1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice.h"
#include "ice_base.h"
#include "ice_flow.h"
#include "ice_lib.h"
#include "ice_fltr.h"
#include "ice_dcb_lib.h"
#include "ice_devlink.h"
#include "ice_vsi_vlan_ops.h"
/**
* ice_vsi_type_str - maps VSI type enum to string equivalents
* @vsi_type: VSI type enum
*/
const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
{
switch (vsi_type) {
case ICE_VSI_PF:
return "ICE_VSI_PF";
case ICE_VSI_VF:
return "ICE_VSI_VF";
case ICE_VSI_CTRL:
return "ICE_VSI_CTRL";
case ICE_VSI_CHNL:
return "ICE_VSI_CHNL";
case ICE_VSI_LB:
return "ICE_VSI_LB";
case ICE_VSI_SWITCHDEV_CTRL:
return "ICE_VSI_SWITCHDEV_CTRL";
default:
return "unknown";
}
}
/**
* ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
* @vsi: the VSI being configured
* @ena: start or stop the Rx rings
*
* First enable/disable all of the Rx rings, flush any remaining writes, and
* then verify that they have all been enabled/disabled successfully. This will
* let all of the register writes complete when enabling/disabling the Rx rings
* before waiting for the change in hardware to complete.
*/
static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
{
int ret = 0;
u16 i;
ice_for_each_rxq(vsi, i)
ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
ice_flush(&vsi->back->hw);
ice_for_each_rxq(vsi, i) {
ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
if (ret)
break;
}
return ret;
}
/**
* ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
* @vsi: VSI pointer
*
* On error: returns error code (negative)
* On success: returns 0
*/
static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
dev = ice_pf_to_dev(pf);
if (vsi->type == ICE_VSI_CHNL)
return 0;
/* allocate memory for both Tx and Rx ring pointers */
vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
sizeof(*vsi->tx_rings), GFP_KERNEL);
if (!vsi->tx_rings)
return -ENOMEM;
vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
sizeof(*vsi->rx_rings), GFP_KERNEL);
if (!vsi->rx_rings)
goto err_rings;
/* txq_map needs to have enough space to track both Tx (stack) rings
* and XDP rings; at this point vsi->num_xdp_txq might not be set,
* so use num_possible_cpus() as we want to always provide XDP ring
* per CPU, regardless of queue count settings from user that might
* have come from ethtool's set_channels() callback;
*/
vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
sizeof(*vsi->txq_map), GFP_KERNEL);
if (!vsi->txq_map)
goto err_txq_map;
vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
sizeof(*vsi->rxq_map), GFP_KERNEL);
if (!vsi->rxq_map)
goto err_rxq_map;
/* There is no need to allocate q_vectors for a loopback VSI. */
if (vsi->type == ICE_VSI_LB)
return 0;
/* allocate memory for q_vector pointers */
vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
sizeof(*vsi->q_vectors), GFP_KERNEL);
if (!vsi->q_vectors)
goto err_vectors;
vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
if (!vsi->af_xdp_zc_qps)
goto err_zc_qps;
return 0;
err_zc_qps:
devm_kfree(dev, vsi->q_vectors);
err_vectors:
devm_kfree(dev, vsi->rxq_map);
err_rxq_map:
devm_kfree(dev, vsi->txq_map);
err_txq_map:
devm_kfree(dev, vsi->rx_rings);
err_rings:
devm_kfree(dev, vsi->tx_rings);
return -ENOMEM;
}
/**
* ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
* @vsi: the VSI being configured
*/
static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
{
switch (vsi->type) {
case ICE_VSI_PF:
case ICE_VSI_SWITCHDEV_CTRL:
case ICE_VSI_CTRL:
case ICE_VSI_LB:
/* a user could change the values of num_[tr]x_desc using
* ethtool -G so we should keep those values instead of
* overwriting them with the defaults.
*/
if (!vsi->num_rx_desc)
vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
if (!vsi->num_tx_desc)
vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
break;
default:
dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
vsi->type);
break;
}
}
/**
* ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
*/
static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
{
enum ice_vsi_type vsi_type = vsi->type;
struct ice_pf *pf = vsi->back;
struct ice_vf *vf = vsi->vf;
if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
return;
switch (vsi_type) {
case ICE_VSI_PF:
if (vsi->req_txq) {
vsi->alloc_txq = vsi->req_txq;
vsi->num_txq = vsi->req_txq;
} else {
vsi->alloc_txq = min3(pf->num_lan_msix,
ice_get_avail_txq_count(pf),
(u16)num_online_cpus());
}
pf->num_lan_tx = vsi->alloc_txq;
/* only 1 Rx queue unless RSS is enabled */
if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
vsi->alloc_rxq = 1;
} else {
if (vsi->req_rxq) {
vsi->alloc_rxq = vsi->req_rxq;
vsi->num_rxq = vsi->req_rxq;
} else {
vsi->alloc_rxq = min3(pf->num_lan_msix,
ice_get_avail_rxq_count(pf),
(u16)num_online_cpus());
}
}
pf->num_lan_rx = vsi->alloc_rxq;
vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
max_t(int, vsi->alloc_rxq,
vsi->alloc_txq));
break;
case ICE_VSI_SWITCHDEV_CTRL:
/* The number of queues for ctrl VSI is equal to number of PRs
* Each ring is associated to the corresponding VF_PR netdev.
* Tx and Rx rings are always equal
*/
if (vsi->req_txq && vsi->req_rxq) {
vsi->alloc_txq = vsi->req_txq;
vsi->alloc_rxq = vsi->req_rxq;
} else {
vsi->alloc_txq = 1;
vsi->alloc_rxq = 1;
}
vsi->num_q_vectors = 1;
break;
case ICE_VSI_VF:
if (vf->num_req_qs)
vf->num_vf_qs = vf->num_req_qs;
vsi->alloc_txq = vf->num_vf_qs;
vsi->alloc_rxq = vf->num_vf_qs;
/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
* data queue interrupts). Since vsi->num_q_vectors is number
* of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
* original vector count
*/
vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
break;
case ICE_VSI_CTRL:
vsi->alloc_txq = 1;
vsi->alloc_rxq = 1;
vsi->num_q_vectors = 1;
break;
case ICE_VSI_CHNL:
vsi->alloc_txq = 0;
vsi->alloc_rxq = 0;
break;
case ICE_VSI_LB:
vsi->alloc_txq = 1;
vsi->alloc_rxq = 1;
break;
default:
dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
break;
}
ice_vsi_set_num_desc(vsi);
}
/**
* ice_get_free_slot - get the next non-NULL location index in array
* @array: array to search
* @size: size of the array
* @curr: last known occupied index to be used as a search hint
*
* void * is being used to keep the functionality generic. This lets us use this
* function on any array of pointers.
*/
static int ice_get_free_slot(void *array, int size, int curr)
{
int **tmp_array = (int **)array;
int next;
if (curr < (size - 1) && !tmp_array[curr + 1]) {
next = curr + 1;
} else {
int i = 0;
while ((i < size) && (tmp_array[i]))
i++;
if (i == size)
next = ICE_NO_VSI;
else
next = i;
}
return next;
}
/**
* ice_vsi_delete_from_hw - delete a VSI from the switch
* @vsi: pointer to VSI being removed
*/
static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_vsi_ctx *ctxt;
int status;
ice_fltr_remove_all(vsi);
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return;
if (vsi->type == ICE_VSI_VF)
ctxt->vf_num = vsi->vf->vf_id;
ctxt->vsi_num = vsi->vsi_num;
memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
if (status)
dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
vsi->vsi_num, status);
kfree(ctxt);
}
/**
* ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
* @vsi: pointer to VSI being cleared
*/
static void ice_vsi_free_arrays(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
dev = ice_pf_to_dev(pf);
bitmap_free(vsi->af_xdp_zc_qps);
vsi->af_xdp_zc_qps = NULL;
/* free the ring and vector containers */
devm_kfree(dev, vsi->q_vectors);
vsi->q_vectors = NULL;
devm_kfree(dev, vsi->tx_rings);
vsi->tx_rings = NULL;
devm_kfree(dev, vsi->rx_rings);
vsi->rx_rings = NULL;
devm_kfree(dev, vsi->txq_map);
vsi->txq_map = NULL;
devm_kfree(dev, vsi->rxq_map);
vsi->rxq_map = NULL;
}
/**
* ice_vsi_free_stats - Free the ring statistics structures
* @vsi: VSI pointer
*/
static void ice_vsi_free_stats(struct ice_vsi *vsi)
{
struct ice_vsi_stats *vsi_stat;
struct ice_pf *pf = vsi->back;
int i;
if (vsi->type == ICE_VSI_CHNL)
return;
if (!pf->vsi_stats)
return;
vsi_stat = pf->vsi_stats[vsi->idx];
if (!vsi_stat)
return;
ice_for_each_alloc_txq(vsi, i) {
if (vsi_stat->tx_ring_stats[i]) {
kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
}
}
ice_for_each_alloc_rxq(vsi, i) {
if (vsi_stat->rx_ring_stats[i]) {
kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
}
}
kfree(vsi_stat->tx_ring_stats);
kfree(vsi_stat->rx_ring_stats);
kfree(vsi_stat);
pf->vsi_stats[vsi->idx] = NULL;
}
/**
* ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
* @vsi: VSI which is having stats allocated
*/
static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
{
struct ice_ring_stats **tx_ring_stats;
struct ice_ring_stats **rx_ring_stats;
struct ice_vsi_stats *vsi_stats;
struct ice_pf *pf = vsi->back;
u16 i;
vsi_stats = pf->vsi_stats[vsi->idx];
tx_ring_stats = vsi_stats->tx_ring_stats;
rx_ring_stats = vsi_stats->rx_ring_stats;
/* Allocate Tx ring stats */
ice_for_each_alloc_txq(vsi, i) {
struct ice_ring_stats *ring_stats;
struct ice_tx_ring *ring;
ring = vsi->tx_rings[i];
ring_stats = tx_ring_stats[i];
if (!ring_stats) {
ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
if (!ring_stats)
goto err_out;
WRITE_ONCE(tx_ring_stats[i], ring_stats);
}
ring->ring_stats = ring_stats;
}
/* Allocate Rx ring stats */
ice_for_each_alloc_rxq(vsi, i) {
struct ice_ring_stats *ring_stats;
struct ice_rx_ring *ring;
ring = vsi->rx_rings[i];
ring_stats = rx_ring_stats[i];
if (!ring_stats) {
ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
if (!ring_stats)
goto err_out;
WRITE_ONCE(rx_ring_stats[i], ring_stats);
}
ring->ring_stats = ring_stats;
}
return 0;
err_out:
ice_vsi_free_stats(vsi);
return -ENOMEM;
}
/**
* ice_vsi_free - clean up and deallocate the provided VSI
* @vsi: pointer to VSI being cleared
*
* This deallocates the VSI's queue resources, removes it from the PF's
* VSI array if necessary, and deallocates the VSI
*/
static void ice_vsi_free(struct ice_vsi *vsi)
{
struct ice_pf *pf = NULL;
struct device *dev;
if (!vsi || !vsi->back)
return;
pf = vsi->back;
dev = ice_pf_to_dev(pf);
if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
return;
}
mutex_lock(&pf->sw_mutex);
/* updates the PF for this cleared VSI */
pf->vsi[vsi->idx] = NULL;
pf->next_vsi = vsi->idx;
ice_vsi_free_stats(vsi);
ice_vsi_free_arrays(vsi);
mutex_unlock(&pf->sw_mutex);
devm_kfree(dev, vsi);
}
void ice_vsi_delete(struct ice_vsi *vsi)
{
ice_vsi_delete_from_hw(vsi);
ice_vsi_free(vsi);
}
/**
* ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
{
struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
if (!q_vector->tx.tx_ring)
return IRQ_HANDLED;
#define FDIR_RX_DESC_CLEAN_BUDGET 64
ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
return IRQ_HANDLED;
}
/**
* ice_msix_clean_rings - MSIX mode Interrupt Handler
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
{
struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
return IRQ_HANDLED;
q_vector->total_events++;
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
{
struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
struct ice_pf *pf = q_vector->vsi->back;
struct ice_repr *repr;
unsigned long id;
if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
return IRQ_HANDLED;
xa_for_each(&pf->eswitch.reprs, id, repr)
napi_schedule(&repr->q_vector->napi);
return IRQ_HANDLED;
}
/**
* ice_vsi_alloc_stat_arrays - Allocate statistics arrays
* @vsi: VSI pointer
*/
static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
{
struct ice_vsi_stats *vsi_stat;
struct ice_pf *pf = vsi->back;
if (vsi->type == ICE_VSI_CHNL)
return 0;
if (!pf->vsi_stats)
return -ENOENT;
if (pf->vsi_stats[vsi->idx])
/* realloc will happen in rebuild path */
return 0;
vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
if (!vsi_stat)
return -ENOMEM;
vsi_stat->tx_ring_stats =
kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
GFP_KERNEL);
if (!vsi_stat->tx_ring_stats)
goto err_alloc_tx;
vsi_stat->rx_ring_stats =
kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
GFP_KERNEL);
if (!vsi_stat->rx_ring_stats)
goto err_alloc_rx;
pf->vsi_stats[vsi->idx] = vsi_stat;
return 0;
err_alloc_rx:
kfree(vsi_stat->rx_ring_stats);
err_alloc_tx:
kfree(vsi_stat->tx_ring_stats);
kfree(vsi_stat);
pf->vsi_stats[vsi->idx] = NULL;
return -ENOMEM;
}
/**
* ice_vsi_alloc_def - set default values for already allocated VSI
* @vsi: ptr to VSI
* @ch: ptr to channel
*/
static int
ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
{
if (vsi->type != ICE_VSI_CHNL) {
ice_vsi_set_num_qs(vsi);
if (ice_vsi_alloc_arrays(vsi))
return -ENOMEM;
}
switch (vsi->type) {
case ICE_VSI_SWITCHDEV_CTRL:
/* Setup eswitch MSIX irq handler for VSI */
vsi->irq_handler = ice_eswitch_msix_clean_rings;
break;
case ICE_VSI_PF:
/* Setup default MSIX irq handler for VSI */
vsi->irq_handler = ice_msix_clean_rings;
break;
case ICE_VSI_CTRL:
/* Setup ctrl VSI MSIX irq handler */
vsi->irq_handler = ice_msix_clean_ctrl_vsi;
break;
case ICE_VSI_CHNL:
if (!ch)
return -EINVAL;
vsi->num_rxq = ch->num_rxq;
vsi->num_txq = ch->num_txq;
vsi->next_base_q = ch->base_q;
break;
case ICE_VSI_VF:
case ICE_VSI_LB:
break;
default:
ice_vsi_free_arrays(vsi);
return -EINVAL;
}
return 0;
}
/**
* ice_vsi_alloc - Allocates the next available struct VSI in the PF
* @pf: board private structure
*
* Reserves a VSI index from the PF and allocates an empty VSI structure
* without a type. The VSI structure must later be initialized by calling
* ice_vsi_cfg().
