1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2015-2019 Netronome Systems, Inc. */
#include "nfp_app.h"
#include "nfp_net_dp.h"
#include "nfp_net_xsk.h"
/**
* nfp_net_rx_alloc_one() - Allocate and map page frag for RX
* @dp: NFP Net data path struct
* @dma_addr: Pointer to storage for DMA address (output param)
*
* This function will allcate a new page frag, map it for DMA.
*
* Return: allocated page frag or NULL on failure.
*/
void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
{
void *frag;
if (!dp->xdp_prog) {
frag = netdev_alloc_frag(dp->fl_bufsz);
} else {
struct page *page;
page = alloc_page(GFP_KERNEL);
frag = page ? page_address(page) : NULL;
}
if (!frag) {
nn_dp_warn(dp, "Failed to alloc receive page frag\n");
return NULL;
}
*dma_addr = nfp_net_dma_map_rx(dp, frag);
if (dma_mapping_error(dp->dev, *dma_addr)) {
nfp_net_free_frag(frag, dp->xdp_prog);
nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
return NULL;
}
return frag;
}
/**
* nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
* @tx_ring: TX ring structure
* @dp: NFP Net data path struct
* @r_vec: IRQ vector servicing this ring
* @idx: Ring index
* @is_xdp: Is this an XDP TX ring?
*/
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, struct nfp_net_dp *dp,
struct nfp_net_r_vector *r_vec, unsigned int idx,
bool is_xdp)
{
struct nfp_net *nn = r_vec->nfp_net;
tx_ring->idx = idx;
tx_ring->r_vec = r_vec;
tx_ring->is_xdp = is_xdp;
u64_stats_init(&tx_ring->r_vec->tx_sync);
tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
tx_ring->txrwb = dp->txrwb ? &dp->txrwb[idx] : NULL;
tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}
/**
* nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
* @rx_ring: RX ring structure
* @r_vec: IRQ vector servicing this ring
* @idx: Ring index
*/
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
struct nfp_net_r_vector *r_vec, unsigned int idx)
{
struct nfp_net *nn = r_vec->nfp_net;
rx_ring->idx = idx;
rx_ring->r_vec = r_vec;
u64_stats_init(&rx_ring->r_vec->rx_sync);
rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
}
/**
* nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
* @rx_ring: RX ring structure
*
* Assumes that the device is stopped, must be idempotent.
*/
void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
{
unsigned int wr_idx, last_idx;
/* wr_p == rd_p means ring was never fed FL bufs. RX rings are always
* kept at cnt - 1 FL bufs.
*/
if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
return;
/* Move the empty entry to the end of the list */
wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
last_idx = rx_ring->cnt - 1;
if (rx_ring->r_vec->xsk_pool) {
rx_ring->xsk_rxbufs[wr_idx] = rx_ring->xsk_rxbufs[last_idx];
memset(&rx_ring->xsk_rxbufs[last_idx], 0,
sizeof(*rx_ring->xsk_rxbufs));
} else {
rx_ring->rxbufs[wr_idx] = rx_ring->rxbufs[last_idx];
memset(&rx_ring->rxbufs[last_idx], 0, sizeof(*rx_ring->rxbufs));
}
memset(rx_ring->rxds, 0, rx_ring->size);
rx_ring->wr_p = 0;
rx_ring->rd_p = 0;
}
/**
* nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
* @dp: NFP Net data path struct
* @rx_ring: RX ring to remove buffers from
*
* Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
* entries. After device is disabled nfp_net_rx_ring_reset() must be called
* to restore required ring geometry.
*/
static void
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
struct nfp_net_rx_ring *rx_ring)
{
unsigned int i;
if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
return;
for (i = 0; i < rx_ring->cnt - 1; i++) {
/* NULL skb can only happen when initial filling of the ring
* fails to allocate enough buffers and calls here to free
* already allocated ones.
*/
if (!rx_ring->rxbufs[i].frag)
continue;
nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
rx_ring->rxbufs[i].dma_addr = 0;
rx_ring->rxbufs[i].frag = NULL;
}
}
/**
* nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
* @dp: NFP Net data path struct
* @rx_ring: RX ring to remove buffers from
*/
static int
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
struct nfp_net_rx_ring *rx_ring)
{
struct nfp_net_rx_buf *rxbufs;
unsigned int i;
if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
return 0;
rxbufs = rx_ring->rxbufs;
for (i = 0; i < rx_ring->cnt - 1; i++) {
rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
if (!rxbufs[i].frag) {
nfp_net_rx_ring_bufs_free(dp, rx_ring);
return -ENOMEM;
}
}
return 0;
}
int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
{
unsigned int r;
dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
GFP_KERNEL);
if (!dp->tx_rings)
return -ENOMEM;
if (dp->ctrl & NFP_NET_CFG_CTRL_TXRWB) {
dp->txrwb = dma_alloc_coherent(dp->dev,
dp->num_tx_rings * sizeof(u64),
&dp->txrwb_dma, GFP_KERNEL);
if (!dp->txrwb)
goto err_free_rings;
}
for (r = 0; r < dp->num_tx_rings; r++) {
int bias = 0;
if (r >= dp->num_stack_tx_rings)
bias = dp->num_stack_tx_rings;
nfp_net_tx_ring_init(&dp->tx_rings[r], dp,
&nn->r_vecs[r - bias], r, bias);
if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
goto err_free_prev;
if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
goto err_free_ring;
}
return 0;
err_free_prev:
while (r--) {
nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
err_free_ring:
nfp_net_tx_ring_free(dp, &dp->tx_rings[r]);
}
if (dp->txrwb)
dma_free_coherent(dp->dev, dp->num_tx_rings * sizeof(u64),
dp->txrwb, dp->txrwb_dma);
err_free_rings:
kfree(dp->tx_rings);
return -ENOMEM;
}
void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
{
unsigned int r;
for (r = 0; r < dp->num_tx_rings; r++) {
nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
nfp_net_tx_ring_free(dp, &dp->tx_rings[r]);
}
if (dp->txrwb)
dma_free_coherent(dp->dev, dp->num_tx_rings * sizeof(u64),
dp->txrwb, dp->txrwb_dma);
kfree(dp->tx_rings);
}
/**
* nfp_net_rx_ring_free() - Free resources allocated to a RX ring
* @rx_ring: RX ring to free
*/
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
if (dp->netdev)
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
kvfree(rx_ring->xsk_rxbufs);
else
kvfree(rx_ring->rxbufs);
if (rx_ring->rxds)
dma_free_coherent(dp->dev, rx_ring->size,
rx_ring->rxds, rx_ring->dma);
rx_ring->cnt = 0;
rx_ring->rxbufs = NULL;
rx_ring->xsk_rxbufs = NULL;
rx_ring->rxds = NULL;
rx_ring->dma = 0;
rx_ring->size = 0;
}
/**
* nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
* @dp: NFP Net data path struct
* @rx_ring: RX ring to allocate
*
* Return: 0 on success, negative errno otherwise.
