summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/chelsio/cxgb4/l2t.c
blob: 81e8402a74b41c910114b4d10b3b796161ed0ea2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/jhash.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <net/neighbour.h>
#include "cxgb4.h"
#include "l2t.h"
#include "t4_msg.h"
#include "t4fw_api.h"
#include "t4_regs.h"

#define VLAN_NONE 0xfff

/* identifies sync vs async L2T_WRITE_REQs */
#define F_SYNC_WR    (1 << 12)

enum {
	L2T_STATE_VALID,      /* entry is up to date */
	L2T_STATE_STALE,      /* entry may be used but needs revalidation */
	L2T_STATE_RESOLVING,  /* entry needs address resolution */
	L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */

	/* when state is one of the below the entry is not hashed */
	L2T_STATE_SWITCHING,  /* entry is being used by a switching filter */
	L2T_STATE_UNUSED      /* entry not in use */
};

struct l2t_data {
	rwlock_t lock;
	atomic_t nfree;             /* number of free entries */
	struct l2t_entry *rover;    /* starting point for next allocation */
	struct l2t_entry l2tab[L2T_SIZE];
};

static inline unsigned int vlan_prio(const struct l2t_entry *e)
{
	return e->vlan >> 13;
}

static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
{
	if (atomic_add_return(1, &e->refcnt) == 1)  /* 0 -> 1 transition */
		atomic_dec(&d->nfree);
}

/*
 * To avoid having to check address families we do not allow v4 and v6
 * neighbors to be on the same hash chain.  We keep v4 entries in the first
 * half of available hash buckets and v6 in the second.
 */
enum {
	L2T_SZ_HALF = L2T_SIZE / 2,
	L2T_HASH_MASK = L2T_SZ_HALF - 1
};

static inline unsigned int arp_hash(const u32 *key, int ifindex)
{
	return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK;
}

static inline unsigned int ipv6_hash(const u32 *key, int ifindex)
{
	u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];

	return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK);
}

static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex)
{
	return addr_len == 4 ? arp_hash(addr, ifindex) :
			       ipv6_hash(addr, ifindex);
}

/*
 * Checks if an L2T entry is for the given IP/IPv6 address.  It does not check
 * whether the L2T entry and the address are of the same address family.
 * Callers ensure an address is only checked against L2T entries of the same
 * family, something made trivial by the separation of IP and IPv6 hash chains
 * mentioned above.  Returns 0 if there's a match,
 */
static int addreq(const struct l2t_entry *e, const u32 *addr)
{
	if (e->v6)
		return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
		       (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
	return e->addr[0] ^ addr[0];
}

static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
{
	neigh_hold(n);
	if (e->neigh)
		neigh_release(e->neigh);
	e->neigh = n;
}

/*
 * Write an L2T entry.  Must be called with the entry locked.
 * The write may be synchronous or asynchronous.
 */
static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
{
	struct sk_buff *skb;
	struct cpl_l2t_write_req *req;

	skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
	if (!skb)
		return -ENOMEM;

	req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);

	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
					e->idx | (sync ? F_SYNC_WR : 0) |
					TID_QID(adap->sge.fw_evtq.abs_id)));
	req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync));
	req->l2t_idx = htons(e->idx);
	req->vlan = htons(e->vlan);
	if (e->neigh)
		memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));

	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
	t4_ofld_send(adap, skb);

	if (sync && e->state != L2T_STATE_SWITCHING)
		e->state = L2T_STATE_SYNC_WRITE;
	return 0;
}

/*
 * Send packets waiting in an L2T entry's ARP queue.  Must be called with the
 * entry locked.
 */
static void send_pending(struct adapter *adap, struct l2t_entry *e)
{
	while (e->arpq_head) {
		struct sk_buff *skb = e->arpq_head;

		e->arpq_head = skb->next;
		skb->next = NULL;
		t4_ofld_send(adap, skb);
	}
	e->arpq_tail = NULL;
}

/*
 * Process a CPL_L2T_WRITE_RPL.  Wake up the ARP queue if it completes a
 * synchronous L2T_WRITE.  Note that the TID in the reply is really the L2T
 * index it refers to.
 */
void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
{
	unsigned int tid = GET_TID(rpl);
	unsigned int idx = tid & (L2T_SIZE - 1);

	if (unlikely(rpl->status != CPL_ERR_NONE)) {
		dev_err(adap->pdev_dev,
			"Unexpected L2T_WRITE_RPL status %u for entry %u\n",
			rpl->status, idx);
		return;
	}

	if (tid & F_SYNC_WR) {
		struct l2t_entry *e = &adap->l2t->l2tab[idx];

		spin_lock(&e->lock);
		if (e->state != L2T_STATE_SWITCHING) {
			send_pending(adap, e);
			e->state = (e->neigh->nud_state & NUD_STALE) ?
					L2T_STATE_STALE : L2T_STATE_VALID;
		}
		spin_unlock(&e->lock);
	}
}

