summaryrefslogtreecommitdiffstats
path: root/drivers/md/persistent-data/dm-btree.c
blob: 5ce64e93aae74a5d585cb928be3191ca2c2d2d81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
/*
 * Copyright (C) 2011 Red Hat, Inc.
 *
 * This file is released under the GPL.
 */

#include "dm-btree-internal.h"
#include "dm-space-map.h"
#include "dm-transaction-manager.h"

#include <linux/export.h>
#include <linux/device-mapper.h>

#define DM_MSG_PREFIX "btree"

/*----------------------------------------------------------------
 * Array manipulation
 *--------------------------------------------------------------*/
static void memcpy_disk(void *dest, const void *src, size_t len)
	__dm_written_to_disk(src)
{
	memcpy(dest, src, len);
	__dm_unbless_for_disk(src);
}

static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
			 unsigned index, void *elt)
	__dm_written_to_disk(elt)
{
	if (index < nr_elts)
		memmove(base + (elt_size * (index + 1)),
			base + (elt_size * index),
			(nr_elts - index) * elt_size);

	memcpy_disk(base + (elt_size * index), elt, elt_size);
}

/*----------------------------------------------------------------*/

/* makes the assumption that no two keys are the same. */
static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
{
	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);

	while (hi - lo > 1) {
		int mid = lo + ((hi - lo) / 2);
		uint64_t mid_key = le64_to_cpu(n->keys[mid]);

		if (mid_key == key)
			return mid;

		if (mid_key < key)
			lo = mid;
		else
			hi = mid;
	}

	return want_hi ? hi : lo;
}

int lower_bound(struct btree_node *n, uint64_t key)
{
	return bsearch(n, key, 0);
}

static int upper_bound(struct btree_node *n, uint64_t key)
{
	return bsearch(n, key, 1);
}

void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
		  struct dm_btree_value_type *vt)
{
	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);

	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
		dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);

	else if (vt->inc)
		vt->inc(vt->context, value_ptr(n, 0), nr_entries);
}

static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
		     uint64_t key, void *value)
	__dm_written_to_disk(value)
{
	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
	uint32_t max_entries = le32_to_cpu(node->header.max_entries);
	__le64 key_le = cpu_to_le64(key);

	if (index > nr_entries ||
	    index >= max_entries ||
	    nr_entries >= max_entries) {
		DMERR("too many entries in btree node for insert");
		__dm_unbless_for_disk(value);
		return -ENOMEM;
	}

	__dm_bless_for_disk(&key_le);

	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
	array_insert(value_base(node), value_size, nr_entries, index, value);
	node->header.nr_entries = cpu_to_le32(nr_entries + 1);

	return 0;
}

/*----------------------------------------------------------------*/

/*
 * We want 3n entries (for some n).  This works more nicely for repeated
 * insert remove loops than (2n + 1).
 */
static uint32_t calc_max_entries(size_t value_size, size_t block_size)
{
	uint32_t total, n;
	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */

	block_size -= sizeof(struct node_header);
	total = block_size / elt_size;
	n = total / 3;		/* rounds down */

	return 3 * n;
}

int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
{
	int r;
	struct dm_block *b;
	struct btree_node *n;
	size_t block_size;
	uint32_t max_entries;

	r = new_block(info, &b);
	if (r < 0)
		return r;

	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
	max_entries = calc_max_entries(info->value_type.size, block_size);

	n = dm_block_data(b);
	memset(n, 0, block_size);
	n->header.flags = cpu_to_le32(LEAF_NODE);
	n->header.nr_entries = cpu_to_le32(0);
	n->header.max_entries = cpu_to_le32(max_entries);
	n->header.value_size = cpu_to_le32(info->value_type.size);

	*root = dm_block_location(b);
	unlock_block(info, b);

	return 0;
}
EXPORT_SYMBOL_GPL(dm_btree_empty);

/*----------------------------------------------------------------*/

/*
 * Deletion uses a recursive algorithm, since we have limited stack space
 * we explicitly manage our own stack on the heap.
 */
#define MAX_SPINE_DEPTH 64
struct frame {
	struct dm_block *b;
	struct btree_node *n;
	unsigned level;
	unsigned nr_children;
	unsigned current_child;
};

struct del_stack {
	struct dm_btree_info *info;
	struct dm_transaction_manager *tm;
	int top;
	struct frame spine[MAX_SPINE_DEPTH];
};

static int top_frame(struct del_stack *s, struct frame **f)
{
	if (s->top < 0) {
		DMERR("btree deletion stack empty");
		return -EINVAL;
	}

