1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
// SPDX-License-Identifier: MIT
//
// Copyright 2024 Advanced Micro Devices, Inc.
#include "dcn401_optc.h"
#include "dcn30/dcn30_optc.h"
#include "dcn31/dcn31_optc.h"
#include "dcn32/dcn32_optc.h"
#include "reg_helper.h"
#include "dc.h"
#include "dcn_calc_math.h"
#include "dc_dmub_srv.h"
#define REG(reg)\
optc1->tg_regs->reg
#define CTX \
optc1->base.ctx
#undef FN
#define FN(reg_name, field_name) \
optc1->tg_shift->field_name, optc1->tg_mask->field_name
/*
* OPTC uses ODM_MEM sub block to merge pixel data coming from different OPPs
* into unified memory location per horizontal line. ODM_MEM contains shared
* memory resources global to the ASIC. Each memory resource is capable of
* storing 2048 pixels independent from actual pixel data size. Total number of
* memory allocated must be even. The memory resource allocation is described in
* a memory bit map per OPTC instance. Driver has to make sure that there is no
* double allocation across different OPTC instances. Bit offset in the map
* represents memory instance id. Driver allocates a memory instance to the
* current OPTC by setting the bit with offset associated with the desired
* memory instance to 1 in the current OPTC memory map register.
*
* It is upto software to decide how to allocate the shared memory resources
* across different OPTC instances. Driver understands that the total number
* of memory available is always 2 times the max number of OPP pipes. So each
* OPP pipe can be mapped 2 pieces of memory. However there exists cases such as
* 11520x2160 which could use 6 pieces of memory for 2 OPP pipes i.e. 3 pieces
* for each OPP pipe.
*
* Driver will reserve the first and second preferred memory instances for each
* OPP pipe. For example, OPP0's first and second preferred memory is ODM_MEM0
* and ODM_MEM1. OPP1's first and second preferred memory is ODM_MEM2 and
* ODM_MEM3 so on so forth.
*
* Driver will first allocate from first preferred memory instances associated
* with current OPP pipes in use. If needed driver will then allocate from
* second preferred memory instances associated with current OPP pipes in use.
* Finally if still needed, driver will allocate from second preferred memory
* instances not associated with current OPP pipes. So if memory instances are
* enough other OPTCs can still allocate from their OPPs' first preferred memory
* instances without worrying about double allocation.
*/
static uint32_t decide_odm_mem_bit_map(int *opp_id, int opp_cnt, int h_active)
{
bool first_preferred_memory_for_opp[MAX_PIPES] = {0};
bool second_preferred_memory_for_opp[MAX_PIPES] = {0};
uint32_t memory_bit_map = 0;
int total_required = ((h_active + 4095) / 4096) * 2;
int total_allocated = 0;
int i;
for (i = 0; i < opp_cnt; i++) {
first_preferred_memory_for_opp[opp_id[i]] = true;
total_allocated++;
if (total_required == total_allocated)
break;
}
if (total_required > total_allocated) {
for (i = 0; i < opp_cnt; i++) {
second_preferred_memory_for_opp[opp_id[i]] = true;
total_allocated++;
if (total_required == total_allocated)
break;
}
}
if (total_required > total_allocated) {
for (i = 0; i < MAX_PIPES; i++) {
if (second_preferred_memory_for_opp[i] == false) {
second_preferred_memory_for_opp[i] = true;
total_allocated++;
if (total_required == total_allocated)
break;
}
}
}
ASSERT(total_required == total_allocated);
for (i = 0; i < MAX_PIPES; i++) {
if (first_preferred_memory_for_opp[i])
memory_bit_map |= 0x1 << (i * 2);
if (second_preferred_memory_for_opp[i])
memory_bit_map |= 0x2 << (i * 2);
}
return memory_bit_map;
}
static void optc401_set_odm_combine(struct timing_generator *optc, int *opp_id,
int opp_cnt, int segment_width, int last_segment_width)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t h_active = segment_width * (opp_cnt - 1) + last_segment_width;
uint32_t odm_mem_bit_map = decide_odm_mem_bit_map(
opp_id, opp_cnt, h_active);
REG_SET(OPTC_MEMORY_CONFIG, 0,
OPTC_MEM_SEL, odm_mem_bit_map);
switch (opp_cnt) {
case 2: /* ODM Combine 2:1 */
REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 1,
OPTC_SEG0_SRC_SEL, opp_id[0],
OPTC_SEG1_SRC_SEL, opp_id[1]);
REG_UPDATE(OPTC_WIDTH_CONTROL,
OPTC_SEGMENT_WIDTH, segment_width);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY2);
break;
case 3: /* ODM Combine 3:1 */
REG_SET_4(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 2,
OPTC_SEG0_SRC_SEL, opp_id[0],
OPTC_SEG1_SRC_SEL, opp_id[1],
OPTC_SEG2_SRC_SEL, opp_id[2]);
REG_UPDATE(OPTC_WIDTH_CONTROL,
OPTC_SEGMENT_WIDTH, segment_width);
REG_UPDATE(OPTC_WIDTH_CONTROL2,
OPTC_SEGMENT_WIDTH_LAST,
last_segment_width);
/* In ODM combine 3:1 mode ODM packs 4 pixels per data transfer
* so OTG_H_TIMING_DIV_MODE should be configured to
* H_TIMING_DIV_BY4 even though ODM combines 3 OPP inputs, it
* outputs 4 pixels from single OPP at a time.