*
* returns a pointer to a VSI on success, NULL on failure.
*/
static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_vsi *vsi = NULL;
/* Need to protect the allocation of the VSIs at the PF level */
mutex_lock(&pf->sw_mutex);
/* If we have already allocated our maximum number of VSIs,
* pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
* is available to be populated
*/
if (pf->next_vsi == ICE_NO_VSI) {
dev_dbg(dev, "out of VSI slots!\n");
goto unlock_pf;
}
vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
if (!vsi)
goto unlock_pf;
vsi->back = pf;
set_bit(ICE_VSI_DOWN, vsi->state);
/* fill slot and make note of the index */
vsi->idx = pf->next_vsi;
pf->vsi[pf->next_vsi] = vsi;
/* prepare pf->next_vsi for next use */
pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
pf->next_vsi);
unlock_pf:
mutex_unlock(&pf->sw_mutex);
return vsi;
}
/**
* ice_alloc_fd_res - Allocate FD resource for a VSI
* @vsi: pointer to the ice_vsi
*
* This allocates the FD resources
*
* Returns 0 on success, -EPERM on no-op or -EIO on failure
*/
static int ice_alloc_fd_res(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
u32 g_val, b_val;
/* Flow Director filters are only allocated/assigned to the PF VSI or
* CHNL VSI which passes the traffic. The CTRL VSI is only used to
* add/delete filters so resources are not allocated to it
*/
if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
return -EPERM;
if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
vsi->type == ICE_VSI_CHNL))
return -EPERM;
/* FD filters from guaranteed pool per VSI */
g_val = pf->hw.func_caps.fd_fltr_guar;
if (!g_val)
return -EPERM;
/* FD filters from best effort pool */
b_val = pf->hw.func_caps.fd_fltr_best_effort;
if (!b_val)
return -EPERM;
/* PF main VSI gets only 64 FD resources from guaranteed pool
* when ADQ is configured.
*/
#define ICE_PF_VSI_GFLTR 64
/* determine FD filter resources per VSI from shared(best effort) and
* dedicated pool
*/
if (vsi->type == ICE_VSI_PF) {
vsi->num_gfltr = g_val;
/* if MQPRIO is configured, main VSI doesn't get all FD
* resources from guaranteed pool. PF VSI gets 64 FD resources
*/
if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
if (g_val < ICE_PF_VSI_GFLTR)
return -EPERM;
/* allow bare minimum entries for PF VSI */
vsi->num_gfltr = ICE_PF_VSI_GFLTR;
}
/* each VSI gets same "best_effort" quota */
vsi->num_bfltr = b_val;
} else if (vsi->type == ICE_VSI_VF) {
vsi->num_gfltr = 0;
/* each VSI gets same "best_effort" quota */
vsi->num_bfltr = b_val;
} else {
struct ice_vsi *main_vsi;
int numtc;
main_vsi = ice_get_main_vsi(pf);
if (!main_vsi)
return -EPERM;
if (!main_vsi->all_numtc)
return -EINVAL;
/* figure out ADQ numtc */
numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
/* only one TC but still asking resources for channels,
* invalid config
*/
if (numtc < ICE_CHNL_START_TC)
return -EPERM;
g_val -= ICE_PF_VSI_GFLTR;
/* channel VSIs gets equal share from guaranteed pool */
vsi->num_gfltr = g_val / numtc;
/* each VSI gets same "best_effort" quota */
vsi->num_bfltr = b_val;
}
return 0;
}
/**
* ice_vsi_get_qs - Assign queues from PF to VSI
* @vsi: the VSI to assign queues to
*
* Returns 0 on success and a negative value on error
*/
static int ice_vsi_get_qs(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_qs_cfg tx_qs_cfg = {
.qs_mutex = &pf->avail_q_mutex,
.pf_map = pf->avail_txqs,
.pf_map_size = pf->max_pf_txqs,
.q_count = vsi->alloc_txq,
.scatter_count = ICE_MAX_SCATTER_TXQS,
.vsi_map = vsi->txq_map,
.vsi_map_offset = 0,
.mapping_mode = ICE_VSI_MAP_CONTIG
};
struct ice_qs_cfg rx_qs_cfg = {
.qs_mutex = &pf->avail_q_mutex,
.pf_map = pf->avail_rxqs,
.pf_map_size = pf->max_pf_rxqs,
.q_count = vsi->alloc_rxq,
.scatter_count = ICE_MAX_SCATTER_RXQS,
.vsi_map = vsi->rxq_map,
.vsi_map_offset = 0,
.mapping_mode = ICE_VSI_MAP_CONTIG
};
int ret;
if (vsi->type == ICE_VSI_CHNL)
return 0;
ret = __ice_vsi_get_qs(&tx_qs_cfg);
if (ret)
return ret;
vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
ret = __ice_vsi_get_qs(&rx_qs_cfg);
if (ret)
return ret;
vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
return 0;
}
/**
* ice_vsi_put_qs - Release queues from VSI to PF
* @vsi: the VSI that is going to release queues
*/
static void ice_vsi_put_qs(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int i;
mutex_lock(&pf->avail_q_mutex);
ice_for_each_alloc_txq(vsi, i) {
clear_bit(vsi->txq_map[i], pf->avail_txqs);
vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
}
ice_for_each_alloc_rxq(vsi, i) {
clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
}
mutex_unlock(&pf->avail_q_mutex);
}
/**
* ice_is_safe_mode
* @pf: pointer to the PF struct
*
* returns true if driver is in safe mode, false otherwise
*/
bool ice_is_safe_mode(struct ice_pf *pf)
{
return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
}
/**
* ice_is_rdma_ena
* @pf: pointer to the PF struct
*
* returns true if RDMA is currently supported, false otherwise
*/
bool ice_is_rdma_ena(struct ice_pf *pf)
{
return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
}
/**
* ice_vsi_clean_rss_flow_fld - Delete RSS configuration
* @vsi: the VSI being cleaned up
*
* This function deletes RSS input set for all flows that were configured
* for this VSI
*/
static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int status;
if (ice_is_safe_mode(pf))
return;
status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
if (status)
dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
vsi->vsi_num, status);
}
/**
* ice_rss_clean - Delete RSS related VSI structures and configuration
* @vsi: the VSI being removed
*/
static void ice_rss_clean(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
dev = ice_pf_to_dev(pf);
devm_kfree(dev, vsi->rss_hkey_user);
devm_kfree(dev, vsi->rss_lut_user);
ice_vsi_clean_rss_flow_fld(vsi);
/* remove RSS replay list */
if (!ice_is_safe_mode(pf))
ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
}
/**
* ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
* @vsi: the VSI being configured
*/
static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
{
struct ice_hw_common_caps *cap;
struct ice_pf *pf = vsi->back;
u16 max_rss_size;
if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
vsi->rss_size = 1;
return;
}
cap = &pf->hw.func_caps.common_cap;
max_rss_size = BIT(cap->rss_table_entry_width);
switch (vsi->type) {
case ICE_VSI_CHNL:
case ICE_VSI_PF:
/* PF VSI will inherit RSS instance of PF */
vsi->rss_table_size = (u16)cap->rss_table_size;
if (vsi->type == ICE_VSI_CHNL)
vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
else
vsi->rss_size = min_t(u16, num_online_cpus(),
max_rss_size);
vsi->rss_lut_type = ICE_LUT_PF;
break;
case ICE_VSI_SWITCHDEV_CTRL:
vsi->rss_table_size = ICE_LUT_VSI_SIZE;
vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
vsi->rss_lut_type = ICE_LUT_VSI;
break;
case ICE_VSI_VF:
/* VF VSI will get a small RSS table.
* For VSI_LUT, LUT size should be set to 64 bytes.
*/
vsi->rss_table_size = ICE_LUT_VSI_SIZE;
vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
vsi->rss_lut_type = ICE_LUT_VSI;
break;
case ICE_VSI_LB:
break;
default:
dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
ice_vsi_type_str(vsi->type));
break;
}
}
/**
* ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
* @hw: HW structure used to determine the VLAN mode of the device
* @ctxt: the VSI context being set
*
* This initializes a default VSI context for all sections except the Queues.