	*f = s->spine + s->top;

	return 0;
}

static int unprocessed_frames(struct del_stack *s)
{
	return s->top >= 0;
}

static void prefetch_children(struct del_stack *s, struct frame *f)
{
	unsigned i;
	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);

	for (i = 0; i < f->nr_children; i++)
		dm_bm_prefetch(bm, value64(f->n, i));
}

static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
{
	return f->level < (info->levels - 1);
}

static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
{
	int r;
	uint32_t ref_count;

	if (s->top >= MAX_SPINE_DEPTH - 1) {
		DMERR("btree deletion stack out of memory");
		return -ENOMEM;
	}

	r = dm_tm_ref(s->tm, b, &ref_count);
	if (r)
		return r;

	if (ref_count > 1)
		/*
		 * This is a shared node, so we can just decrement it's
		 * reference counter and leave the children.
		 */
		dm_tm_dec(s->tm, b);

	else {
		uint32_t flags;
		struct frame *f = s->spine + ++s->top;

		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
		if (r) {
			s->top--;
			return r;
		}

		f->n = dm_block_data(f->b);
		f->level = level;
		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
		f->current_child = 0;

		flags = le32_to_cpu(f->n->header.flags);
		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
			prefetch_children(s, f);
	}

	return 0;
}

static void pop_frame(struct del_stack *s)
{
	struct frame *f = s->spine + s->top--;

	dm_tm_dec(s->tm, dm_block_location(f->b));
	dm_tm_unlock(s->tm, f->b);
}

static void unlock_all_frames(struct del_stack *s)
{
	struct frame *f;

	while (unprocessed_frames(s)) {
		f = s->spine + s->top--;
		dm_tm_unlock(s->tm, f->b);
	}
}

int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
{
	int r;
	struct del_stack *s;

	/*
	 * dm_btree_del() is called via an ioctl, as such should be
	 * considered an FS op.  We can't recurse back into the FS, so we
	 * allocate GFP_NOFS.
	 */
	s = kmalloc(sizeof(*s), GFP_NOFS);
	if (!s)
		return -ENOMEM;
	s->info = info;
	s->tm = info->tm;
	s->top = -1;

	r = push_frame(s, root, 0);
	if (r)
		goto out;

	while (unprocessed_frames(s)) {
		uint32_t flags;
		struct frame *f;
		dm_block_t b;

		r = top_frame(s, &f);
		if (r)
			goto out;

		if (f->current_child >= f->nr_children) {
			pop_frame(s);
			continue;
		}

		flags = le32_to_cpu(f->n->header.flags);
		if (flags & INTERNAL_NODE) {
			b = value64(f->n, f->current_child);
			f->current_child++;
			r = push_frame(s, b, f->level);
			if (r)
				goto out;

		} else if (is_internal_level(info, f)) {
			b = value64(f->n, f->current_child);
			f->current_child++;
			r = push_frame(s, b, f->level + 1);
			if (r)
				goto out;

		} else {
			if (info->value_type.dec)
				info->value_type.dec(info->value_type.context,
						     value_ptr(f->n, 0), f->nr_children);
			pop_frame(s);
		}
	}
out:
	if (r) {
		/* cleanup all frames of del_stack */
		unlock_all_frames(s);
	}
	kfree(s);

	return r;
}
EXPORT_SYMBOL_GPL(dm_btree_del);

/*----------------------------------------------------------------*/

static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
			    int (*search_fn)(struct btree_node *, uint64_t),
			    uint64_t *result_key, void *v, size_t value_size)
{
	int i, r;
	uint32_t flags, nr_entries;

	do {
		r = ro_step(s, block);
		if (r < 0)
			return r;

		i = search_fn(ro_node(s), key);

		flags = le32_to_cpu(ro_node(s)->header.flags);
		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
		if (i < 0 || i >= nr_entries)
			return -ENODATA;

		if (flags & INTERNAL_NODE)
			block = value64(ro_node(s), i);

	} while (!(flags & LEAF_NODE));

	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
	if (v)
		memcpy(v, value_ptr(ro_node(s), i), value_size);

	return 0;
}

int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
		    uint64_t *keys, void *value_le)
{
	unsigned level, last_level = info->levels - 1;
	int r = -ENODATA;
	uint64_t rkey;
	__le64 internal_value_le;
	struct ro_spine spine;

	init_ro_spine(&spine, info);
	for (level = 0; level < info->levels; level++) {
		size_t size;
		void *value_p;

		if (level == last_level) {
			value_p = value_le;
			size = info->value_type.size;

		} else {
			value_p = &internal_value_le;
			size = sizeof(uint64_t);
		}

		r = btree_lookup_raw(&spine, root, keys[level],
				     lower_bound, &rkey,
				     value_p, size);

		if (!r) {
			if (rkey != keys[level]) {
				exit_ro_spine(&spine);
				return -ENODATA;
			}
		} else {
			exit_ro_spine(&spine);
			return r;
		}

		root = le64_to_cpu(internal_value_le);
	}
	exit_ro_spine(&spine);

	return r;
}
EXPORT_SYMBOL_GPL(dm_btree_lookup);

static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
				       uint64_t key, uint64_t *rkey, void *value_le)
{
	int r, i;
	uint32_t flags, nr_entries;
	struct dm_block *node;
	struct btree_node *n;

	r = bn_read_lock(info, root, &node);
	if (r)
		return r;

	n = dm_block_data(node);
	flags = le32_to_cpu(n->header.flags);
	nr_entries = le32_to_cpu(n->header.nr_entries);

	if (flags & INTERNAL_NODE) {
		i = lower_bound(n, key);
		if (i < 0) {
			/*
			 * avoid early -ENODATA return when all entries are
			 * higher than the search @key.
			 */
			i = 0;
		}
		if (i >= nr_entries) {
			r = -ENODATA;
			goto out;
		}

