summaryrefslogtreecommitdiffstats
path: root/drivers/cxl/core/cdat.c
blob: 8153f8d83a164a20b948517bb3f09e278c80d681 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2023 Intel Corporation. All rights reserved. */
#include <linux/acpi.h>
#include <linux/xarray.h>
#include <linux/fw_table.h>
#include <linux/node.h>
#include <linux/overflow.h>
#include "cxlpci.h"
#include "cxlmem.h"
#include "core.h"
#include "cxl.h"

struct dsmas_entry {
	struct range dpa_range;
	u8 handle;
	struct access_coordinate coord[ACCESS_COORDINATE_MAX];
	struct access_coordinate cdat_coord[ACCESS_COORDINATE_MAX];
	int entries;
	int qos_class;
};

static u32 cdat_normalize(u16 entry, u64 base, u8 type)
{
	u32 value;

	/*
	 * Check for invalid and overflow values
	 */
	if (entry == 0xffff || !entry)
		return 0;
	else if (base > (UINT_MAX / (entry)))
		return 0;

	/*
	 * CDAT fields follow the format of HMAT fields. See table 5 Device
	 * Scoped Latency and Bandwidth Information Structure in Coherent Device
	 * Attribute Table (CDAT) Specification v1.01.
	 */
	value = entry * base;
	switch (type) {
	case ACPI_HMAT_ACCESS_LATENCY:
	case ACPI_HMAT_READ_LATENCY:
	case ACPI_HMAT_WRITE_LATENCY:
		value = DIV_ROUND_UP(value, 1000);
		break;
	default:
		break;
	}
	return value;
}

static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg,
			      const unsigned long end)
{
	struct acpi_cdat_header *hdr = &header->cdat;
	struct acpi_cdat_dsmas *dsmas;
	int size = sizeof(*hdr) + sizeof(*dsmas);
	struct xarray *dsmas_xa = arg;
	struct dsmas_entry *dent;
	u16 len;
	int rc;

	len = le16_to_cpu((__force __le16)hdr->length);
	if (len != size || (unsigned long)hdr + len > end) {
		pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len);
		return -EINVAL;
	}

	/* Skip common header */
	dsmas = (struct acpi_cdat_dsmas *)(hdr + 1);

	dent = kzalloc(sizeof(*dent), GFP_KERNEL);
	if (!dent)
		return -ENOMEM;

	dent->handle = dsmas->dsmad_handle;
	dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address);
	dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) +
			      le64_to_cpu((__force __le64)dsmas->dpa_length) - 1;

	rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL);
	if (rc) {
		kfree(dent);
		return rc;
	}

	return 0;
}

static void __cxl_access_coordinate_set(struct access_coordinate *coord,
					int access, unsigned int val)
{
	switch (access) {
	case ACPI_HMAT_ACCESS_LATENCY:
		coord->read_latency = val;
		coord->write_latency = val;
		break;
	case ACPI_HMAT_READ_LATENCY:
		coord->read_latency = val;
		break;
	case ACPI_HMAT_WRITE_LATENCY:
		coord->write_latency = val;
		break;
	case ACPI_HMAT_ACCESS_BANDWIDTH:
		coord->read_bandwidth = val;
		coord->write_bandwidth = val;
		break;
	case ACPI_HMAT_READ_BANDWIDTH:
		coord->read_bandwidth = val;
		break;
	case ACPI_HMAT_WRITE_BANDWIDTH:
		coord->write_bandwidth = val;
		break;
	}
}

static void cxl_access_coordinate_set(struct access_coordinate *coord,
				      int access, unsigned int val)
{
	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
		__cxl_access_coordinate_set(&coord[i], access, val);
}

static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg,
			       const unsigned long end)
{
	struct acpi_cdat_header *hdr = &header->cdat;
	struct acpi_cdat_dslbis *dslbis;
	int size = sizeof(*hdr) + sizeof(*dslbis);
	struct xarray *dsmas_xa = arg;
	struct dsmas_entry *dent;
	__le64 le_base;
	__le16 le_val;
	u64 val;
	u16 len;

	len = le16_to_cpu((__force __le16)hdr->length);
	if (len != size || (unsigned long)hdr + len > end) {
		pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len);
		return -EINVAL;
	}

	/* Skip common header */
	dslbis = (struct acpi_cdat_dslbis *)(hdr + 1);