/*
 * Add a packet to an L2T entry's queue of packets awaiting resolution.
 * Must be called with the entry's lock held.
 */
static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
{
	skb->next = NULL;
	if (e->arpq_head)
		e->arpq_tail->next = skb;
	else
		e->arpq_head = skb;
	e->arpq_tail = skb;
}

int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
		   struct l2t_entry *e)
{
	struct adapter *adap = netdev2adap(dev);

again:
	switch (e->state) {
	case L2T_STATE_STALE:     /* entry is stale, kick off revalidation */
		neigh_event_send(e->neigh, NULL);
		spin_lock_bh(&e->lock);
		if (e->state == L2T_STATE_STALE)
			e->state = L2T_STATE_VALID;
		spin_unlock_bh(&e->lock);
	case L2T_STATE_VALID:     /* fast-path, send the packet on */
		return t4_ofld_send(adap, skb);
	case L2T_STATE_RESOLVING:
	case L2T_STATE_SYNC_WRITE:
		spin_lock_bh(&e->lock);
		if (e->state != L2T_STATE_SYNC_WRITE &&
		    e->state != L2T_STATE_RESOLVING) {
			spin_unlock_bh(&e->lock);
			goto again;
		}
		arpq_enqueue(e, skb);
		spin_unlock_bh(&e->lock);

		if (e->state == L2T_STATE_RESOLVING &&
		    !neigh_event_send(e->neigh, NULL)) {
			spin_lock_bh(&e->lock);
			if (e->state == L2T_STATE_RESOLVING && e->arpq_head)
				write_l2e(adap, e, 1);
			spin_unlock_bh(&e->lock);
		}
	}
	return 0;
}
EXPORT_SYMBOL(cxgb4_l2t_send);

/*
 * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
 */
static struct l2t_entry *alloc_l2e(struct l2t_data *d)
{
	struct l2t_entry *end, *e, **p;

	if (!atomic_read(&d->nfree))
		return NULL;

	/* there's definitely a free entry */
	for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e)
		if (atomic_read(&e->refcnt) == 0)
			goto found;

	for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
		;
found:
	d->rover = e + 1;
	atomic_dec(&d->nfree);

	/*
	 * The entry we found may be an inactive entry that is
	 * presently in the hash table.  We need to remove it.
	 */
	if (e->state < L2T_STATE_SWITCHING)
		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
			if (*p == e) {
				*p = e->next;
				e->next = NULL;
				break;
			}

	e->state = L2T_STATE_UNUSED;
	return e;
}

/*
 * Called when an L2T entry has no more users.
 */
static void t4_l2e_free(struct l2t_entry *e)
{
	struct l2t_data *d;

	spin_lock_bh(&e->lock);
	if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
		if (e->neigh) {
			neigh_release(e->neigh);
			e->neigh = NULL;
		}
		while (e->arpq_head) {
			struct sk_buff *skb = e->arpq_head;

			e->arpq_head = skb->next;
			kfree_skb(skb);
		}
		e->arpq_tail = NULL;
	}
	spin_unlock_bh(&e->lock);

	d = container_of(e, struct l2t_data, l2tab[e->idx]);
	atomic_inc(&d->nfree);
}

void cxgb4_l2t_release(struct l2t_entry *e)
{
	if (atomic_dec_and_test(&e->refcnt))
		t4_l2e_free(e);
}
EXPORT_SYMBOL(cxgb4_l2t_release);

