANGE;
	}
}

static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
{
	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
		return -ENXIO;

	switch (ctrl) {
	case PR_SPEC_ENABLE:
		/* If speculation is force disabled, enable is not allowed */
		if (task_spec_ssb_force_disable(task))
			return -EPERM;
		task_clear_spec_ssb_disable(task);
		task_clear_spec_ssb_noexec(task);
		task_update_spec_tif(task);
		break;
	case PR_SPEC_DISABLE:
		task_set_spec_ssb_disable(task);
		task_clear_spec_ssb_noexec(task);
		task_update_spec_tif(task);
		break;
	case PR_SPEC_FORCE_DISABLE:
		task_set_spec_ssb_disable(task);
		task_set_spec_ssb_force_disable(task);
		task_clear_spec_ssb_noexec(task);
		task_update_spec_tif(task);
		break;
	case PR_SPEC_DISABLE_NOEXEC:
		if (task_spec_ssb_force_disable(task))
			return -EPERM;
		task_set_spec_ssb_disable(task);
		task_set_spec_ssb_noexec(task);
		task_update_spec_tif(task);
		break;
	default:
		return -ERANGE;
	}
	return 0;
}

static bool is_spec_ib_user_controlled(void)
{
	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
}

static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
{
	switch (ctrl) {
	case PR_SPEC_ENABLE:
		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
			return 0;

		/*
		 * With strict mode for both IBPB and STIBP, the instruction
		 * code paths avoid checking this task flag and instead,
		 * unconditionally run the instruction. However, STIBP and IBPB
		 * are independent and either can be set to conditionally
		 * enabled regardless of the mode of the other.
		 *
		 * If either is set to conditional, allow the task flag to be
		 * updated, unless it was force-disabled by a previous prctl
		 * call. Currently, this is possible on an AMD CPU which has the
		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
		 * kernel is booted with 'spectre_v2_user=seccomp', then
		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
		 */
		if (!is_spec_ib_user_controlled() ||
		    task_spec_ib_force_disable(task))
			return -EPERM;

		task_clear_spec_ib_disable(task);
		task_update_spec_tif(task);
		break;
	case PR_SPEC_DISABLE:
	case PR_SPEC_FORCE_DISABLE:
		/*
		 * Indirect branch speculation is always allowed when
		 * mitigation is force disabled.
		 */
		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
			return -EPERM;

		if (!is_spec_ib_user_controlled())
			return 0;

		task_set_spec_ib_disable(task);
		if (ctrl == PR_SPEC_FORCE_DISABLE)
			task_set_spec_ib_force_disable(task);
		task_update_spec_tif(task);
		if (task == current)
			indirect_branch_prediction_barrier();
		break;
	default:
		return -ERANGE;
	}
	return 0;
}

int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
			     unsigned long ctrl)
{
	switch (which) {
	case PR_SPEC_STORE_BYPASS:
		return ssb_prctl_set(task, ctrl);
	case PR_SPEC_INDIRECT_BRANCH:
		return ib_prctl_set(task, ctrl);
	case PR_SPEC_L1D_FLUSH:
		return l1d_flush_prctl_set(task, ctrl);
	default:
		return -ENODEV;
	}
}

#ifdef CONFIG_SECCOMP
void arch_seccomp_spec_mitigate(struct task_struct *task)
{
	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
}
#endif

static int l1d_flush_prctl_get(struct task_struct *task)
{
	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
		return PR_SPEC_FORCE_DISABLE;

	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
	else
		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
}

static int ssb_prctl_get(struct task_struct *task)
{
	switch (ssb_mode) {
	case SPEC_STORE_BYPASS_DISABLE:
		return PR_SPEC_DISABLE;
	case SPEC_STORE_BYPASS_SECCOMP:
	case SPEC_STORE_BYPASS_PRCTL:
		if (task_spec_ssb_force_disable(task))
			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
		if (task_spec_ssb_noexec(task))
			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
		if (task_spec_ssb_disable(task))
			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
	default:
		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
			return PR_SPEC_ENABLE;
		return PR_SPEC_NOT_AFFECTED;
	}
}

static int ib_prctl_get(struct task_struct *task)
{
	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
		return PR_SPEC_NOT_AFFECTED;

	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
		return PR_SPEC_ENABLE;
	else if (is_spec_ib_user_controlled()) {
		if (task_spec_ib_force_disable(task))
			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
		if (task_spec_ib_disable(task))
			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
		return PR_SPEC_DISABLE;
	else
		return PR_SPEC_NOT_AFFECTED;
}

int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
{
	switch (which) {
	case PR_SPEC_STORE_BYPASS:
		return ssb_prctl_get(task);
	case PR_SPEC_INDIRECT_BRANCH:
		return ib_prctl_get(task);
	case PR_SPEC_L1D_FLUSH:
		return l1d_flush_prctl_get(task);
	default:
		return -ENODEV;
	}
}

void x86_spec_ctrl_setup_ap(void)
{
	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
		update_spec_ctrl(x86_spec_ctrl_base);