	/* Skip unrecognized data type */
	if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
		return 0;

	/* Not a memory type, skip */
	if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY)
		return 0;

	dent = xa_load(dsmas_xa, dslbis->handle);
	if (!dent) {
		pr_warn("No matching DSMAS entry for DSLBIS entry.\n");
		return 0;
	}

	le_base = (__force __le64)dslbis->entry_base_unit;
	le_val = (__force __le16)dslbis->entry[0];
	val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
			     dslbis->data_type);

	cxl_access_coordinate_set(dent->cdat_coord, dslbis->data_type, val);

	return 0;
}

static int cdat_table_parse_output(int rc)
{
	if (rc < 0)
		return rc;
	if (rc == 0)
		return -ENOENT;

	return 0;
}

static int cxl_cdat_endpoint_process(struct cxl_port *port,
				     struct xarray *dsmas_xa)
{
	int rc;

	rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler,
			      dsmas_xa, port->cdat.table, port->cdat.length);
	rc = cdat_table_parse_output(rc);
	if (rc)
		return rc;

	rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler,
			      dsmas_xa, port->cdat.table, port->cdat.length);
	return cdat_table_parse_output(rc);
}

static int cxl_port_perf_data_calculate(struct cxl_port *port,
					struct xarray *dsmas_xa)
{
	struct access_coordinate ep_c[ACCESS_COORDINATE_MAX];
	struct dsmas_entry *dent;
	int valid_entries = 0;
	unsigned long index;
	int rc;

	rc = cxl_endpoint_get_perf_coordinates(port, ep_c);
	if (rc) {
		dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n");
		return rc;
	}

	struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port);

	if (!cxl_root)
		return -ENODEV;

	if (!cxl_root->ops || !cxl_root->ops->qos_class)
		return -EOPNOTSUPP;

	xa_for_each(dsmas_xa, index, dent) {
		int qos_class;

		cxl_coordinates_combine(dent->coord, dent->cdat_coord, ep_c);
		dent->entries = 1;
		rc = cxl_root->ops->qos_class(cxl_root,
					      &dent->coord[ACCESS_COORDINATE_CPU],
					      1, &qos_class);
		if (rc != 1)
			continue;

		valid_entries++;
		dent->qos_class = qos_class;
	}

	if (!valid_entries)
		return -ENOENT;

	return 0;
}

static void update_perf_entry(struct device *dev, struct dsmas_entry *dent,
			      struct cxl_dpa_perf *dpa_perf)
{
	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
		dpa_perf->coord[i] = dent->coord[i];
		dpa_perf->cdat_coord[i] = dent->cdat_coord[i];
	}
	dpa_perf->dpa_range = dent->dpa_range;
	dpa_perf->qos_class = dent->qos_class;
	dev_dbg(dev,
		"DSMAS: dpa: %pra qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n",
		&dent->dpa_range, dpa_perf->qos_class,
		dent->coord[ACCESS_COORDINATE_CPU].read_bandwidth,
		dent->coord[ACCESS_COORDINATE_CPU].write_bandwidth,
		dent->coord[ACCESS_COORDINATE_CPU].read_latency,
		dent->coord[ACCESS_COORDINATE_CPU].write_latency);
}

static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds,
				     struct xarray *dsmas_xa)
{
	struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
	struct device *dev = cxlds->dev;
	struct range pmem_range = {
		.start = cxlds->pmem_res.start,
		.end = cxlds->pmem_res.end,
	};
	struct range ram_range = {
		.start = cxlds->ram_res.start,
		.end = cxlds->ram_res.end,
	};
	struct dsmas_entry *dent;
	unsigned long index;

	xa_for_each(dsmas_xa, index, dent) {
		if (resource_size(&cxlds->ram_res) &&
		    range_contains(&ram_range, &dent->dpa_range))
			update_perf_entry(dev, dent, &mds->ram_perf);
		else if (resource_size(&cxlds->pmem_res) &&
			 range_contains(&pmem_range, &dent->dpa_range))
			update_perf_entry(dev, dent, &mds->pmem_perf);
		else
			dev_dbg(dev, "no partition for dsmas dpa: %pra\n",
				&dent->dpa_range);
	}
}

static int match_cxlrd_qos_class(struct device *dev, void *data)
{
	int dev_qos_class = *(int *)data;
	struct cxl_root_decoder *cxlrd;