*/
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY4);
break;
case 4: /* ODM Combine 4:1 */
REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 3,
OPTC_SEG0_SRC_SEL, opp_id[0],
OPTC_SEG1_SRC_SEL, opp_id[1],
OPTC_SEG2_SRC_SEL, opp_id[2],
OPTC_SEG3_SRC_SEL, opp_id[3]);
REG_UPDATE(OPTC_WIDTH_CONTROL,
OPTC_SEGMENT_WIDTH, segment_width);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, H_TIMING_DIV_BY4);
break;
default:
ASSERT(false);
}
;
optc1->opp_count = opp_cnt;
}
static void optc401_set_h_timing_div_manual_mode(struct timing_generator *optc, bool manual_mode)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE_MANUAL, manual_mode ? 1 : 0);
}
/**
* optc401_enable_crtc() - Enable CRTC
* @optc: Pointer to the timing generator structure
*
* This function calls ASIC Control Object to enable Timing generator.
*
* Return: Always returns true
*/
static bool optc401_enable_crtc(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* opp instance for OTG, 1 to 1 mapping and odm will adjust */
REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
OPTC_SEG0_SRC_SEL, optc->inst);
/* VTG enable first is for HW workaround */
REG_UPDATE(CONTROL,
VTG0_ENABLE, 1);
REG_SEQ_START();
/* Enable CRTC */
REG_UPDATE_2(OTG_CONTROL,
OTG_DISABLE_POINT_CNTL, 2,
OTG_MASTER_EN, 1);
REG_SEQ_SUBMIT();
REG_SEQ_WAIT_DONE();
return true;
}
/* disable_crtc */
static bool optc401_disable_crtc(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE_5(OPTC_DATA_SOURCE_SELECT,
OPTC_SEG0_SRC_SEL, 0xf,
OPTC_SEG1_SRC_SEL, 0xf,
OPTC_SEG2_SRC_SEL, 0xf,
OPTC_SEG3_SRC_SEL, 0xf,
OPTC_NUM_OF_INPUT_SEGMENT, 0);
REG_UPDATE(OPTC_MEMORY_CONFIG,
OPTC_MEM_SEL, 0);
/* disable otg request until end of the first line
* in the vertical blank region
*/
REG_UPDATE(OTG_CONTROL,
OTG_MASTER_EN, 0);
REG_UPDATE(CONTROL,
VTG0_ENABLE, 0);
/* CRTC disabled, so disable clock. */
REG_WAIT(OTG_CLOCK_CONTROL,
OTG_BUSY, 0,
1, 150000);
return true;
}
static void optc401_phantom_crtc_post_enable(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* Disable immediately. */
REG_UPDATE_2(OTG_CONTROL, OTG_DISABLE_POINT_CNTL, 0, OTG_MASTER_EN, 0);
/* CRTC disabled, so disable clock. */
REG_WAIT(OTG_CLOCK_CONTROL, OTG_BUSY, 0, 1, 100000);
}
static void optc401_disable_phantom_otg(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE_5(OPTC_DATA_SOURCE_SELECT,
OPTC_SEG0_SRC_SEL, 0xf,
OPTC_SEG1_SRC_SEL, 0xf,
OPTC_SEG2_SRC_SEL, 0xf,
OPTC_SEG3_SRC_SEL, 0xf,
OPTC_NUM_OF_INPUT_SEGMENT, 0);
REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0);
}
static void optc401_set_odm_bypass(struct timing_generator *optc,
const struct dc_crtc_timing *dc_crtc_timing)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
REG_SET_5(OPTC_DATA_SOURCE_SELECT, 0,
OPTC_NUM_OF_INPUT_SEGMENT, 0,
OPTC_SEG0_SRC_SEL, optc->inst,
OPTC_SEG1_SRC_SEL, 0xf,
OPTC_SEG2_SRC_SEL, 0xf,
OPTC_SEG3_SRC_SEL, 0xf
);
h_div = optc->funcs->is_two_pixels_per_container(dc_crtc_timing);
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, h_div);
REG_SET(OPTC_MEMORY_CONFIG, 0,
OPTC_MEM_SEL, 0);
optc1->opp_count = 1;
}
/* only to be used when FAMS2 is disabled or unsupported */
void optc401_setup_manual_trigger(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
struct dc *dc = optc->ctx->dc;
if (dc->caps.dmub_caps.fams_ver == 1 && !dc->debug.disable_fams)
/* FAMS */
dc_dmub_srv_set_drr_manual_trigger_cmd(dc, optc->inst);
else {
/*
* MIN_MASK_EN is gone and MASK is now always enabled.