/*
 * Update an L2T entry that was previously used for the same next hop as neigh.
 * Must be called with softirqs disabled.
 */
static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
{
	unsigned int nud_state;

	spin_lock(&e->lock);                /* avoid race with t4_l2t_free */
	if (neigh != e->neigh)
		neigh_replace(e, neigh);
	nud_state = neigh->nud_state;
	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
	    !(nud_state & NUD_VALID))
		e->state = L2T_STATE_RESOLVING;
	else if (nud_state & NUD_CONNECTED)
		e->state = L2T_STATE_VALID;
	else
		e->state = L2T_STATE_STALE;
	spin_unlock(&e->lock);
}

struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
				const struct net_device *physdev,
				unsigned int priority)
{
	u8 lport;
	u16 vlan;
	struct l2t_entry *e;
	int addr_len = neigh->tbl->key_len;
	u32 *addr = (u32 *)neigh->primary_key;
	int ifidx = neigh->dev->ifindex;
	int hash = addr_hash(addr, addr_len, ifidx);

	if (neigh->dev->flags & IFF_LOOPBACK)
		lport = netdev2pinfo(physdev)->tx_chan + 4;
	else
		lport = netdev2pinfo(physdev)->lport;

	if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
		vlan = vlan_dev_vlan_id(neigh->dev);
	else
		vlan = VLAN_NONE;

	write_lock_bh(&d->lock);
	for (e = d->l2tab[hash].first; e; e = e->next)
		if (!addreq(e, addr) && e->ifindex == ifidx &&
		    e->vlan == vlan && e->lport == lport) {
			l2t_hold(d, e);
			if (atomic_read(&e->refcnt) == 1)
				reuse_entry(e, neigh);
			goto done;
		}

	/* Need to allocate a new entry */
	e = alloc_l2e(d);
	if (e) {
		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
		e->state = L2T_STATE_RESOLVING;
		memcpy(e->addr, addr, addr_len);
		e->ifindex = ifidx;
		e->hash = hash;
		e->lport = lport;
		e->v6 = addr_len == 16;
		atomic_set(&e->refcnt, 1);
		neigh_replace(e, neigh);
		e->vlan = vlan;
		e->next = d->l2tab[hash].first;
		d->l2tab[hash].first = e;
		spin_unlock(&e->lock);
	}
done:
	write_unlock_bh(&d->lock);
	return e;
}
EXPORT_SYMBOL(cxgb4_l2t_get);

u64 cxgb4_select_ntuple(struct net_device *dev,
			const struct l2t_entry *l2t)
{
	struct adapter *adap = netdev2adap(dev);
	struct tp_params *tp = &adap->params.tp;
	u64 ntuple = 0;

	/* Initialize each of the fields which we care about which are present
	 * in the Compressed Filter Tuple.
	 */
	if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
		ntuple |= (u64)(F_FT_VLAN_VLD | l2t->vlan) << tp->vlan_shift;

	if (tp->port_shift >= 0)
		ntuple |= (u64)l2t->lport << tp->port_shift;

	if (tp->protocol_shift >= 0)
		ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;

	if (tp->vnic_shift >= 0) {
		u32 viid = cxgb4_port_viid(dev);
		u32 vf = FW_VIID_VIN_GET(viid);
		u32 pf = FW_VIID_PFN_GET(viid);
		u32 vld = FW_VIID_VIVLD_GET(viid);

		ntuple |= (u64)(V_FT_VNID_ID_VF(vf) |
				V_FT_VNID_ID_PF(pf) |
				V_FT_VNID_ID_VLD(vld)) << tp->vnic_shift;
	}

	return ntuple;
}
EXPORT_SYMBOL(cxgb4_select_ntuple);

/*
 * Called when address resolution fails for an L2T entry to handle packets
 * on the arpq head.  If a packet specifies a failure handler it is invoked,
 * otherwise the packet is sent to the device.
 */
static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq)
{
	while (arpq) {
		struct sk_buff *skb = arpq;
		const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);

		arpq = skb->next;
		skb->next = NULL;
		if (cb->arp_err_handler)
			cb->arp_err_handler(cb->handle, skb);
		else
			t4_ofld_send(adap, skb);
	}
}

/*
 * Called when the host's neighbor layer makes a change to some entry that is
 * loaded into the HW L2 table.
 */
void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
{
	struct l2t_entry *e;
	struct sk_buff *arpq = NULL;
	struct l2t_data *d = adap->l2t;
	int addr_len = neigh->tbl->key_len;
	u32 *addr = (u32 *) neigh->primary_key;
	int ifidx = neigh->dev->ifindex;
	int hash = addr_hash(addr, addr_len, ifidx);

	read_lock_bh(&d->lock);
	for (e = d->l2tab[hash].first; e; e = e->next)
		if (!addreq(e, addr) && e->ifindex == ifidx) {
			spin_lock(&e->lock);
			if (atomic_read(&e->refcnt))
				goto found;
			spin_unlock(&e->lock);
			break;
		}
	read_unlock_bh(&d->lock);
	return;