	if (!is_root_decoder(dev))
		return 0;

	cxlrd = to_cxl_root_decoder(dev);
	if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID)
		return 0;

	if (cxlrd->qos_class == dev_qos_class)
		return 1;

	return 0;
}

static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf)
{
	*dpa_perf = (struct cxl_dpa_perf) {
		.qos_class = CXL_QOS_CLASS_INVALID,
	};
}

static bool cxl_qos_match(struct cxl_port *root_port,
			  struct cxl_dpa_perf *dpa_perf)
{
	if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID)
		return false;

	if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class,
				   match_cxlrd_qos_class))
		return false;

	return true;
}

static int match_cxlrd_hb(struct device *dev, void *data)
{
	struct device *host_bridge = data;
	struct cxl_switch_decoder *cxlsd;
	struct cxl_root_decoder *cxlrd;

	if (!is_root_decoder(dev))
		return 0;

	cxlrd = to_cxl_root_decoder(dev);
	cxlsd = &cxlrd->cxlsd;

	guard(rwsem_read)(&cxl_region_rwsem);
	for (int i = 0; i < cxlsd->nr_targets; i++) {
		if (host_bridge == cxlsd->target[i]->dport_dev)
			return 1;
	}

	return 0;
}

static int cxl_qos_class_verify(struct cxl_memdev *cxlmd)
{
	struct cxl_dev_state *cxlds = cxlmd->cxlds;
	struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
	struct cxl_port *root_port;
	int rc;

	struct cxl_root *cxl_root __free(put_cxl_root) =
		find_cxl_root(cxlmd->endpoint);

	if (!cxl_root)
		return -ENODEV;

	root_port = &cxl_root->port;

	/* Check that the QTG IDs are all sane between end device and root decoders */
	if (!cxl_qos_match(root_port, &mds->ram_perf))
		reset_dpa_perf(&mds->ram_perf);
	if (!cxl_qos_match(root_port, &mds->pmem_perf))
		reset_dpa_perf(&mds->pmem_perf);

	/* Check to make sure that the device's host bridge is under a root decoder */
	rc = device_for_each_child(&root_port->dev,
				   cxlmd->endpoint->host_bridge, match_cxlrd_hb);
	if (!rc) {
		reset_dpa_perf(&mds->ram_perf);
		reset_dpa_perf(&mds->pmem_perf);
	}

	return rc;
}

static void discard_dsmas(struct xarray *xa)
{
	unsigned long index;
	void *ent;

	xa_for_each(xa, index, ent) {
		xa_erase(xa, index);
		kfree(ent);
	}
	xa_destroy(xa);
}
DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T))

void cxl_endpoint_parse_cdat(struct cxl_port *port)
{
	struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev);
	struct cxl_dev_state *cxlds = cxlmd->cxlds;
	struct xarray __dsmas_xa;
	struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa;
	int rc;

	xa_init(&__dsmas_xa);
	if (!port->cdat.table)
		return;

	rc = cxl_cdat_endpoint_process(port, dsmas_xa);
	if (rc < 0) {
		dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc);
		return;
	}

	rc = cxl_port_perf_data_calculate(port, dsmas_xa);
	if (rc) {
		dev_dbg(&port->dev, "Failed to do perf coord calculations.\n");
		return;
	}

	cxl_memdev_set_qos_class(cxlds, dsmas_xa);
	cxl_qos_class_verify(cxlmd);
	cxl_memdev_update_perf(cxlmd);
}
EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, "CXL");

static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg,
			       const unsigned long end)
{
	struct acpi_cdat_sslbis_table {
		struct acpi_cdat_header header;
		struct acpi_cdat_sslbis sslbis_header;
		struct acpi_cdat_sslbe entries[];
	} *tbl = (struct acpi_cdat_sslbis_table *)header;
	int size = sizeof(header->cdat) + sizeof(tbl->sslbis_header);
	struct acpi_cdat_sslbis *sslbis;
	struct cxl_port *port = arg;
	struct device *dev = &port->dev;
	int remain, entries, i;
	u16 len;

	len = le16_to_cpu((__force __le16)header->cdat.length);
	remain = len - size;
	if (!remain || remain % sizeof(tbl->entries[0]) ||
	    (unsigned long)header + len > end) {
		dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len);
		return -EINVAL;
	}