*/
static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
{
u32 table = 0;
memset(&ctxt->info, 0, sizeof(ctxt->info));
/* VSI's should be allocated from shared pool */
ctxt->alloc_from_pool = true;
/* Src pruning enabled by default */
ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
/* Traffic from VSI can be sent to LAN */
ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
/* allow all untagged/tagged packets by default on Tx */
ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
* results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
*
* DVM - leave inner VLAN in packet by default
*/
if (ice_is_dvm_ena(hw)) {
ctxt->info.inner_vlan_flags |=
FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
ctxt->info.outer_vlan_flags =
FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
ctxt->info.outer_vlan_flags |=
FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
ctxt->info.outer_vlan_flags |=
FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
}
/* Have 1:1 UP mapping for both ingress/egress tables */
table |= ICE_UP_TABLE_TRANSLATE(0, 0);
table |= ICE_UP_TABLE_TRANSLATE(1, 1);
table |= ICE_UP_TABLE_TRANSLATE(2, 2);
table |= ICE_UP_TABLE_TRANSLATE(3, 3);
table |= ICE_UP_TABLE_TRANSLATE(4, 4);
table |= ICE_UP_TABLE_TRANSLATE(5, 5);
table |= ICE_UP_TABLE_TRANSLATE(6, 6);
table |= ICE_UP_TABLE_TRANSLATE(7, 7);
ctxt->info.ingress_table = cpu_to_le32(table);
ctxt->info.egress_table = cpu_to_le32(table);
/* Have 1:1 UP mapping for outer to inner UP table */
ctxt->info.outer_up_table = cpu_to_le32(table);
/* No Outer tag support outer_tag_flags remains to zero */
}
/**
* ice_vsi_setup_q_map - Setup a VSI queue map
* @vsi: the VSI being configured
* @ctxt: VSI context structure
*/
static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
{
u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
u16 num_txq_per_tc, num_rxq_per_tc;
u16 qcount_tx = vsi->alloc_txq;
u16 qcount_rx = vsi->alloc_rxq;
u8 netdev_tc = 0;
int i;
if (!vsi->tc_cfg.numtc) {
/* at least TC0 should be enabled by default */
vsi->tc_cfg.numtc = 1;
vsi->tc_cfg.ena_tc = 1;
}
num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
if (!num_rxq_per_tc)
num_rxq_per_tc = 1;
num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
if (!num_txq_per_tc)
num_txq_per_tc = 1;
/* find the (rounded up) power-of-2 of qcount */
pow = (u16)order_base_2(num_rxq_per_tc);
/* TC mapping is a function of the number of Rx queues assigned to the
* VSI for each traffic class and the offset of these queues.
* The first 10 bits are for queue offset for TC0, next 4 bits for no:of
* queues allocated to TC0. No:of queues is a power-of-2.
*
* If TC is not enabled, the queue offset is set to 0, and allocate one
* queue, this way, traffic for the given TC will be sent to the default
* queue.
*
* Setup number and offset of Rx queues for all TCs for the VSI
*/
ice_for_each_traffic_class(i) {
if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
/* TC is not enabled */
vsi->tc_cfg.tc_info[i].qoffset = 0;
vsi->tc_cfg.tc_info[i].qcount_rx = 1;
vsi->tc_cfg.tc_info[i].qcount_tx = 1;
vsi->tc_cfg.tc_info[i].netdev_tc = 0;
ctxt->info.tc_mapping[i] = 0;
continue;
}
/* TC is enabled */
vsi->tc_cfg.tc_info[i].qoffset = offset;
vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
offset += num_rxq_per_tc;
tx_count += num_txq_per_tc;
ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
}
/* if offset is non-zero, means it is calculated correctly based on
* enabled TCs for a given VSI otherwise qcount_rx will always
* be correct and non-zero because it is based off - VSI's
* allocated Rx queues which is at least 1 (hence qcount_tx will be
* at least 1)
*/
if (offset)
rx_count = offset;
else
rx_count = num_rxq_per_tc;
if (rx_count > vsi->alloc_rxq) {
dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
rx_count, vsi->alloc_rxq);
return -EINVAL;
}
if (tx_count > vsi->alloc_txq) {
dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
tx_count, vsi->alloc_txq);
return -EINVAL;
}
vsi->num_txq = tx_count;
vsi->num_rxq = rx_count;
if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
/* since there is a chance that num_rxq could have been changed
* in the above for loop, make num_txq equal to num_rxq.
*/
vsi->num_txq = vsi->num_rxq;
}
/* Rx queue mapping */
ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
/* q_mapping buffer holds the info for the first queue allocated for
* this VSI in the PF space and also the number of queues associated
* with this VSI.
*/
ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
return 0;
}
/**
* ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
* @ctxt: the VSI context being set
* @vsi: the VSI being configured
*/
static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
{
u8 dflt_q_group, dflt_q_prio;
u16 dflt_q, report_q, val;
if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
return;
val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
ctxt->info.valid_sections |= cpu_to_le16(val);
dflt_q = 0;
dflt_q_group = 0;
report_q = 0;
dflt_q_prio = 0;
/* enable flow director filtering/programming */
val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
ctxt->info.fd_options = cpu_to_le16(val);
/* max of allocated flow director filters */
ctxt->info.max_fd_fltr_dedicated =
cpu_to_le16(vsi->num_gfltr);
/* max of shared flow director filters any VSI may program */
ctxt->info.max_fd_fltr_shared =
cpu_to_le16(vsi->num_bfltr);
/* default queue index within the VSI of the default FD */
val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
/* target queue or queue group to the FD filter */
val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
ctxt->info.fd_def_q = cpu_to_le16(val);
/* queue index on which FD filter completion is reported */
val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
/* priority of the default qindex action */
val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
ctxt->info.fd_report_opt = cpu_to_le16(val);
}
/**
* ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
* @ctxt: the VSI context being set
* @vsi: the VSI being configured
*/
static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
{
u8 lut_type, hash_type;
struct device *dev;
struct ice_pf *pf;
pf = vsi->back;
dev = ice_pf_to_dev(pf);
switch (vsi->type) {
case ICE_VSI_CHNL:
case ICE_VSI_PF:
/* PF VSI will inherit RSS instance of PF */
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
break;
case ICE_VSI_VF:
/* VF VSI will gets a small RSS table which is a VSI LUT type */
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
break;
default:
dev_dbg(dev, "Unsupported VSI type %s\n",
ice_vsi_type_str(vsi->type));
return;
}
hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
vsi->rss_hfunc = hash_type;
ctxt->info.q_opt_rss =
FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
}
static void
ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
{
struct ice_pf *pf = vsi->back;
u16 qcount, qmap;
u8 offset = 0;
int pow;
qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
pow = order_base_2(qcount);
qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
}
/**
* ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
* @vsi: VSI to check whether or not VLAN pruning is enabled.
*
* returns true if Rx VLAN pruning is enabled and false otherwise.
*/
static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
{
return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
}
/**
* ice_vsi_init - Create and initialize a VSI
* @vsi: the VSI being configured
* @vsi_flags: VSI configuration flags
*
* Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
* reconfigure an existing context.
*
* This initializes a VSI context depending on the VSI type to be added and
* passes it down to the add_vsi aq command to create a new VSI.
*/
static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct ice_vsi_ctx *ctxt;
struct device *dev;
int ret = 0;
dev = ice_pf_to_dev(pf);
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
switch (vsi->type) {
case ICE_VSI_CTRL:
case ICE_VSI_LB:
case ICE_VSI_PF:
ctxt->flags = ICE_AQ_VSI_TYPE_PF;
break;
case ICE_VSI_SWITCHDEV_CTRL:
case ICE_VSI_CHNL:
ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
break;
case ICE_VSI_VF:
ctxt->flags = ICE_AQ_VSI_TYPE_VF;
/* VF number here is the absolute VF number (0-255) */
ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
break;
default:
ret = -ENODEV;
goto out;
}
/* Handle VLAN pruning for channel VSI if main VSI has VLAN
* prune enabled
*/
if (vsi->type == ICE_VSI_CHNL) {
struct ice_vsi *main_vsi;
main_vsi = ice_get_main_vsi(pf);
if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
ctxt->info.sw_flags2 |=
ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
else
ctxt->info.sw_flags2 &=
~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
}
ice_set_dflt_vsi_ctx(hw, ctxt);
if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
ice_set_fd_vsi_ctx(ctxt, vsi);
/* if the switch is in VEB mode, allow VSI loopback */
if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
/* Set LUT type and HASH type if RSS is enabled */
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
vsi->type != ICE_VSI_CTRL) {
ice_set_rss_vsi_ctx(ctxt, vsi);
/* if updating VSI context, make sure to set valid_section:
* to indicate which section of VSI context being updated
*/
if (!(vsi_flags & ICE_VSI_FLAG_INIT))
ctxt->info.valid_sections |=
cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
}
ctxt->info.sw_id = vsi->port_info->sw_id;
if (vsi->type == ICE_VSI_CHNL) {
ice_chnl_vsi_setup_q_map(vsi, ctxt);
} else {
ret = ice_vsi_setup_q_map(vsi, ctxt);
if (ret)
goto out;
if (!(vsi_flags & ICE_VSI_FLAG_INIT))
/* means VSI being updated */
/* must to indicate which section of VSI context are
* being modified
*/
ctxt->info.valid_sections |=
cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
}
/* Allow control frames out of main VSI */
if (vsi->type == ICE_VSI_PF) {
ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
ctxt->info.valid_sections |=
cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
}
if (vsi_flags & ICE_VSI_FLAG_INIT) {
ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
if (ret) {
dev_err(dev, "Add VSI failed, err %d\n", ret);
ret = -EIO;
goto out;
}
} else {
ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
if (ret) {
dev_err(dev, "Update VSI failed, err %d\n", ret);
ret = -EIO;
goto out;
}
}
/* keep context for update VSI operations */
vsi->info = ctxt->info;
/* record VSI number returned */
vsi->vsi_num = ctxt->vsi_num;
out:
kfree(ctxt);
return ret;
}
/**
* ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
* @vsi: the VSI having rings deallocated
*/
static void ice_vsi_clear_rings(struct ice_vsi *vsi)
{
int i;
/* Avoid stale references by clearing map from vector to ring */
if (vsi->q_vectors) {
ice_for_each_q_vector(vsi, i) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
if (q_vector) {
q_vector->tx.tx_ring = NULL;
q_vector->rx.rx_ring = NULL;
}
}
}
if (vsi->tx_rings) {
ice_for_each_alloc_txq(vsi, i) {
if (vsi->tx_rings[i]) {
kfree_rcu(vsi->tx_rings[i], rcu);
WRITE_ONCE(vsi->tx_rings[i], NULL);
}
}
}
if (vsi->rx_rings) {
ice_for_each_alloc_rxq(vsi, i) {
if (vsi->rx_rings[i]) {
kfree_rcu(vsi->rx_rings[i], rcu);
WRITE_ONCE(vsi->rx_rings[i], NULL);
}
}
}
}
/**
* ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
* @vsi: VSI which is having rings allocated
*/
static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
{
bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
struct ice_pf *pf = vsi->back;
struct device *dev;
u16 i;
dev = ice_pf_to_dev(pf);
/* Allocate Tx rings */
ice_for_each_alloc_txq(vsi, i) {
struct ice_tx_ring *ring;
/* allocate with kzalloc(), free with kfree_rcu() */
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto err_out;
ring->q_index = i;
ring->reg_idx = vsi->txq_map[i];
ring->vsi = vsi;
ring->tx_tstamps = &pf->ptp.port.tx;
ring->dev = dev;
ring->count = vsi->num_tx_desc;
ring->txq_teid = ICE_INVAL_TEID;
if (dvm_ena)
ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
else
ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
WRITE_ONCE(vsi->tx_rings[i], ring);
}
/* Allocate Rx rings */
ice_for_each_alloc_rxq(vsi, i) {
struct ice_rx_ring *ring;
/* allocate with kzalloc(), free with kfree_rcu() */
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto err_out;
ring->q_index = i;
ring->reg_idx = vsi->rxq_map[i];
ring->vsi = vsi;
ring->netdev = vsi->netdev;
ring->dev = dev;
ring->count = vsi->num_rx_desc;
ring->cached_phctime = pf->ptp.cached_phc_time;
WRITE_ONCE(vsi->rx_rings[i], ring);
}
return 0;
err_out:
ice_vsi_clear_rings(vsi);
return -ENOMEM;
}
/**
* ice_vsi_manage_rss_lut - disable/enable RSS
* @vsi: the VSI being changed
* @ena: boolean value indicating if this is an enable or disable request
*
* In the event of disable request for RSS, this function will zero out RSS
* LUT, while in the event of enable request for RSS, it will reconfigure RSS
* LUT.