		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
		if (r == -ENODATA && i < (nr_entries - 1)) {
			i++;
			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
		}

	} else {
		i = upper_bound(n, key);
		if (i < 0 || i >= nr_entries) {
			r = -ENODATA;
			goto out;
		}

		*rkey = le64_to_cpu(n->keys[i]);
		memcpy(value_le, value_ptr(n, i), info->value_type.size);
	}
out:
	dm_tm_unlock(info->tm, node);
	return r;
}

int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
			 uint64_t *keys, uint64_t *rkey, void *value_le)
{
	unsigned level;
	int r = -ENODATA;
	__le64 internal_value_le;
	struct ro_spine spine;

	init_ro_spine(&spine, info);
	for (level = 0; level < info->levels - 1u; level++) {
		r = btree_lookup_raw(&spine, root, keys[level],
				     lower_bound, rkey,
				     &internal_value_le, sizeof(uint64_t));
		if (r)
			goto out;

		if (*rkey != keys[level]) {
			r = -ENODATA;
			goto out;
		}

		root = le64_to_cpu(internal_value_le);
	}

	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
out:
	exit_ro_spine(&spine);
	return r;
}

EXPORT_SYMBOL_GPL(dm_btree_lookup_next);

/*----------------------------------------------------------------*/

/*
 * Copies entries from one region of a btree node to another.  The regions
 * must not overlap.
 */
static void copy_entries(struct btree_node *dest, unsigned dest_offset,
			 struct btree_node *src, unsigned src_offset,
			 unsigned count)
{
	size_t value_size = le32_to_cpu(dest->header.value_size);
	memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
	memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
}

/*
 * Moves entries from one region fo a btree node to another.  The regions
 * may overlap.
 */
static void move_entries(struct btree_node *dest, unsigned dest_offset,
			 struct btree_node *src, unsigned src_offset,
			 unsigned count)
{
	size_t value_size = le32_to_cpu(dest->header.value_size);
	memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
	memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
}

/*
 * Erases the first 'count' entries of a btree node, shifting following
 * entries down into their place.
 */
static void shift_down(struct btree_node *n, unsigned count)
{
	move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
}

/*
 * Moves entries in a btree node up 'count' places, making space for
 * new entries at the start of the node.
 */
static void shift_up(struct btree_node *n, unsigned count)
{
	move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
}

/*
 * Redistributes entries between two btree nodes to make them
 * have similar numbers of entries.
 */
static void redistribute2(struct btree_node *left, struct btree_node *right)
{
	unsigned nr_left = le32_to_cpu(left->header.nr_entries);
	unsigned nr_right = le32_to_cpu(right->header.nr_entries);
	unsigned total = nr_left + nr_right;
	unsigned target_left = total / 2;
	unsigned target_right = total - target_left;

	if (nr_left < target_left) {
		unsigned delta = target_left - nr_left;
		copy_entries(left, nr_left, right, 0, delta);
		shift_down(right, delta);
	} else if (nr_left > target_left) {
		unsigned delta = nr_left - target_left;
		if (nr_right)
			shift_up(right, delta);
		copy_entries(right, 0, left, target_left, delta);
	}

	left->header.nr_entries = cpu_to_le32(target_left);
	right->header.nr_entries = cpu_to_le32(target_right);
}

/*
 * Redistribute entries between three nodes.  Assumes the central
 * node is empty.
 */
static void redistribute3(struct btree_node *left, struct btree_node *center,
			  struct btree_node *right)
{
	unsigned nr_left = le32_to_cpu(left->header.nr_entries);
	unsigned nr_center = le32_to_cpu(center->header.nr_entries);
	unsigned nr_right = le32_to_cpu(right->header.nr_entries);
	unsigned total, target_left, target_center, target_right;

	BUG_ON(nr_center);

	total = nr_left + nr_right;
	target_left = total / 3;
	target_center = (total - target_left) / 2;
	target_right = (total - target_left - target_center);

	if (nr_left < target_left) {
		unsigned left_short = target_left - nr_left;
		copy_entries(left, nr_left, right, 0, left_short);
		copy_entries(center, 0, right, left_short, target_center);
		shift_down(right, nr_right - target_right);

	} else if (nr_left < (target_left + target_center)) {
		unsigned left_to_center = nr_left - target_left;
		copy_entries(center, 0, left, target_left, left_to_center);
		copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
		shift_down(right, nr_right - target_right);