	sslbis = &tbl->sslbis_header;
	/* Unrecognized data type, we can skip */
	if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
		return 0;

	entries = remain / sizeof(tbl->entries[0]);
	if (struct_size(tbl, entries, entries) != len)
		return -EINVAL;

	for (i = 0; i < entries; i++) {
		u16 x = le16_to_cpu((__force __le16)tbl->entries[i].portx_id);
		u16 y = le16_to_cpu((__force __le16)tbl->entries[i].porty_id);
		__le64 le_base;
		__le16 le_val;
		struct cxl_dport *dport;
		unsigned long index;
		u16 dsp_id;
		u64 val;

		switch (x) {
		case ACPI_CDAT_SSLBIS_US_PORT:
			dsp_id = y;
			break;
		case ACPI_CDAT_SSLBIS_ANY_PORT:
			switch (y) {
			case ACPI_CDAT_SSLBIS_US_PORT:
				dsp_id = x;
				break;
			case ACPI_CDAT_SSLBIS_ANY_PORT:
				dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT;
				break;
			default:
				dsp_id = y;
				break;
			}
			break;
		default:
			dsp_id = x;
			break;
		}

		le_base = (__force __le64)tbl->sslbis_header.entry_base_unit;
		le_val = (__force __le16)tbl->entries[i].latency_or_bandwidth;
		val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base),
				     sslbis->data_type);

		xa_for_each(&port->dports, index, dport) {
			if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT ||
			    dsp_id == dport->port_id) {
				cxl_access_coordinate_set(dport->coord,
							  sslbis->data_type,
							  val);
			}
		}
	}

	return 0;
}

void cxl_switch_parse_cdat(struct cxl_port *port)
{
	int rc;

	if (!port->cdat.table)
		return;

	rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler,
			      port, port->cdat.table, port->cdat.length);
	rc = cdat_table_parse_output(rc);
	if (rc)
		dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc);
}
EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, "CXL");

static void __cxl_coordinates_combine(struct access_coordinate *out,
				      struct access_coordinate *c1,
				      struct access_coordinate *c2)
{
		if (c1->write_bandwidth && c2->write_bandwidth)
			out->write_bandwidth = min(c1->write_bandwidth,
						   c2->write_bandwidth);
		out->write_latency = c1->write_latency + c2->write_latency;

		if (c1->read_bandwidth && c2->read_bandwidth)
			out->read_bandwidth = min(c1->read_bandwidth,
						  c2->read_bandwidth);
		out->read_latency = c1->read_latency + c2->read_latency;
}

/**
 * cxl_coordinates_combine - Combine the two input coordinates
 *
 * @out: Output coordinate of c1 and c2 combined
 * @c1: input coordinates
 * @c2: input coordinates
 */
void cxl_coordinates_combine(struct access_coordinate *out,
			     struct access_coordinate *c1,
			     struct access_coordinate *c2)
{
	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++)
		__cxl_coordinates_combine(&out[i], &c1[i], &c2[i]);
}

MODULE_IMPORT_NS("CXL");

static void cxl_bandwidth_add(struct access_coordinate *coord,
			      struct access_coordinate *c1,
			      struct access_coordinate *c2)
{
	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
		coord[i].read_bandwidth = c1[i].read_bandwidth +
					  c2[i].read_bandwidth;
		coord[i].write_bandwidth = c1[i].write_bandwidth +
					   c2[i].write_bandwidth;
	}
}

static bool dpa_perf_contains(struct cxl_dpa_perf *perf,
			      struct resource *dpa_res)
{
	struct range dpa = {
		.start = dpa_res->start,
		.end = dpa_res->end,
	};

	return range_contains(&perf->dpa_range, &dpa);
}

static struct cxl_dpa_perf *cxled_get_dpa_perf(struct cxl_endpoint_decoder *cxled,
					       enum cxl_decoder_mode mode)
{
	struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
	struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlmd->cxlds);
	struct cxl_dpa_perf *perf;

	switch (mode) {
	case CXL_DECODER_RAM:
		perf = &mds->ram_perf;
		break;
	case CXL_DECODER_PMEM:
		perf = &mds->pmem_perf;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}

	if (!dpa_perf_contains(perf, cxled->dpa_res))
		return ERR_PTR(-EINVAL);

	return perf;
}

/*
 * Transient context for containing the current calculation of bandwidth when
 * doing walking the port hierarchy to deal with shared upstream link.
 */
struct cxl_perf_ctx {
	struct access_coordinate coord[ACCESS_COORDINATE_MAX];
	struct cxl_port *port;
};