*/
void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
{
u8 *lut;
lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
if (!lut)
return;
if (ena) {
if (vsi->rss_lut_user)
memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
else
ice_fill_rss_lut(lut, vsi->rss_table_size,
vsi->rss_size);
}
ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
kfree(lut);
}
/**
* ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
* @vsi: VSI to be configured
* @disable: set to true to have FCS / CRC in the frame data
*/
void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
{
int i;
ice_for_each_rxq(vsi, i)
if (disable)
vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
else
vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
}
/**
* ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
* @vsi: VSI to be configured
*/
int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
u8 *lut, *key;
int err;
dev = ice_pf_to_dev(pf);
if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
(test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
} else {
vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
/* If orig_rss_size is valid and it is less than determined
* main VSI's rss_size, update main VSI's rss_size to be
* orig_rss_size so that when tc-qdisc is deleted, main VSI
* RSS table gets programmed to be correct (whatever it was
* to begin with (prior to setup-tc for ADQ config)
*/
if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
vsi->orig_rss_size <= vsi->num_rxq) {
vsi->rss_size = vsi->orig_rss_size;
/* now orig_rss_size is used, reset it to zero */
vsi->orig_rss_size = 0;
}
}
lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
if (!lut)
return -ENOMEM;
if (vsi->rss_lut_user)
memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
else
ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
if (err) {
dev_err(dev, "set_rss_lut failed, error %d\n", err);
goto ice_vsi_cfg_rss_exit;
}
key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
if (!key) {
err = -ENOMEM;
goto ice_vsi_cfg_rss_exit;
}
if (vsi->rss_hkey_user)
memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
else
netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
err = ice_set_rss_key(vsi, key);
if (err)
dev_err(dev, "set_rss_key failed, error %d\n", err);
kfree(key);
ice_vsi_cfg_rss_exit:
kfree(lut);
return err;
}
/**
* ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
* @vsi: VSI to be configured
*
* This function will only be called during the VF VSI setup. Upon successful
* completion of package download, this function will configure default RSS
* input sets for VF VSI.
*/
static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
int status;
dev = ice_pf_to_dev(pf);
if (ice_is_safe_mode(pf)) {
dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
vsi->vsi_num);
return;
}
status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
if (status)
dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
vsi->vsi_num, status);
}
static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
/* configure RSS for IPv4 with input set IP src/dst */
{ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
/* configure RSS for IPv6 with input set IPv6 src/dst */
{ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false},
/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false},
/* configure RSS for sctp4 with input set IP src/dst - only support
* RSS on SCTPv4 on outer headers (non-tunneled)
*/
{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
{ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false},
/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
{ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false},
/* configure RSS for sctp6 with input set IPv6 src/dst - only support
* RSS on SCTPv6 on outer headers (non-tunneled)
*/
{ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
/* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
{ICE_FLOW_SEG_HDR_ESP,
ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
};
/**
* ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
* @vsi: VSI to be configured
*
* This function will only be called after successful download package call
* during initialization of PF. Since the downloaded package will erase the
* RSS section, this function will configure RSS input sets for different
* flow types. The last profile added has the highest priority, therefore 2
* tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
* (i.e. IPv4 src/dst TCP src/dst port).
*/
static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
{
u16 vsi_num = vsi->vsi_num;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct device *dev;
int status;
u32 i;
dev = ice_pf_to_dev(pf);
if (ice_is_safe_mode(pf)) {
dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
vsi_num);
return;
}
for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
status = ice_add_rss_cfg(hw, vsi, cfg);
if (status)
dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
cfg->addl_hdrs, cfg->hash_flds,
cfg->hdr_type, cfg->symm);
}
}
/**
* ice_pf_state_is_nominal - checks the PF for nominal state
* @pf: pointer to PF to check
*
* Check the PF's state for a collection of bits that would indicate
* the PF is in a state that would inhibit normal operation for
* driver functionality.
*
* Returns true if PF is in a nominal state, false otherwise
*/
bool ice_pf_state_is_nominal(struct ice_pf *pf)
{
DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
if (!pf)
return false;
bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
return false;
return true;
}
/**
* ice_update_eth_stats - Update VSI-specific ethernet statistics counters
* @vsi: the VSI to be updated
*/
void ice_update_eth_stats(struct ice_vsi *vsi)
{
struct ice_eth_stats *prev_es, *cur_es;
struct ice_hw *hw = &vsi->back->hw;
struct ice_pf *pf = vsi->back;
u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
prev_es = &vsi->eth_stats_prev;
cur_es = &vsi->eth_stats;
if (ice_is_reset_in_progress(pf->state))
vsi->stat_offsets_loaded = false;
ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_bytes, &cur_es->rx_bytes);
ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_unicast, &cur_es->rx_unicast);
ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_multicast, &cur_es->rx_multicast);
ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_broadcast, &cur_es->rx_broadcast);
ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_discards, &cur_es->rx_discards);
ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_bytes, &cur_es->tx_bytes);
ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_unicast, &cur_es->tx_unicast);
ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_multicast, &cur_es->tx_multicast);
ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_broadcast, &cur_es->tx_broadcast);
ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_errors, &cur_es->tx_errors);
vsi->stat_offsets_loaded = true;
}
/**
* ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
* @hw: HW pointer
* @pf_q: index of the Rx queue in the PF's queue space
* @rxdid: flexible descriptor RXDID
* @prio: priority for the RXDID for this queue
* @ena_ts: true to enable timestamp and false to disable timestamp
*/
void
ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
bool ena_ts)
{
int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
/* clear any previous values */
regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
QRXFLXP_CNTXT_RXDID_PRIO_M |
QRXFLXP_CNTXT_TS_M);
regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
if (ena_ts)
/* Enable TimeSync on this queue */
regval |= QRXFLXP_CNTXT_TS_M;
wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
}
/**
* ice_intrl_usec_to_reg - convert interrupt rate limit to register value
* @intrl: interrupt rate limit in usecs
* @gran: interrupt rate limit granularity in usecs
*
* This function converts a decimal interrupt rate limit in usecs to the format
* expected by firmware.
*/
static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
{
u32 val = intrl / gran;
if (val)
return val | GLINT_RATE_INTRL_ENA_M;
return 0;
}
/**
* ice_write_intrl - write throttle rate limit to interrupt specific register
* @q_vector: pointer to interrupt specific structure
* @intrl: throttle rate limit in microseconds to write
*/
void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
{
struct ice_hw *hw = &q_vector->vsi->back->hw;
wr32(hw, GLINT_RATE(q_vector->reg_idx),
ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
}
static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
{
switch (rc->type) {
case ICE_RX_CONTAINER:
if (rc->rx_ring)
return rc->rx_ring->q_vector;
break;
case ICE_TX_CONTAINER:
if (rc->tx_ring)
return rc->tx_ring->q_vector;
break;
default:
break;
}
return NULL;
}
/**
* __ice_write_itr - write throttle rate to register
* @q_vector: pointer to interrupt data structure
* @rc: pointer to ring container
* @itr: throttle rate in microseconds to write
*/
static void __ice_write_itr(struct ice_q_vector *q_vector,
struct ice_ring_container *rc, u16 itr)
{
struct ice_hw *hw = &q_vector->vsi->back->hw;
wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
}
/**
* ice_write_itr - write throttle rate to queue specific register
* @rc: pointer to ring container
* @itr: throttle rate in microseconds to write
*/
void ice_write_itr(struct ice_ring_container *rc, u16 itr)
{
struct ice_q_vector *q_vector;
q_vector = ice_pull_qvec_from_rc(rc);
if (!q_vector)
return;
__ice_write_itr(q_vector, rc, itr);
}
/**
* ice_set_q_vector_intrl - set up interrupt rate limiting
* @q_vector: the vector to be configured
*
* Interrupt rate limiting is local to the vector, not per-queue so we must
* detect if either ring container has dynamic moderation enabled to decide
* what to set the interrupt rate limit to via INTRL settings. In the case that
* dynamic moderation is disabled on both, write the value with the cached
* setting to make sure INTRL register matches the user visible value.
*/
void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
{
if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
/* in the case of dynamic enabled, cap each vector to no more
* than (4 us) 250,000 ints/sec, which allows low latency
* but still less than 500,000 interrupts per second, which
* reduces CPU a bit in the case of the lowest latency
* setting. The 4 here is a value in microseconds.
*/
ice_write_intrl(q_vector, 4);
} else {
ice_write_intrl(q_vector, q_vector->intrl);
}
}
/**
* ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
* @vsi: the VSI being configured
*
* This configures MSIX mode interrupts for the PF VSI, and should not be used
* for the VF VSI.
*/
void ice_vsi_cfg_msix(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u16 txq = 0, rxq = 0;
int i, q;
ice_for_each_q_vector(vsi, i) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
u16 reg_idx = q_vector->reg_idx;
ice_cfg_itr(hw, q_vector);
/* Both Transmit Queue Interrupt Cause Control register
* and Receive Queue Interrupt Cause control register
* expects MSIX_INDX field to be the vector index
* within the function space and not the absolute
* vector index across PF or across device.
* For SR-IOV VF VSIs queue vector index always starts
* with 1 since first vector index(0) is used for OICR
* in VF space. Since VMDq and other PF VSIs are within
* the PF function space, use the vector index that is
* tracked for this PF.
*/
for (q = 0; q < q_vector->num_ring_tx; q++) {
ice_cfg_txq_interrupt(vsi, txq, reg_idx,
q_vector->tx.itr_idx);
txq++;
}
for (q = 0; q < q_vector->num_ring_rx; q++) {
ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
q_vector->rx.itr_idx);
rxq++;
}
}
}
/**
* ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
* @vsi: the VSI whose rings are to be enabled
*
* Returns 0 on success and a negative value on error
*/
int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
{
return ice_vsi_ctrl_all_rx_rings(vsi, true);
}
/**
* ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
* @vsi: the VSI whose rings are to be disabled
*
* Returns 0 on success and a negative value on error
*/
int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
{
return ice_vsi_ctrl_all_rx_rings(vsi, false);
}
/**
* ice_vsi_stop_tx_rings - Disable Tx rings
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative ID of VF/VM
* @rings: Tx ring array to be stopped
* @count: number of Tx ring array elements
*/
static int
ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
{
u16 q_idx;
if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
return -EINVAL;
for (q_idx = 0; q_idx < count; q_idx++) {
struct ice_txq_meta txq_meta = { };
int status;
if (!rings || !rings[q_idx])
return -EINVAL;
ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
rings[q_idx], &txq_meta);
if (status)
return status;
}
return 0;
}
/**
* ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative ID of VF/VM
*/
int
ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num)
{
return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
}
/**
* ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
* @vsi: the VSI being configured
*/
int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
{
return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
}
/**
* ice_vsi_is_rx_queue_active
* @vsi: the VSI being configured
*
* Return true if at least one queue is active.