	} else {
		unsigned right_short = target_right - nr_right;
		shift_up(right, right_short);
		copy_entries(right, 0, left, nr_left - right_short, right_short);
		copy_entries(center, 0, left, target_left, nr_left - target_left);
	}

	left->header.nr_entries = cpu_to_le32(target_left);
	center->header.nr_entries = cpu_to_le32(target_center);
	right->header.nr_entries = cpu_to_le32(target_right);
}

/*
 * Splits a node by creating a sibling node and shifting half the nodes
 * contents across.  Assumes there is a parent node, and it has room for
 * another child.
 *
 * Before:
 *	  +--------+
 *	  | Parent |
 *	  +--------+
 *	     |
 *	     v
 *	+----------+
 *	| A ++++++ |
 *	+----------+
 *
 *
 * After:
 *		+--------+
 *		| Parent |
 *		+--------+
 *		  |	|
 *		  v	+------+
 *	    +---------+	       |
 *	    | A* +++  |	       v
 *	    +---------+	  +-------+
 *			  | B +++ |
 *			  +-------+
 *
 * Where A* is a shadow of A.
 */
static int split_one_into_two(struct shadow_spine *s, unsigned parent_index,
			      struct dm_btree_value_type *vt, uint64_t key)
{
	int r;
	struct dm_block *left, *right, *parent;
	struct btree_node *ln, *rn, *pn;
	__le64 location;

	left = shadow_current(s);

	r = new_block(s->info, &right);
	if (r < 0)
		return r;

	ln = dm_block_data(left);
	rn = dm_block_data(right);

	rn->header.flags = ln->header.flags;
	rn->header.nr_entries = cpu_to_le32(0);
	rn->header.max_entries = ln->header.max_entries;
	rn->header.value_size = ln->header.value_size;
	redistribute2(ln, rn);

	/* patch up the parent */
	parent = shadow_parent(s);
	pn = dm_block_data(parent);

	location = cpu_to_le64(dm_block_location(right));
	__dm_bless_for_disk(&location);
	r = insert_at(sizeof(__le64), pn, parent_index + 1,
		      le64_to_cpu(rn->keys[0]), &location);
	if (r) {
		unlock_block(s->info, right);
		return r;
	}

	/* patch up the spine */
	if (key < le64_to_cpu(rn->keys[0])) {
		unlock_block(s->info, right);
		s->nodes[1] = left;
	} else {
		unlock_block(s->info, left);
		s->nodes[1] = right;
	}

	return 0;
}

/*
 * We often need to modify a sibling node.  This function shadows a particular
 * child of the given parent node.  Making sure to update the parent to point
 * to the new shadow.
 */
static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
			struct btree_node *parent, unsigned index,
			struct dm_block **result)
{
	int r, inc;
	dm_block_t root;
	struct btree_node *node;

	root = value64(parent, index);

	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
			       result, &inc);
	if (r)
		return r;

	node = dm_block_data(*result);

	if (inc)
		inc_children(info->tm, node, vt);

	*((__le64 *) value_ptr(parent, index)) =
		cpu_to_le64(dm_block_location(*result));

	return 0;
}

/*
 * Splits two nodes into three.  This is more work, but results in fuller
 * nodes, so saves metadata space.
 */
static int split_two_into_three(struct shadow_spine *s, unsigned parent_index,
                                struct dm_btree_value_type *vt, uint64_t key)
{
	int r;
	unsigned middle_index;
	struct dm_block *left, *middle, *right, *parent;
	struct btree_node *ln, *rn, *mn, *pn;
	__le64 location;

	parent = shadow_parent(s);
	pn = dm_block_data(parent);

	if (parent_index == 0) {
		middle_index = 1;
		left = shadow_current(s);
		r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
		if (r)
			return r;
	} else {
		middle_index = parent_index;
		right = shadow_current(s);
		r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
		if (r)
			return r;
	}

	r = new_block(s->info, &middle);
	if (r < 0)
		return r;

	ln = dm_block_data(left);
	mn = dm_block_data(middle);
	rn = dm_block_data(right);

	mn->header.nr_entries = cpu_to_le32(0);
	mn->header.flags = ln->header.flags;
	mn->header.max_entries = ln->header.max_entries;
	mn->header.value_size = ln->header.value_size;

	redistribute3(ln, mn, rn);