/**
 * cxl_endpoint_gather_bandwidth - collect all the endpoint bandwidth in an xarray
 * @cxlr: CXL region for the bandwidth calculation
 * @cxled: endpoint decoder to start on
 * @usp_xa: (output) the xarray that collects all the bandwidth coordinates
 *          indexed by the upstream device with data of 'struct cxl_perf_ctx'.
 * @gp_is_root: (output) bool of whether the grandparent is cxl root.
 *
 * Return: 0 for success or -errno
 *
 * Collects aggregated endpoint bandwidth and store the bandwidth in
 * an xarray indexed by the upstream device of the switch or the RP
 * device. Each endpoint consists the minimum of the bandwidth from DSLBIS
 * from the endpoint CDAT, the endpoint upstream link bandwidth, and the
 * bandwidth from the SSLBIS of the switch CDAT for the switch upstream port to
 * the downstream port that's associated with the endpoint. If the
 * device is directly connected to a RP, then no SSLBIS is involved.
 */
static int cxl_endpoint_gather_bandwidth(struct cxl_region *cxlr,
					 struct cxl_endpoint_decoder *cxled,
					 struct xarray *usp_xa,
					 bool *gp_is_root)
{
	struct cxl_port *endpoint = to_cxl_port(cxled->cxld.dev.parent);
	struct cxl_port *parent_port = to_cxl_port(endpoint->dev.parent);
	struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
	struct access_coordinate pci_coord[ACCESS_COORDINATE_MAX];
	struct access_coordinate sw_coord[ACCESS_COORDINATE_MAX];
	struct access_coordinate ep_coord[ACCESS_COORDINATE_MAX];
	struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
	struct cxl_dev_state *cxlds = cxlmd->cxlds;
	struct pci_dev *pdev = to_pci_dev(cxlds->dev);
	struct cxl_perf_ctx *perf_ctx;
	struct cxl_dpa_perf *perf;
	unsigned long index;
	void *ptr;
	int rc;

	if (!dev_is_pci(cxlds->dev))
		return -ENODEV;

	if (cxlds->rcd)
		return -ENODEV;

	perf = cxled_get_dpa_perf(cxled, cxlr->mode);
	if (IS_ERR(perf))
		return PTR_ERR(perf);

	gp_port = to_cxl_port(parent_port->dev.parent);
	*gp_is_root = is_cxl_root(gp_port);

	/*
	 * If the grandparent is cxl root, then index is the root port,
	 * otherwise it's the parent switch upstream device.
	 */
	if (*gp_is_root)
		index = (unsigned long)endpoint->parent_dport->dport_dev;
	else
		index = (unsigned long)parent_port->uport_dev;

	perf_ctx = xa_load(usp_xa, index);
	if (!perf_ctx) {
		struct cxl_perf_ctx *c __free(kfree) =
			kzalloc(sizeof(*perf_ctx), GFP_KERNEL);

		if (!c)
			return -ENOMEM;
		ptr = xa_store(usp_xa, index, c, GFP_KERNEL);
		if (xa_is_err(ptr))
			return xa_err(ptr);
		perf_ctx = no_free_ptr(c);
		perf_ctx->port = parent_port;
	}

	/* Direct upstream link from EP bandwidth */
	rc = cxl_pci_get_bandwidth(pdev, pci_coord);
	if (rc < 0)
		return rc;

	/*
	 * Min of upstream link bandwidth and Endpoint CDAT bandwidth from
	 * DSLBIS.
	 */
	cxl_coordinates_combine(ep_coord, pci_coord, perf->cdat_coord);

	/*
	 * If grandparent port is root, then there's no switch involved and
	 * the endpoint is connected to a root port.
	 */
	if (!*gp_is_root) {
		/*
		 * Retrieve the switch SSLBIS for switch downstream port
		 * associated with the endpoint bandwidth.
		 */
		rc = cxl_port_get_switch_dport_bandwidth(endpoint, sw_coord);
		if (rc)
			return rc;

		/*
		 * Min of the earlier coordinates with the switch SSLBIS
		 * bandwidth
		 */
		cxl_coordinates_combine(ep_coord, ep_coord, sw_coord);
	}