*/
bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int i;
ice_for_each_rxq(vsi, i) {
u32 rx_reg;
int pf_q;
pf_q = vsi->rxq_map[i];
rx_reg = rd32(hw, QRX_CTRL(pf_q));
if (rx_reg & QRX_CTRL_QENA_STAT_M)
return true;
}
return false;
}
static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
{
if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
vsi->tc_cfg.numtc = 1;
return;
}
/* set VSI TC information based on DCB config */
ice_vsi_set_dcb_tc_cfg(vsi);
}
/**
* ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
* @vsi: the VSI being configured
* @tx: bool to determine Tx or Rx rule
* @create: bool to determine create or remove Rule
*/
void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
{
int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
enum ice_sw_fwd_act_type act);
struct ice_pf *pf = vsi->back;
struct device *dev;
int status;
dev = ice_pf_to_dev(pf);
eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
if (tx) {
status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
ICE_DROP_PACKET);
} else {
if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
create);
} else {
status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
ICE_FWD_TO_VSI);
}
}
if (status)
dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
create ? "adding" : "removing", tx ? "TX" : "RX",
vsi->vsi_num, status);
}
/**
* ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
* @vsi: pointer to the VSI
*
* This function will allocate new scheduler aggregator now if needed and will
* move specified VSI into it.
*/
static void ice_set_agg_vsi(struct ice_vsi *vsi)
{
struct device *dev = ice_pf_to_dev(vsi->back);
struct ice_agg_node *agg_node_iter = NULL;
u32 agg_id = ICE_INVALID_AGG_NODE_ID;
struct ice_agg_node *agg_node = NULL;
int node_offset, max_agg_nodes = 0;
struct ice_port_info *port_info;
struct ice_pf *pf = vsi->back;
u32 agg_node_id_start = 0;
int status;
/* create (as needed) scheduler aggregator node and move VSI into
* corresponding aggregator node
* - PF aggregator node to contains VSIs of type _PF and _CTRL
* - VF aggregator nodes will contain VF VSI
*/
port_info = pf->hw.port_info;
if (!port_info)
return;
switch (vsi->type) {
case ICE_VSI_CTRL:
case ICE_VSI_CHNL:
case ICE_VSI_LB:
case ICE_VSI_PF:
case ICE_VSI_SWITCHDEV_CTRL:
max_agg_nodes = ICE_MAX_PF_AGG_NODES;
agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
agg_node_iter = &pf->pf_agg_node[0];
break;
case ICE_VSI_VF:
/* user can create 'n' VFs on a given PF, but since max children
* per aggregator node can be only 64. Following code handles
* aggregator(s) for VF VSIs, either selects a agg_node which
* was already created provided num_vsis < 64, otherwise
* select next available node, which will be created
*/
max_agg_nodes = ICE_MAX_VF_AGG_NODES;
agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
agg_node_iter = &pf->vf_agg_node[0];
break;
default:
/* other VSI type, handle later if needed */
dev_dbg(dev, "unexpected VSI type %s\n",
ice_vsi_type_str(vsi->type));
return;
}
/* find the appropriate aggregator node */
for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
/* see if we can find space in previously created
* node if num_vsis < 64, otherwise skip
*/
if (agg_node_iter->num_vsis &&
agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
agg_node_iter++;
continue;
}
if (agg_node_iter->valid &&
agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
agg_id = agg_node_iter->agg_id;
agg_node = agg_node_iter;
break;
}
/* find unclaimed agg_id */
if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
agg_id = node_offset + agg_node_id_start;
agg_node = agg_node_iter;
break;
}
/* move to next agg_node */
agg_node_iter++;
}
if (!agg_node)
return;
/* if selected aggregator node was not created, create it */
if (!agg_node->valid) {
status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
(u8)vsi->tc_cfg.ena_tc);
if (status) {
dev_err(dev, "unable to create aggregator node with agg_id %u\n",
agg_id);
return;
}
/* aggregator node is created, store the needed info */
agg_node->valid = true;
agg_node->agg_id = agg_id;
}
/* move VSI to corresponding aggregator node */
status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
(u8)vsi->tc_cfg.ena_tc);
if (status) {
dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
vsi->idx, agg_id);
return;
}
/* keep active children count for aggregator node */
agg_node->num_vsis++;
/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
* to aggregator node
*/
vsi->agg_node = agg_node;
dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
vsi->agg_node->num_vsis);
}
static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct device *dev = ice_pf_to_dev(pf);
int ret, i;
/* configure VSI nodes based on number of queues and TC's */
ice_for_each_traffic_class(i) {
if (!(vsi->tc_cfg.ena_tc & BIT(i)))
continue;
if (vsi->type == ICE_VSI_CHNL) {
if (!vsi->alloc_txq && vsi->num_txq)
max_txqs[i] = vsi->num_txq;
else
max_txqs[i] = pf->num_lan_tx;
} else {
max_txqs[i] = vsi->alloc_txq;
}
if (vsi->type == ICE_VSI_PF)
max_txqs[i] += vsi->num_xdp_txq;
}
dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
max_txqs);
if (ret) {
dev_err(dev, "VSI %d failed lan queue config, error %d\n",
vsi->vsi_num, ret);
return ret;
}
return 0;
}
/**
* ice_vsi_cfg_def - configure default VSI based on the type
* @vsi: pointer to VSI
* @params: the parameters to configure this VSI with
*/
static int
ice_vsi_cfg_def(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
{
struct device *dev = ice_pf_to_dev(vsi->back);
struct ice_pf *pf = vsi->back;
int ret;
vsi->vsw = pf->first_sw;
ret = ice_vsi_alloc_def(vsi, params->ch);
if (ret)
return ret;
/* allocate memory for Tx/Rx ring stat pointers */
ret = ice_vsi_alloc_stat_arrays(vsi);
if (ret)
goto unroll_vsi_alloc;
ice_alloc_fd_res(vsi);
ret = ice_vsi_get_qs(vsi);
if (ret) {
dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
vsi->idx);
goto unroll_vsi_alloc_stat;
}
/* set RSS capabilities */
ice_vsi_set_rss_params(vsi);
/* set TC configuration */
ice_vsi_set_tc_cfg(vsi);
/* create the VSI */
ret = ice_vsi_init(vsi, params->flags);
if (ret)
goto unroll_get_qs;
ice_vsi_init_vlan_ops(vsi);
switch (vsi->type) {
case ICE_VSI_CTRL:
case ICE_VSI_SWITCHDEV_CTRL:
case ICE_VSI_PF:
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto unroll_vsi_init;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto unroll_vector_base;
ret = ice_vsi_alloc_ring_stats(vsi);
if (ret)
goto unroll_vector_base;
ice_vsi_map_rings_to_vectors(vsi);
/* Associate q_vector rings to napi */
ice_vsi_set_napi_queues(vsi);
vsi->stat_offsets_loaded = false;
if (ice_is_xdp_ena_vsi(vsi)) {
ret = ice_vsi_determine_xdp_res(vsi);
if (ret)
goto unroll_vector_base;
ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
if (ret)
goto unroll_vector_base;
}
/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
if (vsi->type != ICE_VSI_CTRL)
/* Do not exit if configuring RSS had an issue, at
* least receive traffic on first queue. Hence no
* need to capture return value
*/
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
ice_vsi_cfg_rss_lut_key(vsi);
ice_vsi_set_rss_flow_fld(vsi);
}
ice_init_arfs(vsi);
break;
case ICE_VSI_CHNL:
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
ice_vsi_cfg_rss_lut_key(vsi);
ice_vsi_set_rss_flow_fld(vsi);
}
break;
case ICE_VSI_VF:
/* VF driver will take care of creating netdev for this type and
* map queues to vectors through Virtchnl, PF driver only
* creates a VSI and corresponding structures for bookkeeping
* purpose
*/
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto unroll_vsi_init;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto unroll_alloc_q_vector;
ret = ice_vsi_alloc_ring_stats(vsi);
if (ret)
goto unroll_vector_base;
vsi->stat_offsets_loaded = false;
/* Do not exit if configuring RSS had an issue, at least
* receive traffic on first queue. Hence no need to capture
* return value
*/
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
ice_vsi_cfg_rss_lut_key(vsi);
ice_vsi_set_vf_rss_flow_fld(vsi);
}
break;
case ICE_VSI_LB:
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto unroll_vsi_init;
ret = ice_vsi_alloc_ring_stats(vsi);
if (ret)
goto unroll_vector_base;
break;
default:
/* clean up the resources and exit */
ret = -EINVAL;
goto unroll_vsi_init;
}
return 0;
unroll_vector_base:
/* reclaim SW interrupts back to the common pool */
unroll_alloc_q_vector:
ice_vsi_free_q_vectors(vsi);
unroll_vsi_init:
ice_vsi_delete_from_hw(vsi);
unroll_get_qs:
ice_vsi_put_qs(vsi);
unroll_vsi_alloc_stat:
ice_vsi_free_stats(vsi);
unroll_vsi_alloc:
ice_vsi_free_arrays(vsi);
return ret;
}
/**
* ice_vsi_cfg - configure a previously allocated VSI
* @vsi: pointer to VSI
* @params: parameters used to configure this VSI
*/
int ice_vsi_cfg(struct ice_vsi *vsi, struct ice_vsi_cfg_params *params)
{
struct ice_pf *pf = vsi->back;
int ret;
if (WARN_ON(params->type == ICE_VSI_VF && !params->vf))
return -EINVAL;
vsi->type = params->type;
vsi->port_info = params->pi;
/* For VSIs which don't have a connected VF, this will be NULL */
vsi->vf = params->vf;
ret = ice_vsi_cfg_def(vsi, params);
if (ret)
return ret;
ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
if (ret)
ice_vsi_decfg(vsi);
if (vsi->type == ICE_VSI_CTRL) {
if (vsi->vf) {
WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
vsi->vf->ctrl_vsi_idx = vsi->idx;
} else {
WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
pf->ctrl_vsi_idx = vsi->idx;
}
}
return ret;
}
/**
* ice_vsi_decfg - remove all VSI configuration
* @vsi: pointer to VSI
*/
void ice_vsi_decfg(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int err;
/* The Rx rule will only exist to remove if the LLDP FW
* engine is currently stopped
*/
if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
ice_cfg_sw_lldp(vsi, false, false);
ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
if (err)
dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
vsi->vsi_num, err);
if (ice_is_xdp_ena_vsi(vsi))
/* return value check can be skipped here, it always returns
* 0 if reset is in progress
*/
ice_destroy_xdp_rings(vsi);
ice_vsi_clear_rings(vsi);
ice_vsi_free_q_vectors(vsi);
ice_vsi_put_qs(vsi);
ice_vsi_free_arrays(vsi);
/* SR-IOV determines needed MSIX resources all at once instead of per
* VSI since when VFs are spawned we know how many VFs there are and how
* many interrupts each VF needs. SR-IOV MSIX resources are also
* cleared in the same manner.
*/
if (vsi->type == ICE_VSI_VF &&
vsi->agg_node && vsi->agg_node->valid)
vsi->agg_node->num_vsis--;
}
/**
* ice_vsi_setup - Set up a VSI by a given type
* @pf: board private structure
* @params: parameters to use when creating the VSI
*
* This allocates the sw VSI structure and its queue resources.
*
* Returns pointer to the successfully allocated and configured VSI sw struct on
* success, NULL on failure.
*/
struct ice_vsi *
ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_vsi *vsi;
int ret;
/* ice_vsi_setup can only initialize a new VSI, and we must have
* a port_info structure for it.
*/
if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
WARN_ON(!params->pi))
return NULL;
vsi = ice_vsi_alloc(pf);
if (!vsi) {
dev_err(dev, "could not allocate VSI\n");
return NULL;
}
ret = ice_vsi_cfg(vsi, params);
if (ret)
goto err_vsi_cfg;
/* Add switch rule to drop all Tx Flow Control Frames, of look up
* type ETHERTYPE from VSIs, and restrict malicious VF from sending
* out PAUSE or PFC frames. If enabled, FW can still send FC frames.
* The rule is added once for PF VSI in order to create appropriate
* recipe, since VSI/VSI list is ignored with drop action...
* Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
* be dropped so that VFs cannot send LLDP packets to reconfig DCB
* settings in the HW.
*/
if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
ICE_DROP_PACKET);
ice_cfg_sw_lldp(vsi, true, true);
}
if (!vsi->agg_node)
ice_set_agg_vsi(vsi);
return vsi;
err_vsi_cfg:
ice_vsi_free(vsi);
return NULL;
}
/**
* ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
* @vsi: the VSI being cleaned up
*/
static void ice_vsi_release_msix(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 txq = 0;
u32 rxq = 0;
int i, q;
ice_for_each_q_vector(vsi, i) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
ice_write_intrl(q_vector, 0);
for (q = 0; q < q_vector->num_ring_tx; q++) {
ice_write_itr(&q_vector->tx, 0);
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
if (ice_is_xdp_ena_vsi(vsi)) {
u32 xdp_txq = txq + vsi->num_xdp_txq;
wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
}
txq++;
}
for (q = 0; q < q_vector->num_ring_rx; q++) {
ice_write_itr(&q_vector->rx, 0);
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
rxq++;
}
}
ice_flush(hw);
}
/**
* ice_vsi_free_irq - Free the IRQ association with the OS
* @vsi: the VSI being configured
*/
void ice_vsi_free_irq(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int i;
if (!vsi->q_vectors || !vsi->irqs_ready)
return;
ice_vsi_release_msix(vsi);
if (vsi->type == ICE_VSI_VF)
return;
vsi->irqs_ready = false;
ice_free_cpu_rx_rmap(vsi);
ice_for_each_q_vector(vsi, i) {
int irq_num;
irq_num = vsi->q_vectors[i]->irq.virq;
/* free only the irqs that were actually requested */
if (!vsi->q_vectors[i] ||
!(vsi->q_vectors[i]->num_ring_tx ||
vsi->q_vectors[i]->num_ring_rx))
continue;
/* clear the affinity notifier in the IRQ descriptor */
if (!IS_ENABLED(CONFIG_RFS_ACCEL))
irq_set_affinity_notifier(irq_num, NULL);
/* clear the affinity_mask in the IRQ descriptor */
irq_set_affinity_hint(irq_num, NULL);
synchronize_irq(irq_num);
devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
}
}
/**
* ice_vsi_free_tx_rings - Free Tx resources for VSI queues
* @vsi: the VSI having resources freed
*/
void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
{
int i;
if (!vsi->tx_rings)
return;
ice_for_each_txq(vsi, i)
if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
ice_free_tx_ring(vsi->tx_rings[i]);
}
/**
* ice_vsi_free_rx_rings - Free Rx resources for VSI queues
* @vsi: the VSI having resources freed
*/
void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
{
int i;
if (!vsi->rx_rings)
return;
ice_for_each_rxq(vsi, i)
if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
ice_free_rx_ring(vsi->rx_rings[i]);
}
/**
* ice_vsi_close - Shut down a VSI
* @vsi: the VSI being shut down
*/
void ice_vsi_close(struct ice_vsi *vsi)
{
if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
ice_down(vsi);
ice_vsi_free_irq(vsi);
ice_vsi_free_tx_rings(vsi);
ice_vsi_free_rx_rings(vsi);
}
/**
* ice_ena_vsi - resume a VSI
* @vsi: the VSI being resume
* @locked: is the rtnl_lock already held
*/
int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
{
int err = 0;
if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
return 0;
clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
if (vsi->netdev && vsi->type == ICE_VSI_PF) {
if (netif_running(vsi->netdev)) {
if (!locked)
rtnl_lock();
err = ice_open_internal(vsi->netdev);
if (!locked)
rtnl_unlock();
}
} else if (vsi->type == ICE_VSI_CTRL) {
err = ice_vsi_open_ctrl(vsi);
}
return err;
}
/**
* ice_dis_vsi - pause a VSI
* @vsi: the VSI being paused
* @locked: is the rtnl_lock already held
*/
void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
{
if (test_bit(ICE_VSI_DOWN, vsi->state))
return;
set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
if (vsi->type == ICE_VSI_PF && vsi->netdev) {
if (netif_running(vsi->netdev)) {
if (!locked)
rtnl_lock();
ice_vsi_close(vsi);
if (!locked)
rtnl_unlock();
} else {
ice_vsi_close(vsi);
}
} else if (vsi->type == ICE_VSI_CTRL ||
vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
ice_vsi_close(vsi);
}
}
/**
* ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
* @vsi: the VSI being un-configured
*/
void ice_vsi_dis_irq(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
int i;
/* disable interrupt causation from each queue */
if (vsi->tx_rings) {
ice_for_each_txq(vsi, i) {
if (vsi->tx_rings[i]) {
u16 reg;
reg = vsi->tx_rings[i]->reg_idx;
val = rd32(hw, QINT_TQCTL(reg));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(reg), val);
}
}
}
if (vsi->rx_rings) {
ice_for_each_rxq(vsi, i) {
if (vsi->rx_rings[i]) {
u16 reg;
reg = vsi->rx_rings[i]->reg_idx;
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
}
}
}
/* disable each interrupt */
ice_for_each_q_vector(vsi, i) {
if (!vsi->q_vectors[i])
continue;
wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
}
ice_flush(hw);
/* don't call synchronize_irq() for VF's from the host */
if (vsi->type == ICE_VSI_VF)
return;
ice_for_each_q_vector(vsi, i)
synchronize_irq(vsi->q_vectors[i]->irq.virq);
}
/**
* __ice_queue_set_napi - Set the napi instance for the queue
* @dev: device to which NAPI and queue belong
* @queue_index: Index of queue
* @type: queue type as RX or TX
* @napi: NAPI context
* @locked: is the rtnl_lock already held
*
* Set the napi instance for the queue. Caller indicates the lock status.
*/
static void
__ice_queue_set_napi(struct net_device *dev, unsigned int queue_index,
enum netdev_queue_type type, struct napi_struct *napi,
bool locked)
{
if (!locked)
rtnl_lock();
netif_queue_set_napi(dev, queue_index, type, napi);
if (!locked)
rtnl_unlock();
}
/**
* ice_queue_set_napi - Set the napi instance for the queue
* @vsi: VSI being configured
* @queue_index: Index of queue
* @type: queue type as RX or TX
* @napi: NAPI context
*
* Set the napi instance for the queue. The rtnl lock state is derived from the
* execution path.
*/
void
ice_queue_set_napi(struct ice_vsi *vsi, unsigned int queue_index,
enum netdev_queue_type type, struct napi_struct *napi)
{
struct ice_pf *pf = vsi->back;
if (!vsi->netdev)
return;
if (current_work() == &pf->serv_task ||
test_bit(ICE_PREPARED_FOR_RESET, pf->state) ||
test_bit(ICE_DOWN, pf->state) ||
test_bit(ICE_SUSPENDED, pf->state))
__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
false);
else
__ice_queue_set_napi(vsi->netdev, queue_index, type, napi,
true);
}
/**
* __ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
* @q_vector: q_vector pointer
* @locked: is the rtnl_lock already held
*
* Associate the q_vector napi with all the queue[s] on the vector.
* Caller indicates the lock status.
*/
void __ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked)
{
struct ice_rx_ring *rx_ring;
struct ice_tx_ring *tx_ring;
ice_for_each_rx_ring(rx_ring, q_vector->rx)
__ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index,
NETDEV_QUEUE_TYPE_RX, &q_vector->napi,
locked);
ice_for_each_tx_ring(tx_ring, q_vector->tx)
__ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index,
NETDEV_QUEUE_TYPE_TX, &q_vector->napi,
locked);
/* Also set the interrupt number for the NAPI */
netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
}
/**
* ice_q_vector_set_napi_queues - Map queue[s] associated with the napi
* @q_vector: q_vector pointer
*
* Associate the q_vector napi with all the queue[s] on the vector
*/
void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector)
{
struct ice_rx_ring *rx_ring;
struct ice_tx_ring *tx_ring;
ice_for_each_rx_ring(rx_ring, q_vector->rx)
ice_queue_set_napi(q_vector->vsi, rx_ring->q_index,
NETDEV_QUEUE_TYPE_RX, &q_vector->napi);
ice_for_each_tx_ring(tx_ring, q_vector->tx)
ice_queue_set_napi(q_vector->vsi, tx_ring->q_index,
NETDEV_QUEUE_TYPE_TX, &q_vector->napi);
/* Also set the interrupt number for the NAPI */
netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
}
/**
* ice_vsi_set_napi_queues
* @vsi: VSI pointer
*
* Associate queue[s] with napi for all vectors
*/
void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
{
int i;
if (!vsi->netdev)
return;
ice_for_each_q_vector(vsi, i)
ice_q_vector_set_napi_queues(vsi->q_vectors[i]);
}
/**
* ice_vsi_release - Delete a VSI and free its resources
* @vsi: the VSI being removed
*
* Returns 0 on success or < 0 on error
*/
int ice_vsi_release(struct ice_vsi *vsi)
{
struct ice_pf *pf;
if (!vsi->back)
return -ENODEV;
pf = vsi->back;
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
ice_rss_clean(vsi);
ice_vsi_close(vsi);
ice_vsi_decfg(vsi);
/* retain SW VSI data structure since it is needed to unregister and
* free VSI netdev when PF is not in reset recovery pending state,\
* for ex: during rmmod.
*/
if (!ice_is_reset_in_progress(pf->state))
ice_vsi_delete(vsi);
return 0;
}
/**
* ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
* @vsi: VSI connected with q_vectors
* @coalesce: array of struct with stored coalesce
*
* Returns array size.
*/
static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
struct ice_coalesce_stored *coalesce)
{
int i;
ice_for_each_q_vector(vsi, i) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
coalesce[i].itr_tx = q_vector->tx.itr_settings;
coalesce[i].itr_rx = q_vector->rx.itr_settings;
coalesce[i].intrl = q_vector->intrl;
if (i < vsi->num_txq)
coalesce[i].tx_valid = true;
if (i < vsi->num_rxq)
coalesce[i].rx_valid = true;
}
return vsi->num_q_vectors;
}
/**
* ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
* @vsi: VSI connected with q_vectors
* @coalesce: pointer to array of struct with stored coalesce
* @size: size of coalesce array
*
* Before this function, ice_vsi_rebuild_get_coalesce should be called to save
* ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
* to default value.
*/
static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
struct ice_coalesce_stored *coalesce, int size)
{
struct ice_ring_container *rc;
int i;
if ((size && !coalesce) || !vsi)
return;
/* There are a couple of cases that have to be handled here:
* 1. The case where the number of queue vectors stays the same, but
* the number of Tx or Rx rings changes (the first for loop)
* 2. The case where the number of queue vectors increased (the
* second for loop)
*/
for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
/* There are 2 cases to handle here and they are the same for
* both Tx and Rx:
* if the entry was valid previously (coalesce[i].[tr]x_valid
* and the loop variable is less than the number of rings
* allocated, then write the previous values
*
* if the entry was not valid previously, but the number of
* rings is less than are allocated (this means the number of
* rings increased from previously), then write out the
* values in the first element
*
* Also, always write the ITR, even if in ITR_IS_DYNAMIC
* as there is no harm because the dynamic algorithm
* will just overwrite.