	/* patch up the parent */
	pn->keys[middle_index] = rn->keys[0];
	location = cpu_to_le64(dm_block_location(middle));
	__dm_bless_for_disk(&location);
	r = insert_at(sizeof(__le64), pn, middle_index,
		      le64_to_cpu(mn->keys[0]), &location);
	if (r) {
		if (shadow_current(s) != left)
			unlock_block(s->info, left);

		unlock_block(s->info, middle);

		if (shadow_current(s) != right)
			unlock_block(s->info, right);

	        return r;
	}


	/* patch up the spine */
	if (key < le64_to_cpu(mn->keys[0])) {
		unlock_block(s->info, middle);
		unlock_block(s->info, right);
		s->nodes[1] = left;
	} else if (key < le64_to_cpu(rn->keys[0])) {
		unlock_block(s->info, left);
		unlock_block(s->info, right);
		s->nodes[1] = middle;
	} else {
		unlock_block(s->info, left);
		unlock_block(s->info, middle);
		s->nodes[1] = right;
	}

	return 0;
}

/*----------------------------------------------------------------*/

/*
 * Splits a node by creating two new children beneath the given node.
 *
 * Before:
 *	  +----------+
 *	  | A ++++++ |
 *	  +----------+
 *
 *
 * After:
 *	+------------+
 *	| A (shadow) |
 *	+------------+
 *	    |	|
 *   +------+	+----+
 *   |		     |
 *   v		     v
 * +-------+	 +-------+
 * | B +++ |	 | C +++ |
 * +-------+	 +-------+
 */
static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
{
	int r;
	size_t size;
	unsigned nr_left, nr_right;
	struct dm_block *left, *right, *new_parent;
	struct btree_node *pn, *ln, *rn;
	__le64 val;

	new_parent = shadow_current(s);

	pn = dm_block_data(new_parent);
	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
		sizeof(__le64) : s->info->value_type.size;

	/* create & init the left block */
	r = new_block(s->info, &left);
	if (r < 0)
		return r;

	ln = dm_block_data(left);
	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;

	ln->header.flags = pn->header.flags;
	ln->header.nr_entries = cpu_to_le32(nr_left);
	ln->header.max_entries = pn->header.max_entries;
	ln->header.value_size = pn->header.value_size;
	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);

	/* create & init the right block */
	r = new_block(s->info, &right);
	if (r < 0) {
		unlock_block(s->info, left);
		return r;
	}

	rn = dm_block_data(right);
	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;

	rn->header.flags = pn->header.flags;
	rn->header.nr_entries = cpu_to_le32(nr_right);
	rn->header.max_entries = pn->header.max_entries;
	rn->header.value_size = pn->header.value_size;
	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
	       nr_right * size);

	/* new_parent should just point to l and r now */
	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
	pn->header.nr_entries = cpu_to_le32(2);
	pn->header.max_entries = cpu_to_le32(
		calc_max_entries(sizeof(__le64),
				 dm_bm_block_size(
					 dm_tm_get_bm(s->info->tm))));
	pn->header.value_size = cpu_to_le32(sizeof(__le64));

	val = cpu_to_le64(dm_block_location(left));
	__dm_bless_for_disk(&val);
	pn->keys[0] = ln->keys[0];
	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));

	val = cpu_to_le64(dm_block_location(right));
	__dm_bless_for_disk(&val);
	pn->keys[1] = rn->keys[0];
	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));

	unlock_block(s->info, left);
	unlock_block(s->info, right);
	return 0;
}

/*----------------------------------------------------------------*/

/*
 * Redistributes a node's entries with its left sibling.
 */
static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
			  unsigned parent_index, uint64_t key)
{
	int r;
	struct dm_block *sib;
	struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));

	r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
	if (r)
		return r;

	left = dm_block_data(sib);
	right = dm_block_data(shadow_current(s));
	redistribute2(left, right);
	*key_ptr(parent, parent_index) = right->keys[0];

	if (key < le64_to_cpu(right->keys[0])) {
		unlock_block(s->info, s->nodes[1]);
		s->nodes[1] = sib;
	} else {
		unlock_block(s->info, sib);
	}

	return 0;
}

/*
 * Redistributes a nodes entries with its right sibling.
 */
static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
			   unsigned parent_index, uint64_t key)
{
	int r;
	struct dm_block *sib;
	struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));

	r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
	if (r)
		return r;

	left = dm_block_data(shadow_current(s));
	right = dm_block_data(sib);
	redistribute2(left, right);
	*key_ptr(parent, parent_index + 1) = right->keys[0];

	if (key < le64_to_cpu(right->keys[0])) {
		unlock_block(s->info, sib);
	} else {
		unlock_block(s->info, s->nodes[1]);
		s->nodes[1] = sib;
	}

	return 0;
}

/*
 * Returns the number of spare entries in a node.
 */
static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned *space)
{
	int r;
	unsigned nr_entries;
	struct dm_block *block;
	struct btree_node *node;

	r = bn_read_lock(info, b, &block);
	if (r)
		return r;

	node = dm_block_data(block);
	nr_entries = le32_to_cpu(node->header.nr_entries);
	*space = le32_to_cpu(node->header.max_entries) - nr_entries;

	unlock_block(info, block);
	return 0;
}

/*
 * Make space in a node, either by moving some entries to a sibling,
 * or creating a new sibling node.  SPACE_THRESHOLD defines the minimum
 * number of free entries that must be in the sibling to make the move
 * worth while.  If the siblings are shared (eg, part of a snapshot),
 * then they are not touched, since this break sharing and so consume
 * more space than we save.
 */
#define SPACE_THRESHOLD 8
static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
			      unsigned parent_index, uint64_t key)
{
	int r;
	struct btree_node *parent = dm_block_data(shadow_parent(s));
	unsigned nr_parent = le32_to_cpu(parent->header.nr_entries);
	unsigned free_space;
	int left_shared = 0, right_shared = 0;