	/*
	 * Aggregate the computed bandwidth with the current aggregated bandwidth
	 * of the endpoints with the same switch upstream device or RP.
	 */
	cxl_bandwidth_add(perf_ctx->coord, perf_ctx->coord, ep_coord);

	return 0;
}

static void free_perf_xa(struct xarray *xa)
{
	struct cxl_perf_ctx *ctx;
	unsigned long index;

	if (!xa)
		return;

	xa_for_each(xa, index, ctx)
		kfree(ctx);
	xa_destroy(xa);
	kfree(xa);
}
DEFINE_FREE(free_perf_xa, struct xarray *, if (_T) free_perf_xa(_T))

/**
 * cxl_switch_gather_bandwidth - collect all the bandwidth at switch level in an xarray
 * @cxlr: The region being operated on
 * @input_xa: xarray indexed by upstream device of a switch with data of 'struct
 *	      cxl_perf_ctx'
 * @gp_is_root: (output) bool of whether the grandparent is cxl root.
 *
 * Return: a xarray of resulting cxl_perf_ctx per parent switch or root port
 *         or ERR_PTR(-errno)
 *
 * Iterate through the xarray. Take the minimum of the downstream calculated
 * bandwidth, the upstream link bandwidth, and the SSLBIS of the upstream
 * switch if exists. Sum the resulting bandwidth under the switch upstream
 * device or a RP device. The function can be iterated over multiple switches
 * if the switches are present.
 */
static struct xarray *cxl_switch_gather_bandwidth(struct cxl_region *cxlr,
						  struct xarray *input_xa,
						  bool *gp_is_root)
{
	struct xarray *res_xa __free(free_perf_xa) =
		kzalloc(sizeof(*res_xa), GFP_KERNEL);
	struct access_coordinate coords[ACCESS_COORDINATE_MAX];
	struct cxl_perf_ctx *ctx, *us_ctx;
	unsigned long index, us_index;
	int dev_count = 0;
	int gp_count = 0;
	void *ptr;
	int rc;

	if (!res_xa)
		return ERR_PTR(-ENOMEM);
	xa_init(res_xa);

	xa_for_each(input_xa, index, ctx) {
		struct device *dev = (struct device *)index;
		struct cxl_port *port = ctx->port;
		struct cxl_port *parent_port = to_cxl_port(port->dev.parent);
		struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent);
		struct cxl_dport *dport = port->parent_dport;
		bool is_root = false;

		dev_count++;
		if (is_cxl_root(gp_port)) {
			is_root = true;
			gp_count++;
		}

		/*
		 * If the grandparent is cxl root, then index is the root port,
		 * otherwise it's the parent switch upstream device.
		 */
		if (is_root)
			us_index = (unsigned long)port->parent_dport->dport_dev;
		else
			us_index = (unsigned long)parent_port->uport_dev;

		us_ctx = xa_load(res_xa, us_index);
		if (!us_ctx) {
			struct cxl_perf_ctx *n __free(kfree) =
				kzalloc(sizeof(*n), GFP_KERNEL);

			if (!n)
				return ERR_PTR(-ENOMEM);

			ptr = xa_store(res_xa, us_index, n, GFP_KERNEL);
			if (xa_is_err(ptr))
				return ERR_PTR(xa_err(ptr));
			us_ctx = no_free_ptr(n);
			us_ctx->port = parent_port;
		}

		/*
		 * If the device isn't an upstream PCIe port, there's something
		 * wrong with the topology.
		 */
		if (!dev_is_pci(dev))
			return ERR_PTR(-EINVAL);

		/* Retrieve the upstream link bandwidth */
		rc = cxl_pci_get_bandwidth(to_pci_dev(dev), coords);
		if (rc)
			return ERR_PTR(-ENXIO);

		/*
		 * Take the min of downstream bandwidth and the upstream link
		 * bandwidth.
		 */
		cxl_coordinates_combine(coords, coords, ctx->coord);

		/*
		 * Take the min of the calculated bandwdith and the upstream
		 * switch SSLBIS bandwidth if there's a parent switch
		 */
		if (!is_root)
			cxl_coordinates_combine(coords, coords, dport->coord);

		/*
		 * Aggregate the calculated bandwidth common to an upstream
		 * switch.
		 */
		cxl_bandwidth_add(us_ctx->coord, us_ctx->coord, coords);
	}