*/
if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
rc = &vsi->q_vectors[i]->rx;
rc->itr_settings = coalesce[i].itr_rx;
ice_write_itr(rc, rc->itr_setting);
} else if (i < vsi->alloc_rxq) {
rc = &vsi->q_vectors[i]->rx;
rc->itr_settings = coalesce[0].itr_rx;
ice_write_itr(rc, rc->itr_setting);
}
if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
rc = &vsi->q_vectors[i]->tx;
rc->itr_settings = coalesce[i].itr_tx;
ice_write_itr(rc, rc->itr_setting);
} else if (i < vsi->alloc_txq) {
rc = &vsi->q_vectors[i]->tx;
rc->itr_settings = coalesce[0].itr_tx;
ice_write_itr(rc, rc->itr_setting);
}
vsi->q_vectors[i]->intrl = coalesce[i].intrl;
ice_set_q_vector_intrl(vsi->q_vectors[i]);
}
/* the number of queue vectors increased so write whatever is in
* the first element
*/
for (; i < vsi->num_q_vectors; i++) {
/* transmit */
rc = &vsi->q_vectors[i]->tx;
rc->itr_settings = coalesce[0].itr_tx;
ice_write_itr(rc, rc->itr_setting);
/* receive */
rc = &vsi->q_vectors[i]->rx;
rc->itr_settings = coalesce[0].itr_rx;
ice_write_itr(rc, rc->itr_setting);
vsi->q_vectors[i]->intrl = coalesce[0].intrl;
ice_set_q_vector_intrl(vsi->q_vectors[i]);
}
}
/**
* ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
* @vsi: VSI pointer
*/
static int
ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
{
u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
struct ice_ring_stats **tx_ring_stats;
struct ice_ring_stats **rx_ring_stats;
struct ice_vsi_stats *vsi_stat;
struct ice_pf *pf = vsi->back;
u16 prev_txq = vsi->alloc_txq;
u16 prev_rxq = vsi->alloc_rxq;
int i;
vsi_stat = pf->vsi_stats[vsi->idx];
if (req_txq < prev_txq) {
for (i = req_txq; i < prev_txq; i++) {
if (vsi_stat->tx_ring_stats[i]) {
kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
}
}
}
tx_ring_stats = vsi_stat->rx_ring_stats;
vsi_stat->tx_ring_stats =
krealloc_array(vsi_stat->tx_ring_stats, req_txq,
sizeof(*vsi_stat->tx_ring_stats),
GFP_KERNEL | __GFP_ZERO);
if (!vsi_stat->tx_ring_stats) {
vsi_stat->tx_ring_stats = tx_ring_stats;
return -ENOMEM;
}
if (req_rxq < prev_rxq) {
for (i = req_rxq; i < prev_rxq; i++) {
if (vsi_stat->rx_ring_stats[i]) {
kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
}
}
}
rx_ring_stats = vsi_stat->rx_ring_stats;
vsi_stat->rx_ring_stats =
krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
sizeof(*vsi_stat->rx_ring_stats),
GFP_KERNEL | __GFP_ZERO);
if (!vsi_stat->rx_ring_stats) {
vsi_stat->rx_ring_stats = rx_ring_stats;
return -ENOMEM;
}
return 0;
}
/**
* ice_vsi_rebuild - Rebuild VSI after reset
* @vsi: VSI to be rebuild
* @vsi_flags: flags used for VSI rebuild flow
*
* Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
* ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
*
* Returns 0 on success and negative value on failure
*/
int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
{
struct ice_vsi_cfg_params params = {};
struct ice_coalesce_stored *coalesce;
int prev_num_q_vectors = 0;
struct ice_pf *pf;
int ret;
if (!vsi)
return -EINVAL;
params = ice_vsi_to_params(vsi);
params.flags = vsi_flags;
pf = vsi->back;
if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
return -EINVAL;
coalesce = kcalloc(vsi->num_q_vectors,
sizeof(struct ice_coalesce_stored), GFP_KERNEL);
if (!coalesce)
return -ENOMEM;
prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
ret = ice_vsi_realloc_stat_arrays(vsi);
if (ret)
goto err_vsi_cfg;
ice_vsi_decfg(vsi);
ret = ice_vsi_cfg_def(vsi, ¶ms);
if (ret)
goto err_vsi_cfg;
ret = ice_vsi_cfg_tc_lan(pf, vsi);
if (ret) {
if (vsi_flags & ICE_VSI_FLAG_INIT) {
ret = -EIO;
goto err_vsi_cfg_tc_lan;
}
kfree(coalesce);
return ice_schedule_reset(pf, ICE_RESET_PFR);
}
ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
kfree(coalesce);
return 0;
err_vsi_cfg_tc_lan:
ice_vsi_decfg(vsi);
err_vsi_cfg:
kfree(coalesce);
return ret;
}
/**
* ice_is_reset_in_progress - check for a reset in progress
* @state: PF state field
*/
bool ice_is_reset_in_progress(unsigned long *state)
{
return test_bit(ICE_RESET_OICR_RECV, state) ||
test_bit(ICE_PFR_REQ, state) ||
test_bit(ICE_CORER_REQ, state) ||
test_bit(ICE_GLOBR_REQ, state);
}
/**
* ice_wait_for_reset - Wait for driver to finish reset and rebuild
* @pf: pointer to the PF structure
* @timeout: length of time to wait, in jiffies
*
* Wait (sleep) for a short time until the driver finishes cleaning up from
* a device reset. The caller must be able to sleep. Use this to delay
* operations that could fail while the driver is cleaning up after a device
* reset.
*
* Returns 0 on success, -EBUSY if the reset is not finished within the
* timeout, and -ERESTARTSYS if the thread was interrupted.
*/
int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
{
long ret;
ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
!ice_is_reset_in_progress(pf->state),
timeout);
if (ret < 0)
return ret;
else if (!ret)
return -EBUSY;
else
return 0;
}
/**
* ice_vsi_update_q_map - update our copy of the VSI info with new queue map
* @vsi: VSI being configured
* @ctx: the context buffer returned from AQ VSI update command
*/
static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
{
vsi->info.mapping_flags = ctx->info.mapping_flags;
memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
sizeof(vsi->info.q_mapping));
memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
sizeof(vsi->info.tc_mapping));
}
/**
* ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
* @vsi: the VSI being configured
* @ena_tc: TC map to be enabled
*/
void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
{
struct net_device *netdev = vsi->netdev;
struct ice_pf *pf = vsi->back;
int numtc = vsi->tc_cfg.numtc;
struct ice_dcbx_cfg *dcbcfg;
u8 netdev_tc;
int i;
if (!netdev)
return;
/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
if (vsi->type == ICE_VSI_CHNL)
return;
if (!ena_tc) {
netdev_reset_tc(netdev);
return;
}
if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
numtc = vsi->all_numtc;
if (netdev_set_num_tc(netdev, numtc))
return;
dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
ice_for_each_traffic_class(i)
if (vsi->tc_cfg.ena_tc & BIT(i))
netdev_set_tc_queue(netdev,
vsi->tc_cfg.tc_info[i].netdev_tc,
vsi->tc_cfg.tc_info[i].qcount_tx,
vsi->tc_cfg.tc_info[i].qoffset);
/* setup TC queue map for CHNL TCs */
ice_for_each_chnl_tc(i) {
if (!(vsi->all_enatc & BIT(i)))
break;
if (!vsi->mqprio_qopt.qopt.count[i])
break;
netdev_set_tc_queue(netdev, i,
vsi->mqprio_qopt.qopt.count[i],
vsi->mqprio_qopt.qopt.offset[i]);
}
if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
return;
for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
u8 ets_tc = dcbcfg->etscfg.prio_table[i];
/* Get the mapped netdev TC# for the UP */
netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
netdev_set_prio_tc_map(netdev, i, netdev_tc);
}
}
/**
* ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
* @vsi: the VSI being configured,
* @ctxt: VSI context structure
* @ena_tc: number of traffic classes to enable
*
* Prepares VSI tc_config to have queue configurations based on MQPRIO options.
*/
static int
ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
u8 ena_tc)
{
u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
u16 new_txq, new_rxq;
u8 netdev_tc = 0;
int i;
vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
pow = order_base_2(tc0_qcount);
qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
ice_for_each_traffic_class(i) {
if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
/* TC is not enabled */
vsi->tc_cfg.tc_info[i].qoffset = 0;
vsi->tc_cfg.tc_info[i].qcount_rx = 1;
vsi->tc_cfg.tc_info[i].qcount_tx = 1;
vsi->tc_cfg.tc_info[i].netdev_tc = 0;
ctxt->info.tc_mapping[i] = 0;
continue;
}
offset = vsi->mqprio_qopt.qopt.offset[i];
qcount_rx = vsi->mqprio_qopt.qopt.count[i];
qcount_tx = vsi->mqprio_qopt.qopt.count[i];
vsi->tc_cfg.tc_info[i].qoffset = offset;
vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
}
if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
ice_for_each_chnl_tc(i) {
if (!(vsi->all_enatc & BIT(i)))
continue;
offset = vsi->mqprio_qopt.qopt.offset[i];
qcount_rx = vsi->mqprio_qopt.qopt.count[i];
qcount_tx = vsi->mqprio_qopt.qopt.count[i];
}
}
new_txq = offset + qcount_tx;
if (new_txq > vsi->alloc_txq) {
dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
new_txq, vsi->alloc_txq);
return -EINVAL;
}
new_rxq = offset + qcount_rx;
if (new_rxq > vsi->alloc_rxq) {
dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
new_rxq, vsi->alloc_rxq);
return -EINVAL;
}
/* Set actual Tx/Rx queue pairs */
vsi->num_txq = new_txq;
vsi->num_rxq = new_rxq;
/* Setup queue TC[0].qmap for given VSI context */
ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
/* Find queue count available for channel VSIs and starting offset
* for channel VSIs
*/
if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
vsi->next_base_q = tc0_qcount;
}
dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
return 0;
}
/**
* ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
* @vsi: VSI to be configured
* @ena_tc: TC bitmap
*
* VSI queues expected to be quiesced before calling this function
*/
int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct ice_pf *pf = vsi->back;
struct ice_tc_cfg old_tc_cfg;
struct ice_vsi_ctx *ctx;
struct device *dev;
int i, ret = 0;
u8 num_tc = 0;
dev = ice_pf_to_dev(pf);
if (vsi->tc_cfg.ena_tc == ena_tc &&
vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
return 0;
ice_for_each_traffic_class(i) {
/* build bitmap of enabled TCs */
if (ena_tc & BIT(i))
num_tc++;
/* populate max_txqs per TC */
max_txqs[i] = vsi->alloc_txq;
/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
* zero for CHNL VSI, hence use num_txq instead as max_txqs
*/
if (vsi->type == ICE_VSI_CHNL &&
test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
max_txqs[i] = vsi->num_txq;
}
memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
vsi->tc_cfg.ena_tc = ena_tc;
vsi->tc_cfg.numtc = num_tc;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->vf_num = 0;
ctx->info = vsi->info;
if (vsi->type == ICE_VSI_PF &&
test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
else
ret = ice_vsi_setup_q_map(vsi, ctx);
if (ret) {
memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
goto out;
}
/* must to indicate which section of VSI context are being modified */
ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
if (ret) {
dev_info(dev, "Failed VSI Update\n");
goto out;
}
if (vsi->type == ICE_VSI_PF &&
test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
else
ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
vsi->tc_cfg.ena_tc, max_txqs);
if (ret) {
dev_err(dev, "VSI %d failed TC config, error %d\n",
vsi->vsi_num, ret);
goto out;
}
ice_vsi_update_q_map(vsi, ctx);
vsi->info.valid_sections = 0;
ice_vsi_cfg_netdev_tc(vsi, ena_tc);
out:
kfree(ctx);
return ret;
}
/**
* ice_update_ring_stats - Update ring statistics
* @stats: stats to be updated
* @pkts: number of processed packets
* @bytes: number of processed bytes
*
* This function assumes that caller has acquired a u64_stats_sync lock.