	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
		x86_amd_ssb_disable();
}

bool itlb_multihit_kvm_mitigation;
EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);

#undef pr_fmt
#define pr_fmt(fmt)	"L1TF: " fmt

/* Default mitigation for L1TF-affected CPUs */
enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
#if IS_ENABLED(CONFIG_KVM_INTEL)
EXPORT_SYMBOL_GPL(l1tf_mitigation);
#endif
enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);

/*
 * These CPUs all support 44bits physical address space internally in the
 * cache but CPUID can report a smaller number of physical address bits.
 *
 * The L1TF mitigation uses the top most address bit for the inversion of
 * non present PTEs. When the installed memory reaches into the top most
 * address bit due to memory holes, which has been observed on machines
 * which report 36bits physical address bits and have 32G RAM installed,
 * then the mitigation range check in l1tf_select_mitigation() triggers.
 * This is a false positive because the mitigation is still possible due to
 * the fact that the cache uses 44bit internally. Use the cache bits
 * instead of the reported physical bits and adjust them on the affected
 * machines to 44bit if the reported bits are less than 44.
 */
static void override_cache_bits(struct cpuinfo_x86 *c)
{
	if (c->x86 != 6)
		return;

	switch (c->x86_model) {
	case INTEL_FAM6_NEHALEM:
	case INTEL_FAM6_WESTMERE:
	case INTEL_FAM6_SANDYBRIDGE:
	case INTEL_FAM6_IVYBRIDGE:
	case INTEL_FAM6_HASWELL:
	case INTEL_FAM6_HASWELL_L:
	case INTEL_FAM6_HASWELL_G:
	case INTEL_FAM6_BROADWELL:
	case INTEL_FAM6_BROADWELL_G:
	case INTEL_FAM6_SKYLAKE_L:
	case INTEL_FAM6_SKYLAKE:
	case INTEL_FAM6_KABYLAKE_L:
	case INTEL_FAM6_KABYLAKE:
		if (c->x86_cache_bits < 44)
			c->x86_cache_bits = 44;
		break;
	}
}

static void __init l1tf_select_mitigation(void)
{
	u64 half_pa;

	if (!boot_cpu_has_bug(X86_BUG_L1TF))
		return;

	if (cpu_mitigations_off())
		l1tf_mitigation = L1TF_MITIGATION_OFF;
	else if (cpu_mitigations_auto_nosmt())
		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;

	override_cache_bits(&boot_cpu_data);

	switch (l1tf_mitigation) {
	case L1TF_MITIGATION_OFF:
	case L1TF_MITIGATION_FLUSH_NOWARN:
	case L1TF_MITIGATION_FLUSH:
		break;
	case L1TF_MITIGATION_FLUSH_NOSMT:
	case L1TF_MITIGATION_FULL:
		cpu_smt_disable(false);
		break;
	case L1TF_MITIGATION_FULL_FORCE:
		cpu_smt_disable(true);
		break;
	}

#if CONFIG_PGTABLE_LEVELS == 2
	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
	return;
#endif

	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
				half_pa);
		pr_info("However, doing so will make a part of your RAM unusable.\n");
		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
		return;
	}

	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
}

static int __init l1tf_cmdline(char *str)
{
	if (!boot_cpu_has_bug(X86_BUG_L1TF))
		return 0;

	if (!str)
		return -EINVAL;

	if (!strcmp(str, "off"))
		l1tf_mitigation = L1TF_MITIGATION_OFF;
	else if (!strcmp(str, "flush,nowarn"))
		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
	else if (!strcmp(str, "flush"))
		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
	else if (!strcmp(str, "flush,nosmt"))
		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
	else if (!strcmp(str, "full"))
		l1tf_mitigation = L1TF_MITIGATION_FULL;
	else if (!strcmp(str, "full,force"))
		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;

	return 0;
}
early_param("l1tf", l1tf_cmdline);

#undef pr_fmt
#define pr_fmt(fmt) fmt

#ifdef CONFIG_SYSFS

#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"

#if IS_ENABLED(CONFIG_KVM_INTEL)
static const char * const l1tf_vmx_states[] = {
	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
};

static ssize_t l1tf_show_state(char *buf)
{
	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
		return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);

	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
	     sched_smt_active())) {
		return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
				  l1tf_vmx_states[l1tf_vmx_mitigation]);
	}

	return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
			  l1tf_vmx_states[l1tf_vmx_mitigation],
			  sched_smt_active() ? "vulnerable" : "disabled");
}

static ssize_t itlb_multihit_show_state(char *buf)
{
	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
	    !boot_cpu_has(X86_FEATURE_VMX))
		return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
		return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
	else if (itlb_multihit_kvm_mitigation)
		return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
	else
		return sysfs_emit(buf, "KVM: Vulnerable\n");
}
#else
static ssize_t l1tf_show_state(char *buf)
{
	return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
}

static ssize_t itlb_multihit_show_state(char *buf)
{
	return sysfs_emit(buf, "Processor vulnerable\n");
}
#endif

static ssize_t mds_show_state(char *buf)
{
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
				  mds_strings[mds_mitigation]);
	}