	/* Should we move entries to the left sibling? */
	if (parent_index > 0) {
		dm_block_t left_b = value64(parent, parent_index - 1);
		r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
		if (r)
			return r;

		if (!left_shared) {
			r = get_node_free_space(s->info, left_b, &free_space);
			if (r)
				return r;

			if (free_space >= SPACE_THRESHOLD)
				return rebalance_left(s, vt, parent_index, key);
		}
	}

	/* Should we move entries to the right sibling? */
	if (parent_index < (nr_parent - 1)) {
		dm_block_t right_b = value64(parent, parent_index + 1);
		r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
		if (r)
			return r;

		if (!right_shared) {
			r = get_node_free_space(s->info, right_b, &free_space);
			if (r)
				return r;

			if (free_space >= SPACE_THRESHOLD)
				return rebalance_right(s, vt, parent_index, key);
		}
	}

	/*
	 * We need to split the node, normally we split two nodes
	 * into three.	But when inserting a sequence that is either
	 * monotonically increasing or decreasing it's better to split
	 * a single node into two.
	 */
	if (left_shared || right_shared || (nr_parent <= 2) ||
	    (parent_index == 0) || (parent_index + 1 == nr_parent)) {
		return split_one_into_two(s, parent_index, vt, key);
	} else {
		return split_two_into_three(s, parent_index, vt, key);
	}
}

/*
 * Does the node contain a particular key?
 */
static bool contains_key(struct btree_node *node, uint64_t key)
{
	int i = lower_bound(node, key);

	if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
		return true;

	return false;
}

/*
 * In general we preemptively make sure there's a free entry in every
 * node on the spine when doing an insert.  But we can avoid that with
 * leaf nodes if we know it's an overwrite.
 */
static bool has_space_for_insert(struct btree_node *node, uint64_t key)
{
	if (node->header.nr_entries == node->header.max_entries) {
		if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
			/* we don't need space if it's an overwrite */
			return contains_key(node, key);
		}

		return false;
	}

	return true;
}

static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
			    struct dm_btree_value_type *vt,
			    uint64_t key, unsigned *index)
{
	int r, i = *index, top = 1;
	struct btree_node *node;

	for (;;) {
		r = shadow_step(s, root, vt);
		if (r < 0)
			return r;

		node = dm_block_data(shadow_current(s));

		/*
		 * We have to patch up the parent node, ugly, but I don't
		 * see a way to do this automatically as part of the spine
		 * op.
		 */
		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));

			__dm_bless_for_disk(&location);
			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
				    &location, sizeof(__le64));
		}

		node = dm_block_data(shadow_current(s));

		if (!has_space_for_insert(node, key)) {
			if (top)
				r = btree_split_beneath(s, key);
			else
				r = rebalance_or_split(s, vt, i, key);

			if (r < 0)
				return r;

			/* making space can cause the current node to change */
			node = dm_block_data(shadow_current(s));
		}

		i = lower_bound(node, key);

		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
			break;

		if (i < 0) {
			/* change the bounds on the lowest key */
			node->keys[0] = cpu_to_le64(key);
			i = 0;
		}

		root = value64(node, i);
		top = 0;
	}

	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
		i++;

	*index = i;
	return 0;
}

static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
				      uint64_t key, int *index)
{
	int r, i = -1;
	struct btree_node *node;

	*index = 0;
	for (;;) {
		r = shadow_step(s, root, &s->info->value_type);
		if (r < 0)
			return r;

		node = dm_block_data(shadow_current(s));

		/*
		 * We have to patch up the parent node, ugly, but I don't
		 * see a way to do this automatically as part of the spine
		 * op.
		 */
		if (shadow_has_parent(s) && i >= 0) {
			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));

			__dm_bless_for_disk(&location);
			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
				    &location, sizeof(__le64));
		}

		node = dm_block_data(shadow_current(s));
		i = lower_bound(node, key);

		BUG_ON(i < 0);
		BUG_ON(i >= le32_to_cpu(node->header.nr_entries));

		if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
			if (key != le64_to_cpu(node->keys[i]))
				return -EINVAL;
			break;
		}

		root = value64(node, i);
	}

	*index = i;
	return 0;
}

int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
			     uint64_t key, int *index,
			     dm_block_t *new_root, struct dm_block **leaf)
{
	int r;
	struct shadow_spine spine;

	BUG_ON(info->levels > 1);
	init_shadow_spine(&spine, info);
	r = __btree_get_overwrite_leaf(&spine, root, key, index);
	if (!r) {
		*new_root = shadow_root(&spine);
		*leaf = shadow_current(&spine);