*/
static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
{
stats->bytes += bytes;
stats->pkts += pkts;
}
/**
* ice_update_tx_ring_stats - Update Tx ring specific counters
* @tx_ring: ring to update
* @pkts: number of processed packets
* @bytes: number of processed bytes
*/
void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
{
u64_stats_update_begin(&tx_ring->ring_stats->syncp);
ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
u64_stats_update_end(&tx_ring->ring_stats->syncp);
}
/**
* ice_update_rx_ring_stats - Update Rx ring specific counters
* @rx_ring: ring to update
* @pkts: number of processed packets
* @bytes: number of processed bytes
*/
void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
{
u64_stats_update_begin(&rx_ring->ring_stats->syncp);
ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
u64_stats_update_end(&rx_ring->ring_stats->syncp);
}
/**
* ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
* @pi: port info of the switch with default VSI
*
* Return true if the there is a single VSI in default forwarding VSI list
*/
bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
{
bool exists = false;
ice_check_if_dflt_vsi(pi, 0, &exists);
return exists;
}
/**
* ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
* @vsi: VSI to compare against default forwarding VSI
*
* If this VSI passed in is the default forwarding VSI then return true, else
* return false
*/
bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
{
return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
}
/**
* ice_set_dflt_vsi - set the default forwarding VSI
* @vsi: VSI getting set as the default forwarding VSI on the switch
*
* If the VSI passed in is already the default VSI and it's enabled just return
* success.
*
* Otherwise try to set the VSI passed in as the switch's default VSI and
* return the result.
*/
int ice_set_dflt_vsi(struct ice_vsi *vsi)
{
struct device *dev;
int status;
if (!vsi)
return -EINVAL;
dev = ice_pf_to_dev(vsi->back);
if (ice_lag_is_switchdev_running(vsi->back)) {
dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
vsi->vsi_num);
return 0;
}
/* the VSI passed in is already the default VSI */
if (ice_is_vsi_dflt_vsi(vsi)) {
dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
vsi->vsi_num);
return 0;
}
status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
if (status) {
dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
vsi->vsi_num, status);
return status;
}
return 0;
}
/**
* ice_clear_dflt_vsi - clear the default forwarding VSI
* @vsi: VSI to remove from filter list
*
* If the switch has no default VSI or it's not enabled then return error.
*
* Otherwise try to clear the default VSI and return the result.
*/
int ice_clear_dflt_vsi(struct ice_vsi *vsi)
{
struct device *dev;
int status;
if (!vsi)
return -EINVAL;
dev = ice_pf_to_dev(vsi->back);
/* there is no default VSI configured */
if (!ice_is_dflt_vsi_in_use(vsi->port_info))
return -ENODEV;
status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
ICE_FLTR_RX);
if (status) {
dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
vsi->vsi_num, status);
return -EIO;
}
return 0;
}
/**
* ice_get_link_speed_mbps - get link speed in Mbps
* @vsi: the VSI whose link speed is being queried
*
* Return current VSI link speed and 0 if the speed is unknown.
*/
int ice_get_link_speed_mbps(struct ice_vsi *vsi)
{
unsigned int link_speed;
link_speed = vsi->port_info->phy.link_info.link_speed;
return (int)ice_get_link_speed(fls(link_speed) - 1);
}
/**
* ice_get_link_speed_kbps - get link speed in Kbps
* @vsi: the VSI whose link speed is being queried
*
* Return current VSI link speed and 0 if the speed is unknown.
*/
int ice_get_link_speed_kbps(struct ice_vsi *vsi)
{
int speed_mbps;
speed_mbps = ice_get_link_speed_mbps(vsi);
return speed_mbps * 1000;
}
/**
* ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
* @vsi: VSI to be configured
* @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
*
* If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
* profile, otherwise a non-zero value will force a minimum BW limit for the VSI
* on TC 0.
*/
int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
int status;
int speed;
dev = ice_pf_to_dev(pf);
if (!vsi->port_info) {
dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
vsi->idx, vsi->type);
return -EINVAL;
}
speed = ice_get_link_speed_kbps(vsi);
if (min_tx_rate > (u64)speed) {
dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
speed);
return -EINVAL;
}
/* Configure min BW for VSI limit */
if (min_tx_rate) {
status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
ICE_MIN_BW, min_tx_rate);
if (status) {
dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
min_tx_rate, ice_vsi_type_str(vsi->type),
vsi->idx);
return status;
}
dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
min_tx_rate, ice_vsi_type_str(vsi->type));
} else {
status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
vsi->idx, 0,
ICE_MIN_BW);
if (status) {
dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
ice_vsi_type_str(vsi->type), vsi->idx);
return status;
}
dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
ice_vsi_type_str(vsi->type), vsi->idx);
}
return 0;
}
/**
* ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
* @vsi: VSI to be configured
* @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
*
* If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
* profile, otherwise a non-zero value will force a maximum BW limit for the VSI
* on TC 0.
*/
int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
int status;
int speed;
dev = ice_pf_to_dev(pf);
if (!vsi->port_info) {
dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
vsi->idx, vsi->type);
return -EINVAL;
}
speed = ice_get_link_speed_kbps(vsi);
if (max_tx_rate > (u64)speed) {
dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
speed);
return -EINVAL;
}
/* Configure max BW for VSI limit */
if (max_tx_rate) {
status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
ICE_MAX_BW, max_tx_rate);
if (status) {
dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
max_tx_rate, ice_vsi_type_str(vsi->type),
vsi->idx);
return status;
}
dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
} else {
status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
vsi->idx, 0,
ICE_MAX_BW);
if (status) {
dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
ice_vsi_type_str(vsi->type), vsi->idx);
return status;
}
dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
ice_vsi_type_str(vsi->type), vsi->idx);
}
return 0;
}
/**
* ice_set_link - turn on/off physical link
* @vsi: VSI to modify physical link on
* @ena: turn on/off physical link
*/
int ice_set_link(struct ice_vsi *vsi, bool ena)
{
struct device *dev = ice_pf_to_dev(vsi->back);
struct ice_port_info *pi = vsi->port_info;
struct ice_hw *hw = pi->hw;
int status;
if (vsi->type != ICE_VSI_PF)
return -EINVAL;
status = ice_aq_set_link_restart_an(pi, ena, NULL);
/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
* this is not a fatal error, so print a warning message and return
* a success code. Return an error if FW returns an error code other
* than ICE_AQ_RC_EMODE
*/
if (status == -EIO) {
if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
(ena ? "ON" : "OFF"), status,
ice_aq_str(hw->adminq.sq_last_status));
} else if (status) {
dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
(ena ? "ON" : "OFF"), status,
ice_aq_str(hw->adminq.sq_last_status));
return status;
}
return 0;
}
/**
* ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
* @vsi: VSI used to add VLAN filters
*
* In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
* on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
* matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
* ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
*
* For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
* when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
* traffic in SVM, since the VLAN TPID isn't part of filtering.
*
* If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
* added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
* part of filtering.
*/
int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
{
struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
struct ice_vlan vlan;
int err;
vlan = ICE_VLAN(0, 0, 0);
err = vlan_ops->add_vlan(vsi, &vlan);
if (err && err != -EEXIST)
return err;
/* in SVM both VLAN 0 filters are identical */
if (!ice_is_dvm_ena(&vsi->back->hw))
return 0;
vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
err = vlan_ops->add_vlan(vsi, &vlan);
if (err && err != -EEXIST)
return err;
return 0;
}
/**
* ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
* @vsi: VSI used to add VLAN filters
*
* Delete the VLAN 0 filters in the same manner that they were added in
* ice_vsi_add_vlan_zero.
*/
int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
{
struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
struct ice_vlan vlan;
int err;
vlan = ICE_VLAN(0, 0, 0);
err = vlan_ops->del_vlan(vsi, &vlan);
if (err && err != -EEXIST)
return err;
/* in SVM both VLAN 0 filters are identical */
if (!ice_is_dvm_ena(&vsi->back->hw))
return 0;
vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
err = vlan_ops->del_vlan(vsi, &vlan);
if (err && err != -EEXIST)
return err;
/* when deleting the last VLAN filter, make sure to disable the VLAN
* promisc mode so the filter isn't left by accident
*/
return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
ICE_MCAST_VLAN_PROMISC_BITS, 0);
}
/**
* ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
* @vsi: VSI used to get the VLAN mode
*
* If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
* then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
*/
static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
{
#define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
#define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
/* no VLAN 0 filter is created when a port VLAN is active */
if (vsi->type == ICE_VSI_VF) {
if (WARN_ON(!vsi->vf))
return 0;
if (ice_vf_is_port_vlan_ena(vsi->vf))
return 0;
}
if (ice_is_dvm_ena(&vsi->back->hw))
return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
else
return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
}
/**
* ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
* @vsi: VSI used to determine if any non-zero VLANs have been added
*/
bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
{
return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
}
/**
* ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
* @vsi: VSI used to get the number of non-zero VLANs added
*/
u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
{
return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
}
/**
* ice_is_feature_supported
* @pf: pointer to the struct ice_pf instance
* @f: feature enum to be checked
*
* returns true if feature is supported, false otherwise
*/
bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
{
if (f < 0 || f >= ICE_F_MAX)
return false;
return test_bit(f, pf->features);
}
/**
* ice_set_feature_support
* @pf: pointer to the struct ice_pf instance
* @f: feature enum to set
*/
void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
{
if (f < 0 || f >= ICE_F_MAX)
return;
set_bit(f, pf->features);
}
/**
* ice_clear_feature_support
* @pf: pointer to the struct ice_pf instance
* @f: feature enum to clear
*/
void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
{
if (f < 0 || f >= ICE_F_MAX)
return;
clear_bit(f, pf->features);
}
/**
* ice_init_feature_support
* @pf: pointer to the struct ice_pf instance
*
* called during init to setup supported feature
*/
void ice_init_feature_support(struct ice_pf *pf)
{
switch (pf->hw.device_id) {
case ICE_DEV_ID_E810C_BACKPLANE:
case ICE_DEV_ID_E810C_QSFP:
case ICE_DEV_ID_E810C_SFP:
case ICE_DEV_ID_E810_XXV_BACKPLANE:
case ICE_DEV_ID_E810_XXV_QSFP:
case ICE_DEV_ID_E810_XXV_SFP:
ice_set_feature_support(pf, ICE_F_DSCP);
if (ice_is_phy_rclk_in_netlist(&pf->hw))
ice_set_feature_support(pf, ICE_F_PHY_RCLK);
/* If we don't own the timer - don't enable other caps */
if (!ice_pf_src_tmr_owned(pf))
break;
if (ice_is_cgu_in_netlist(&pf->hw))
ice_set_feature_support(pf, ICE_F_CGU);
if (ice_is_clock_mux_in_netlist(&pf->hw))
ice_set_feature_support(pf, ICE_F_SMA_CTRL);
if (ice_gnss_is_gps_present(&pf->hw))
ice_set_feature_support(pf, ICE_F_GNSS);
break;
default:
break;
}
}
/**
* ice_vsi_update_security - update security block in VSI
* @vsi: pointer to VSI structure
* @fill: function pointer to fill ctx
*/
int
ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
{
struct ice_vsi_ctx ctx = { 0 };
ctx.info = vsi->info;
ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
fill(&ctx);
if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
return -ENODEV;
vsi->info = ctx.info;
return 0;
}
/**
* ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
* @ctx: pointer to VSI ctx structure
*/
void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
{
ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
}
/**
* ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
* @ctx: pointer to VSI ctx structure
*/
void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
{
ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
}
/**
* ice_vsi_ctx_set_allow_override - allow destination override on VSI
* @ctx: pointer to VSI ctx structure
*/
void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
{
ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
}
/**
* ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
* @ctx: pointer to VSI ctx structure
*/
void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
{
ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
}
/**
* ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
* @vsi: pointer to VSI structure
* @set: set or unset the bit
*/
int
ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
{
struct ice_vsi_ctx ctx = {
.info = vsi->info,
};
ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
if (set)
ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
else
ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
return -ENODEV;
vsi->info = ctx.info;
return 0;
}
|