	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
		return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
				  (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
				   sched_smt_active() ? "mitigated" : "disabled"));
	}

	return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
			  sched_smt_active() ? "vulnerable" : "disabled");
}

static ssize_t tsx_async_abort_show_state(char *buf)
{
	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
	    (taa_mitigation == TAA_MITIGATION_OFF))
		return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);

	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
				  taa_strings[taa_mitigation]);
	}

	return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
			  sched_smt_active() ? "vulnerable" : "disabled");
}

static ssize_t mmio_stale_data_show_state(char *buf)
{
	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
		return sysfs_emit(buf, "Unknown: No mitigations\n");

	if (mmio_mitigation == MMIO_MITIGATION_OFF)
		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);

	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
				  mmio_strings[mmio_mitigation]);
	}

	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
			  sched_smt_active() ? "vulnerable" : "disabled");
}

static char *stibp_state(void)
{
	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
	    !boot_cpu_has(X86_FEATURE_AUTOIBRS))
		return "";

	switch (spectre_v2_user_stibp) {
	case SPECTRE_V2_USER_NONE:
		return ", STIBP: disabled";
	case SPECTRE_V2_USER_STRICT:
		return ", STIBP: forced";
	case SPECTRE_V2_USER_STRICT_PREFERRED:
		return ", STIBP: always-on";
	case SPECTRE_V2_USER_PRCTL:
	case SPECTRE_V2_USER_SECCOMP:
		if (static_key_enabled(&switch_to_cond_stibp))
			return ", STIBP: conditional";
	}
	return "";
}

static char *ibpb_state(void)
{
	if (boot_cpu_has(X86_FEATURE_IBPB)) {
		if (static_key_enabled(&switch_mm_always_ibpb))
			return ", IBPB: always-on";
		if (static_key_enabled(&switch_mm_cond_ibpb))
			return ", IBPB: conditional";
		return ", IBPB: disabled";
	}
	return "";
}

static char *pbrsb_eibrs_state(void)
{
	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
			return ", PBRSB-eIBRS: SW sequence";
		else
			return ", PBRSB-eIBRS: Vulnerable";
	} else {
		return ", PBRSB-eIBRS: Not affected";
	}
}

static ssize_t spectre_v2_show_state(char *buf)
{
	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
		return sysfs_emit(buf, "Vulnerable: LFENCE\n");

	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
		return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");

	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
		return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");

	return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
			  spectre_v2_strings[spectre_v2_enabled],
			  ibpb_state(),
			  boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
			  stibp_state(),
			  boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
			  pbrsb_eibrs_state(),
			  spectre_v2_module_string());
}

static ssize_t srbds_show_state(char *buf)
{
	return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
}

static ssize_t retbleed_show_state(char *buf)
{
	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
			return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");

		return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
				  !sched_smt_active() ? "disabled" :
				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
				  spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
				  "enabled with STIBP protection" : "vulnerable");
	}

	return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
}

static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
			       char *buf, unsigned int bug)
{
	if (!boot_cpu_has_bug(bug))
		return sysfs_emit(buf, "Not affected\n");

	switch (bug) {
	case X86_BUG_CPU_MELTDOWN:
		if (boot_cpu_has(X86_FEATURE_PTI))
			return sysfs_emit(buf, "Mitigation: PTI\n");

		if (hypervisor_is_type(X86_HYPER_XEN_PV))
			return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");

		break;

	case X86_BUG_SPECTRE_V1:
		return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);

	case X86_BUG_SPECTRE_V2:
		return spectre_v2_show_state(buf);

	case X86_BUG_SPEC_STORE_BYPASS:
		return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);

	case X86_BUG_L1TF:
		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
			return l1tf_show_state(buf);
		break;

	case X86_BUG_MDS:
		return mds_show_state(buf);

	case X86_BUG_TAA:
		return tsx_async_abort_show_state(buf);

	case X86_BUG_ITLB_MULTIHIT:
		return itlb_multihit_show_state(buf);

	case X86_BUG_SRBDS:
		return srbds_show_state(buf);

	case X86_BUG_MMIO_STALE_DATA:
	case X86_BUG_MMIO_UNKNOWN:
		return mmio_stale_data_show_state(buf);

	case X86_BUG_RETBLEED:
		return retbleed_show_state(buf);

	default:
		break;
	}

	return sysfs_emit(buf, "Vulnerable\n");
}

ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
{
	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
}

ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
{
	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
}

ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
{
	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
}

ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
{
	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
}

ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
{
	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
}

ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
{
	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
}

ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
{
	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
}

ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
{
	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
}

ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
{
	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
}

ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
{
	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
	else
		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
}

ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
{
	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
}
#endif