		/*
		 * Decrement the count so exit_shadow_spine() doesn't
		 * unlock the leaf.
		 */
		spine.count--;
	}
	exit_shadow_spine(&spine);

	return r;
}

static bool need_insert(struct btree_node *node, uint64_t *keys,
			unsigned level, unsigned index)
{
        return ((index >= le32_to_cpu(node->header.nr_entries)) ||
		(le64_to_cpu(node->keys[index]) != keys[level]));
}

static int insert(struct dm_btree_info *info, dm_block_t root,
		  uint64_t *keys, void *value, dm_block_t *new_root,
		  int *inserted)
		  __dm_written_to_disk(value)
{
	int r;
	unsigned level, index = -1, last_level = info->levels - 1;
	dm_block_t block = root;
	struct shadow_spine spine;
	struct btree_node *n;
	struct dm_btree_value_type le64_type;

	init_le64_type(info->tm, &le64_type);
	init_shadow_spine(&spine, info);

	for (level = 0; level < (info->levels - 1); level++) {
		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
		if (r < 0)
			goto bad;

		n = dm_block_data(shadow_current(&spine));

		if (need_insert(n, keys, level, index)) {
			dm_block_t new_tree;
			__le64 new_le;

			r = dm_btree_empty(info, &new_tree);
			if (r < 0)
				goto bad;

			new_le = cpu_to_le64(new_tree);
			__dm_bless_for_disk(&new_le);

			r = insert_at(sizeof(uint64_t), n, index,
				      keys[level], &new_le);
			if (r)
				goto bad;
		}

		if (level < last_level)
			block = value64(n, index);
	}

	r = btree_insert_raw(&spine, block, &info->value_type,
			     keys[level], &index);
	if (r < 0)
		goto bad;

	n = dm_block_data(shadow_current(&spine));

	if (need_insert(n, keys, level, index)) {
		if (inserted)
			*inserted = 1;

		r = insert_at(info->value_type.size, n, index,
			      keys[level], value);
		if (r)
			goto bad_unblessed;
	} else {
		if (inserted)
			*inserted = 0;

		if (info->value_type.dec &&
		    (!info->value_type.equal ||
		     !info->value_type.equal(
			     info->value_type.context,
			     value_ptr(n, index),
			     value))) {
			info->value_type.dec(info->value_type.context,
					     value_ptr(n, index), 1);
		}
		memcpy_disk(value_ptr(n, index),
			    value, info->value_type.size);
	}

	*new_root = shadow_root(&spine);
	exit_shadow_spine(&spine);

	return 0;

bad:
	__dm_unbless_for_disk(value);
bad_unblessed:
	exit_shadow_spine(&spine);
	return r;
}

int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
		    uint64_t *keys, void *value, dm_block_t *new_root)
		    __dm_written_to_disk(value)
{
	return insert(info, root, keys, value, new_root, NULL);
}
EXPORT_SYMBOL_GPL(dm_btree_insert);

int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
			   uint64_t *keys, void *value, dm_block_t *new_root,
			   int *inserted)
			   __dm_written_to_disk(value)
{
	return insert(info, root, keys, value, new_root, inserted);
}
EXPORT_SYMBOL_GPL(dm_btree_insert_notify);

/*----------------------------------------------------------------*/

static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
		    uint64_t *result_key, dm_block_t *next_block)
{
	int i, r;
	uint32_t flags;

	do {
		r = ro_step(s, block);
		if (r < 0)
			return r;

		flags = le32_to_cpu(ro_node(s)->header.flags);
		i = le32_to_cpu(ro_node(s)->header.nr_entries);
		if (!i)
			return -ENODATA;
		else
			i--;

		if (find_highest)
			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
		else
			*result_key = le64_to_cpu(ro_node(s)->keys[0]);

		if (next_block || flags & INTERNAL_NODE) {
			if (find_highest)
				block = value64(ro_node(s), i);
			else
				block = value64(ro_node(s), 0);
		}

	} while (flags & INTERNAL_NODE);

	if (next_block)
		*next_block = block;
	return 0;
}

static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
			     bool find_highest, uint64_t *result_keys)
{
	int r = 0, count = 0, level;
	struct ro_spine spine;

	init_ro_spine(&spine, info);
	for (level = 0; level < info->levels; level++) {
		r = find_key(&spine, root, find_highest, result_keys + level,
			     level == info->levels - 1 ? NULL : &root);
		if (r == -ENODATA) {
			r = 0;
			break;

		} else if (r)
			break;

		count++;
	}
	exit_ro_spine(&spine);

	return r ? r : count;
}

int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
			      uint64_t *result_keys)
{
	return dm_btree_find_key(info, root, true, result_keys);
}
EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);

int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
			     uint64_t *result_keys)
{
	return dm_btree_find_key(info, root, false, result_keys);
}
EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);