	/* Asymmetric topology detected. */
	if (gp_count) {
		if (gp_count != dev_count) {
			dev_dbg(&cxlr->dev,
				"Asymmetric hierarchy detected, bandwidth not updated\n");
			return ERR_PTR(-EOPNOTSUPP);
		}
		*gp_is_root = true;
	}

	return no_free_ptr(res_xa);
}

/**
 * cxl_rp_gather_bandwidth - handle the root port level bandwidth collection
 * @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
 *      below each root port device.
 *
 * Return: xarray that holds cxl_perf_ctx per host bridge or ERR_PTR(-errno)
 */
static struct xarray *cxl_rp_gather_bandwidth(struct xarray *xa)
{
	struct xarray *hb_xa __free(free_perf_xa) =
		kzalloc(sizeof(*hb_xa), GFP_KERNEL);
	struct cxl_perf_ctx *ctx;
	unsigned long index;

	if (!hb_xa)
		return ERR_PTR(-ENOMEM);
	xa_init(hb_xa);

	xa_for_each(xa, index, ctx) {
		struct cxl_port *port = ctx->port;
		unsigned long hb_index = (unsigned long)port->uport_dev;
		struct cxl_perf_ctx *hb_ctx;
		void *ptr;

		hb_ctx = xa_load(hb_xa, hb_index);
		if (!hb_ctx) {
			struct cxl_perf_ctx *n __free(kfree) =
				kzalloc(sizeof(*n), GFP_KERNEL);

			if (!n)
				return ERR_PTR(-ENOMEM);
			ptr = xa_store(hb_xa, hb_index, n, GFP_KERNEL);
			if (xa_is_err(ptr))
				return ERR_PTR(xa_err(ptr));
			hb_ctx = no_free_ptr(n);
			hb_ctx->port = port;
		}

		cxl_bandwidth_add(hb_ctx->coord, hb_ctx->coord, ctx->coord);
	}

	return no_free_ptr(hb_xa);
}

/**
 * cxl_hb_gather_bandwidth - handle the host bridge level bandwidth collection
 * @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated
 *      below each host bridge.
 *
 * Return: xarray that holds cxl_perf_ctx per ACPI0017 device or ERR_PTR(-errno)
 */
static struct xarray *cxl_hb_gather_bandwidth(struct xarray *xa)
{
	struct xarray *mw_xa __free(free_perf_xa) =
		kzalloc(sizeof(*mw_xa), GFP_KERNEL);
	struct cxl_perf_ctx *ctx;
	unsigned long index;

	if (!mw_xa)
		return ERR_PTR(-ENOMEM);
	xa_init(mw_xa);

	xa_for_each(xa, index, ctx) {
		struct cxl_port *port = ctx->port;
		struct cxl_port *parent_port;
		struct cxl_perf_ctx *mw_ctx;
		struct cxl_dport *dport;
		unsigned long mw_index;
		void *ptr;

		parent_port = to_cxl_port(port->dev.parent);
		mw_index = (unsigned long)parent_port->uport_dev;

		mw_ctx = xa_load(mw_xa, mw_index);
		if (!mw_ctx) {
			struct cxl_perf_ctx *n __free(kfree) =
				kzalloc(sizeof(*n), GFP_KERNEL);

			if (!n)
				return ERR_PTR(-ENOMEM);
			ptr = xa_store(mw_xa, mw_index, n, GFP_KERNEL);
			if (xa_is_err(ptr))
				return ERR_PTR(xa_err(ptr));
			mw_ctx = no_free_ptr(n);
		}

		dport = port->parent_dport;
		cxl_coordinates_combine(ctx->coord, ctx->coord, dport->coord);
		cxl_bandwidth_add(mw_ctx->coord, mw_ctx->coord, ctx->coord);
	}

	return no_free_ptr(mw_xa);
}

/**
 * cxl_region_update_bandwidth - Update the bandwidth access coordinates of a region
 * @cxlr: The region being operated on
 * @input_xa: xarray holds cxl_perf_ctx wht calculated bandwidth per ACPI0017 instance
 */
static void cxl_region_update_bandwidth(struct cxl_region *cxlr,
					struct xarray *input_xa)
{
	struct access_coordinate coord[ACCESS_COORDINATE_MAX];
	struct cxl_perf_ctx *ctx;
	unsigned long index;

	memset(coord, 0, sizeof(coord));
	xa_for_each(input_xa, index, ctx)
		cxl_bandwidth_add(coord, coord, ctx->coord);