*/
static int
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
{
enum xdp_mem_type mem_type;
size_t rxbuf_sw_desc_sz;
int err;
if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx)) {
mem_type = MEM_TYPE_XSK_BUFF_POOL;
rxbuf_sw_desc_sz = sizeof(*rx_ring->xsk_rxbufs);
} else {
mem_type = MEM_TYPE_PAGE_ORDER0;
rxbuf_sw_desc_sz = sizeof(*rx_ring->rxbufs);
}
if (dp->netdev) {
err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
rx_ring->idx, rx_ring->r_vec->napi.napi_id);
if (err < 0)
return err;
err = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, mem_type, NULL);
if (err)
goto err_alloc;
}
rx_ring->cnt = dp->rxd_cnt;
rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size,
&rx_ring->dma,
GFP_KERNEL | __GFP_NOWARN);
if (!rx_ring->rxds) {
netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
rx_ring->cnt);
goto err_alloc;
}
if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx)) {
rx_ring->xsk_rxbufs = kvcalloc(rx_ring->cnt, rxbuf_sw_desc_sz,
GFP_KERNEL);
if (!rx_ring->xsk_rxbufs)
goto err_alloc;
} else {
rx_ring->rxbufs = kvcalloc(rx_ring->cnt, rxbuf_sw_desc_sz,
GFP_KERNEL);
if (!rx_ring->rxbufs)
goto err_alloc;
}
return 0;
err_alloc:
nfp_net_rx_ring_free(rx_ring);
return -ENOMEM;
}
int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
{
unsigned int r;
dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
GFP_KERNEL);
if (!dp->rx_rings)
return -ENOMEM;
for (r = 0; r < dp->num_rx_rings; r++) {
nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
goto err_free_prev;
if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
goto err_free_ring;
}
return 0;
err_free_prev:
while (r--) {
nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
err_free_ring:
nfp_net_rx_ring_free(&dp->rx_rings[r]);
}
kfree(dp->rx_rings);
return -ENOMEM;
}
void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
{
unsigned int r;
for (r = 0; r < dp->num_rx_rings; r++) {
nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
nfp_net_rx_ring_free(&dp->rx_rings[r]);
}
kfree(dp->rx_rings);
}
void
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
struct nfp_net_rx_ring *rx_ring, unsigned int idx)
{
/* Write the DMA address, size and MSI-X info to the device */
nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
}
void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
if (tx_ring->txrwb) {
*tx_ring->txrwb = 0;
nn_writeq(nn, NFP_NET_CFG_TXR_WB_ADDR(idx),
nn->dp.txrwb_dma + idx * sizeof(u64));
}
nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
}
void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
nn_writeq(nn, NFP_NET_CFG_TXR_WB_ADDR(idx), 0);
nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}
netdev_tx_t nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
struct nfp_net *nn = netdev_priv(netdev);
return nn->dp.ops->xmit(skb, netdev);
}
bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
{
struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
return nn->dp.ops->ctrl_tx_one(nn, r_vec, skb, false);
}
bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
{
struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
bool ret;
spin_lock_bh(&r_vec->lock);
ret = nn->dp.ops->ctrl_tx_one(nn, r_vec, skb, false);
spin_unlock_bh(&r_vec->lock);
return ret;
}
bool nfp_net_vlan_strip(struct sk_buff *skb, const struct nfp_net_rx_desc *rxd,
const struct nfp_meta_parsed *meta)
{
u16 tpid = 0, tci = 0;
if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) {
tpid = ETH_P_8021Q;
tci = le16_to_cpu(rxd->rxd.vlan);
} else if (meta->vlan.stripped) {
if (meta->vlan.tpid == NFP_NET_VLAN_CTAG)
tpid = ETH_P_8021Q;
else if (meta->vlan.tpid == NFP_NET_VLAN_STAG)
tpid = ETH_P_8021AD;
else
return false;
tci = meta->vlan.tci;
}
if (tpid)
__vlan_hwaccel_put_tag(skb, htons(tpid), tci);
return true;
}
|