 found:
	read_unlock(&d->lock);

	if (neigh != e->neigh)
		neigh_replace(e, neigh);

	if (e->state == L2T_STATE_RESOLVING) {
		if (neigh->nud_state & NUD_FAILED) {
			arpq = e->arpq_head;
			e->arpq_head = e->arpq_tail = NULL;
		} else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
			   e->arpq_head) {
			write_l2e(adap, e, 1);
		}
	} else {
		e->state = neigh->nud_state & NUD_CONNECTED ?
			L2T_STATE_VALID : L2T_STATE_STALE;
		if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
			write_l2e(adap, e, 0);
	}

	spin_unlock_bh(&e->lock);

	if (arpq)
		handle_failed_resolution(adap, arpq);
}

/* Allocate an L2T entry for use by a switching rule.  Such need to be
 * explicitly freed and while busy they are not on any hash chain, so normal
 * address resolution updates do not see them.
 */
struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d)
{
	struct l2t_entry *e;

	write_lock_bh(&d->lock);
	e = alloc_l2e(d);
	if (e) {
		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
		e->state = L2T_STATE_SWITCHING;
		atomic_set(&e->refcnt, 1);
		spin_unlock(&e->lock);
	}
	write_unlock_bh(&d->lock);
	return e;
}

/* Sets/updates the contents of a switching L2T entry that has been allocated
 * with an earlier call to @t4_l2t_alloc_switching.
 */
int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan,
		u8 port, u8 *eth_addr)
{
	e->vlan = vlan;
	e->lport = port;
	memcpy(e->dmac, eth_addr, ETH_ALEN);
	return write_l2e(adap, e, 0);
}

struct l2t_data *t4_init_l2t(void)
{
	int i;
	struct l2t_data *d;

	d = t4_alloc_mem(sizeof(*d));
	if (!d)
		return NULL;

	d->rover = d->l2tab;
	atomic_set(&d->nfree, L2T_SIZE);
	rwlock_init(&d->lock);

	for (i = 0; i < L2T_SIZE; ++i) {
		d->l2tab[i].idx = i;
		d->l2tab[i].state = L2T_STATE_UNUSED;
		spin_lock_init(&d->l2tab[i].lock);
		atomic_set(&d->l2tab[i].refcnt, 0);
	}
	return d;
}

static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
{
	struct l2t_entry *l2tab = seq->private;

	return pos >= L2T_SIZE ? NULL : &l2tab[pos];
}

static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
{
	return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
}

static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	v = l2t_get_idx(seq, *pos);
	if (v)
		++*pos;
	return v;
}

static void l2t_seq_stop(struct seq_file *seq, void *v)
{
}

static char l2e_state(const struct l2t_entry *e)
{
	switch (e->state) {
	case L2T_STATE_VALID: return 'V';
	case L2T_STATE_STALE: return 'S';
	case L2T_STATE_SYNC_WRITE: return 'W';
	case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R';
	case L2T_STATE_SWITCHING: return 'X';
	default:
		return 'U';
	}
}

static int l2t_seq_show(struct seq_file *seq, void *v)
{
	if (v == SEQ_START_TOKEN)
		seq_puts(seq, " Idx IP address                "
			 "Ethernet address  VLAN/P LP State Users Port\n");
	else {
		char ip[60];
		struct l2t_entry *e = v;

		spin_lock_bh(&e->lock);
		if (e->state == L2T_STATE_SWITCHING)
			ip[0] = '\0';
		else
			sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
		seq_printf(seq, "%4u %-25s %17pM %4d %u %2u   %c   %5u %s\n",
			   e->idx, ip, e->dmac,
			   e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
			   l2e_state(e), atomic_read(&e->refcnt),
			   e->neigh ? e->neigh->dev->name : "");
		spin_unlock_bh(&e->lock);
	}
	return 0;
}

static const struct seq_operations l2t_seq_ops = {
	.start = l2t_seq_start,
	.next = l2t_seq_next,
	.stop = l2t_seq_stop,
	.show = l2t_seq_show
};

static int l2t_seq_open(struct inode *inode, struct file *file)
{
	int rc = seq_open(file, &l2t_seq_ops);

	if (!rc) {
		struct adapter *adap = inode->i_private;
		struct seq_file *seq = file->private_data;

		seq->private = adap->l2t->l2tab;
	}
	return rc;
}

const struct file_operations t4_l2t_fops = {
	.owner = THIS_MODULE,
	.open = l2t_seq_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = seq_release,
};