*
* To get it to it work with manual trigger we need to make sure
* we program the correct bit.
*/
REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
OTG_V_TOTAL_MIN_SEL, 1,
OTG_V_TOTAL_MAX_SEL, 1,
OTG_FORCE_LOCK_ON_EVENT, 0,
OTG_SET_V_TOTAL_MIN_MASK, (1 << 1)); /* TRIGA */
}
}
void optc401_set_drr(
struct timing_generator *optc,
const struct drr_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
struct dc *dc = optc->ctx->dc;
struct drr_params amended_params = { 0 };
bool program_manual_trigger = false;
if (dc->caps.dmub_caps.fams_ver >= 2 && dc->debug.fams2_config.bits.enable) {
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
amended_params.vertical_total_max = params->vertical_total_max - 1;
amended_params.vertical_total_min = params->vertical_total_min - 1;
if (params->vertical_total_mid != 0) {
amended_params.vertical_total_mid = params->vertical_total_mid - 1;
amended_params.vertical_total_mid_frame_num = params->vertical_total_mid_frame_num;
}
program_manual_trigger = true;
}
dc_dmub_srv_fams2_drr_update(dc, optc->inst,
amended_params.vertical_total_min,
amended_params.vertical_total_max,
amended_params.vertical_total_mid,
amended_params.vertical_total_mid_frame_num,
program_manual_trigger);
} else {
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
if (params->vertical_total_mid != 0) {
REG_SET(OTG_V_TOTAL_MID, 0,
OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
OTG_VTOTAL_MID_FRAME_NUM,
(uint8_t)params->vertical_total_mid_frame_num);
}
optc->funcs->set_vtotal_min_max(optc, params->vertical_total_min - 1, params->vertical_total_max - 1);
optc401_setup_manual_trigger(optc);
} else {
REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
OTG_SET_V_TOTAL_MIN_MASK, 0,
OTG_V_TOTAL_MIN_SEL, 0,
OTG_V_TOTAL_MAX_SEL, 0,
OTG_FORCE_LOCK_ON_EVENT, 0);
optc->funcs->set_vtotal_min_max(optc, 0, 0);
}
}
}
static void optc401_set_out_mux(struct timing_generator *optc, enum otg_out_mux_dest dest)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* 00 - OTG_CONTROL_OTG_OUT_MUX_0 : Connects to DIO.
01 - OTG_CONTROL_OTG_OUT_MUX_1 : Reserved.
02 - OTG_CONTROL_OTG_OUT_MUX_2 : Connects to HPO.