	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
		cxlr->coord[i].read_bandwidth = coord[i].read_bandwidth;
		cxlr->coord[i].write_bandwidth = coord[i].write_bandwidth;
	}
}

/**
 * cxl_region_shared_upstream_bandwidth_update - Recalculate the bandwidth for
 *						 the region
 * @cxlr: the cxl region to recalculate
 *
 * The function walks the topology from bottom up and calculates the bandwidth. It
 * starts at the endpoints, processes at the switches if any, processes at the rootport
 * level, at the host bridge level, and finally aggregates at the region.
 */
void cxl_region_shared_upstream_bandwidth_update(struct cxl_region *cxlr)
{
	struct xarray *working_xa;
	int root_count = 0;
	bool is_root;
	int rc;

	lockdep_assert_held(&cxl_dpa_rwsem);

	struct xarray *usp_xa __free(free_perf_xa) =
		kzalloc(sizeof(*usp_xa), GFP_KERNEL);

	if (!usp_xa)
		return;

	xa_init(usp_xa);

	/* Collect bandwidth data from all the endpoints. */
	for (int i = 0; i < cxlr->params.nr_targets; i++) {
		struct cxl_endpoint_decoder *cxled = cxlr->params.targets[i];

		is_root = false;
		rc = cxl_endpoint_gather_bandwidth(cxlr, cxled, usp_xa, &is_root);
		if (rc)
			return;
		root_count += is_root;
	}

	/* Detect asymmetric hierarchy with some direct attached endpoints. */
	if (root_count && root_count != cxlr->params.nr_targets) {
		dev_dbg(&cxlr->dev,
			"Asymmetric hierarchy detected, bandwidth not updated\n");
		return;
	}

	/*
	 * Walk up one or more switches to deal with the bandwidth of the
	 * switches if they exist. Endpoints directly attached to RPs skip
	 * over this part.
	 */
	if (!root_count) {
		do {
			working_xa = cxl_switch_gather_bandwidth(cxlr, usp_xa,
								 &is_root);
			if (IS_ERR(working_xa))
				return;
			free_perf_xa(usp_xa);
			usp_xa = working_xa;
		} while (!is_root);
	}

	/* Handle the bandwidth at the root port of the hierarchy */
	working_xa = cxl_rp_gather_bandwidth(usp_xa);
	if (IS_ERR(working_xa))
		return;
	free_perf_xa(usp_xa);
	usp_xa = working_xa;

	/* Handle the bandwidth at the host bridge of the hierarchy */
	working_xa = cxl_hb_gather_bandwidth(usp_xa);
	if (IS_ERR(working_xa))
		return;
	free_perf_xa(usp_xa);
	usp_xa = working_xa;

	/*
	 * Aggregate all the bandwidth collected per CFMWS (ACPI0017) and
	 * update the region bandwidth with the final calculated values.
	 */
	cxl_region_update_bandwidth(cxlr, usp_xa);
}

void cxl_region_perf_data_calculate(struct cxl_region *cxlr,
				    struct cxl_endpoint_decoder *cxled)
{
	struct cxl_dpa_perf *perf;

	lockdep_assert_held(&cxl_dpa_rwsem);

	perf = cxled_get_dpa_perf(cxled, cxlr->mode);
	if (IS_ERR(perf))
		return;

	for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
		/* Get total bandwidth and the worst latency for the cxl region */
		cxlr->coord[i].read_latency = max_t(unsigned int,
						    cxlr->coord[i].read_latency,
						    perf->coord[i].read_latency);
		cxlr->coord[i].write_latency = max_t(unsigned int,
						     cxlr->coord[i].write_latency,
						     perf->coord[i].write_latency);
		cxlr->coord[i].read_bandwidth += perf->coord[i].read_bandwidth;
		cxlr->coord[i].write_bandwidth += perf->coord[i].write_bandwidth;
	}
}

int cxl_update_hmat_access_coordinates(int nid, struct cxl_region *cxlr,
				       enum access_coordinate_class access)
{
	return hmat_update_target_coordinates(nid, &cxlr->coord[access], access);
}

bool cxl_need_node_perf_attrs_update(int nid)
{
	return !acpi_node_backed_by_real_pxm(nid);
}