/*----------------------------------------------------------------*/

/*
 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
 * space.  Also this only works for single level trees.
 */
static int walk_node(struct dm_btree_info *info, dm_block_t block,
		     int (*fn)(void *context, uint64_t *keys, void *leaf),
		     void *context)
{
	int r;
	unsigned i, nr;
	struct dm_block *node;
	struct btree_node *n;
	uint64_t keys;

	r = bn_read_lock(info, block, &node);
	if (r)
		return r;

	n = dm_block_data(node);

	nr = le32_to_cpu(n->header.nr_entries);
	for (i = 0; i < nr; i++) {
		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
			r = walk_node(info, value64(n, i), fn, context);
			if (r)
				goto out;
		} else {
			keys = le64_to_cpu(*key_ptr(n, i));
			r = fn(context, &keys, value_ptr(n, i));
			if (r)
				goto out;
		}
	}

out:
	dm_tm_unlock(info->tm, node);
	return r;
}

int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
		  int (*fn)(void *context, uint64_t *keys, void *leaf),
		  void *context)
{
	BUG_ON(info->levels > 1);
	return walk_node(info, root, fn, context);
}
EXPORT_SYMBOL_GPL(dm_btree_walk);

/*----------------------------------------------------------------*/

static void prefetch_values(struct dm_btree_cursor *c)
{
	unsigned i, nr;
	__le64 value_le;
	struct cursor_node *n = c->nodes + c->depth - 1;
	struct btree_node *bn = dm_block_data(n->b);
	struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);

	BUG_ON(c->info->value_type.size != sizeof(value_le));

	nr = le32_to_cpu(bn->header.nr_entries);
	for (i = 0; i < nr; i++) {
		memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
		dm_bm_prefetch(bm, le64_to_cpu(value_le));
	}
}

static bool leaf_node(struct dm_btree_cursor *c)
{
	struct cursor_node *n = c->nodes + c->depth - 1;
	struct btree_node *bn = dm_block_data(n->b);

	return le32_to_cpu(bn->header.flags) & LEAF_NODE;
}

static int push_node(struct dm_btree_cursor *c, dm_block_t b)
{
	int r;
	struct cursor_node *n = c->nodes + c->depth;

	if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
		DMERR("couldn't push cursor node, stack depth too high");
		return -EINVAL;
	}

	r = bn_read_lock(c->info, b, &n->b);
	if (r)
		return r;

	n->index = 0;
	c->depth++;

	if (c->prefetch_leaves || !leaf_node(c))
		prefetch_values(c);

	return 0;
}

static void pop_node(struct dm_btree_cursor *c)
{
	c->depth--;
	unlock_block(c->info, c->nodes[c->depth].b);
}

static int inc_or_backtrack(struct dm_btree_cursor *c)
{
	struct cursor_node *n;
	struct btree_node *bn;

	for (;;) {
		if (!c->depth)
			return -ENODATA;

		n = c->nodes + c->depth - 1;
		bn = dm_block_data(n->b);

		n->index++;
		if (n->index < le32_to_cpu(bn->header.nr_entries))
			break;

		pop_node(c);
	}

	return 0;
}

static int find_leaf(struct dm_btree_cursor *c)
{
	int r = 0;
	struct cursor_node *n;
	struct btree_node *bn;
	__le64 value_le;

	for (;;) {
		n = c->nodes + c->depth - 1;
		bn = dm_block_data(n->b);

		if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
			break;

		memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
		r = push_node(c, le64_to_cpu(value_le));
		if (r) {
			DMERR("push_node failed");
			break;
		}
	}

	if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
		return -ENODATA;

	return r;
}

int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
			  bool prefetch_leaves, struct dm_btree_cursor *c)
{
	int r;

	c->info = info;
	c->root = root;
	c->depth = 0;
	c->prefetch_leaves = prefetch_leaves;

	r = push_node(c, root);
	if (r)
		return r;

	return find_leaf(c);
}
EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);

void dm_btree_cursor_end(struct dm_btree_cursor *c)
{
	while (c->depth)
		pop_node(c);
}
EXPORT_SYMBOL_GPL(dm_btree_cursor_end);

int dm_btree_cursor_next(struct dm_btree_cursor *c)
{
	int r = inc_or_backtrack(c);
	if (!r) {
		r = find_leaf(c);
		if (r)
			DMERR("find_leaf failed");
	}

	return r;
}
EXPORT_SYMBOL_GPL(dm_btree_cursor_next);

int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
{
	int r = 0;

	while (count-- && !r)
		r = dm_btree_cursor_next(c);

	return r;
}
EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);

int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
{
	if (c->depth) {
		struct cursor_node *n = c->nodes + c->depth - 1;
		struct btree_node *bn = dm_block_data(n->b);

		if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
			return -EINVAL;

		*key = le64_to_cpu(*key_ptr(bn, n->index));
		memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
		return 0;

	} else
		return -ENODATA;
}
EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);