*/
REG_UPDATE(OTG_CONTROL, OTG_OUT_MUX, dest);
}
void optc401_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
{
struct dc *dc = optc->ctx->dc;
if (dc->caps.dmub_caps.fams_ver >= 2 && dc->debug.fams2_config.bits.enable) {
/* FAMS2 */
dc_dmub_srv_fams2_drr_update(dc, optc->inst,
vtotal_min,
vtotal_max,
0,
0,
false);
} else if (dc->caps.dmub_caps.fams_ver == 1 && !dc->debug.disable_fams) {
/* FAMS */
dc_dmub_srv_drr_update_cmd(dc, optc->inst, vtotal_min, vtotal_max);
} else {
optc1_set_vtotal_min_max(optc, vtotal_min, vtotal_max);
}
}
static void optc401_program_global_sync(
struct timing_generator *optc,
int vready_offset,
int vstartup_start,
int vupdate_offset,
int vupdate_width,
int pstate_keepout)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
optc1->vready_offset = vready_offset;
optc1->vstartup_start = vstartup_start;
optc1->vupdate_offset = vupdate_offset;
optc1->vupdate_width = vupdate_width;
optc1->pstate_keepout = pstate_keepout;
if (optc1->vstartup_start == 0) {
BREAK_TO_DEBUGGER();
return;
}
REG_SET(OTG_VSTARTUP_PARAM, 0,
VSTARTUP_START, optc1->vstartup_start);
REG_SET_2(OTG_VUPDATE_PARAM, 0,
VUPDATE_OFFSET, optc1->vupdate_offset,
VUPDATE_WIDTH, optc1->vupdate_width);
REG_SET(OTG_VREADY_PARAM, 0,
VREADY_OFFSET, optc1->vready_offset);
REG_UPDATE(OTG_PSTATE_REGISTER, OTG_PSTATE_KEEPOUT_START, pstate_keepout);
}
static struct timing_generator_funcs dcn401_tg_funcs = {
.validate_timing = optc1_validate_timing,
.program_timing = optc1_program_timing,
.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
.program_global_sync = optc401_program_global_sync,
.enable_crtc = optc401_enable_crtc,
.disable_crtc = optc401_disable_crtc,
.phantom_crtc_post_enable = optc401_phantom_crtc_post_enable,
.disable_phantom_crtc = optc401_disable_phantom_otg,
/* used by enable_timing_synchronization. Not need for FPGA */
.is_counter_moving = optc1_is_counter_moving,
.get_position = optc1_get_position,
.get_frame_count = optc1_get_vblank_counter,
.get_scanoutpos = optc1_get_crtc_scanoutpos,
.get_otg_active_size = optc1_get_otg_active_size,
.set_early_control = optc1_set_early_control,
/* used by enable_timing_synchronization. Not need for FPGA */
.wait_for_state = optc1_wait_for_state,
.set_blank_color = optc3_program_blank_color,
.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
.triplebuffer_lock = optc3_triplebuffer_lock,
.triplebuffer_unlock = optc2_triplebuffer_unlock,
.enable_reset_trigger = optc1_enable_reset_trigger,
.enable_crtc_reset = optc1_enable_crtc_reset,
.disable_reset_trigger = optc1_disable_reset_trigger,
.lock = optc3_lock,
.unlock = optc1_unlock,
.lock_doublebuffer_enable = optc3_lock_doublebuffer_enable,
.lock_doublebuffer_disable = optc3_lock_doublebuffer_disable,
.enable_optc_clock = optc1_enable_optc_clock,
.set_drr = optc401_set_drr,
.get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal,
.set_vtotal_min_max = optc401_set_vtotal_min_max,
.set_static_screen_control = optc1_set_static_screen_control,
.program_stereo = optc1_program_stereo,
.is_stereo_left_eye = optc1_is_stereo_left_eye,
.tg_init = optc3_tg_init,
.is_tg_enabled = optc1_is_tg_enabled,
.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
.clear_optc_underflow = optc1_clear_optc_underflow,
.setup_global_swap_lock = NULL,
.get_crc = optc1_get_crc,
.configure_crc = optc1_configure_crc,
.set_dsc_config = optc3_set_dsc_config,
.get_dsc_status = optc2_get_dsc_status,
.set_dwb_source = NULL,
.set_odm_bypass = optc401_set_odm_bypass,
.set_odm_combine = optc401_set_odm_combine,
.wait_odm_doublebuffer_pending_clear = optc32_wait_odm_doublebuffer_pending_clear,
.set_h_timing_div_manual_mode = optc401_set_h_timing_div_manual_mode,
.get_optc_source = optc2_get_optc_source,
.set_out_mux = optc401_set_out_mux,
.set_drr_trigger_window = optc3_set_drr_trigger_window,
.set_vtotal_change_limit = optc3_set_vtotal_change_limit,
.set_gsl = optc2_set_gsl,
.set_gsl_source_select = optc2_set_gsl_source_select,
.set_vtg_params = optc1_set_vtg_params,
.program_manual_trigger = optc2_program_manual_trigger,
.setup_manual_trigger = optc2_setup_manual_trigger,
.get_hw_timing = optc1_get_hw_timing,
.is_two_pixels_per_container = optc1_is_two_pixels_per_container,
.get_double_buffer_pending = optc32_get_double_buffer_pending,
};
void dcn401_timing_generator_init(struct optc *optc1)
{
optc1->base.funcs = &dcn401_tg_funcs;
optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
optc1->min_h_blank = 32;
optc1->min_v_blank = 3;
optc1->min_v_blank_interlace = 5;
optc1->min_h_sync_width = 4;
optc1->min_v_sync_width = 1;
}
|