1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Spreadtrum Communications Inc.
*/
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#define SPRD_PWM_PRESCALE 0x0
#define SPRD_PWM_MOD 0x4
#define SPRD_PWM_DUTY 0x8
#define SPRD_PWM_ENABLE 0x18
#define SPRD_PWM_MOD_MAX GENMASK(7, 0)
#define SPRD_PWM_DUTY_MSK GENMASK(15, 0)
#define SPRD_PWM_PRESCALE_MSK GENMASK(7, 0)
#define SPRD_PWM_ENABLE_BIT BIT(0)
#define SPRD_PWM_CHN_NUM 4
#define SPRD_PWM_REGS_SHIFT 5
#define SPRD_PWM_CHN_CLKS_NUM 2
#define SPRD_PWM_CHN_OUTPUT_CLK 1
struct sprd_pwm_chn {
struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
u32 clk_rate;
};
struct sprd_pwm_chip {
void __iomem *base;
struct device *dev;
struct pwm_chip chip;
int num_pwms;
struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
};
/*
* The list of clocks required by PWM channels, and each channel has 2 clocks:
* enable clock and pwm clock.
*/
static const char * const sprd_pwm_clks[] = {
"enable0", "pwm0",
"enable1", "pwm1",
"enable2", "pwm2",
"enable3", "pwm3",
};
static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
{
u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
return readl_relaxed(spc->base + offset);
}
static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
u32 reg, u32 val)
{
u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
writel_relaxed(val, spc->base + offset);
}
static void sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct sprd_pwm_chip *spc =
container_of(chip, struct sprd_pwm_chip, chip);
struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
u32 val, duty, prescale;
u64 tmp;
int ret;
/*
* The clocks to PWM channel has to be enabled first before
* reading to the registers.
*/
ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
if (ret) {
dev_err(spc->dev, "failed to enable pwm%u clocks\n",
pwm->hwpwm);
return;
}
val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
if (val & SPRD_PWM_ENABLE_BIT)
state->enabled = true;
else
state->enabled = false;
/*
* The hardware provides a counter that is feed by the source clock.
* The period length is (PRESCALE + 1) * MOD counter steps.
* The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
* Thus the period_ns and duty_ns calculation formula should be:
* period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
* duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
*/
val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
prescale = val & SPRD_PWM_PRESCALE_MSK;
tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
duty = val & SPRD_PWM_DUTY_MSK;
tmp = (prescale + 1) * NSEC_PER_SEC * duty;
state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
/* Disable PWM clocks if the PWM channel is not in enable state. */
if (!state->enabled)
clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
}
static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
u32 prescale, duty;
u64 tmp;
/*
* The hardware provides a counter that is feed by the source clock.
* The period length is (PRESCALE + 1) * MOD counter steps.
* The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
*
* To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
* The value for PRESCALE is selected such that the resulting period
* gets the maximal length not bigger than the requested one with the
* given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
*/
duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
tmp = (u64)chn->clk_rate * period_ns;
do_div(tmp, NSEC_PER_SEC);
prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
if (prescale > SPRD_PWM_PRESCALE_MSK)
prescale = SPRD_PWM_PRESCALE_MSK;
/*
* Note: Writing DUTY triggers the hardware to actually apply the
* values written to MOD and DUTY to the output, so must keep writing
* DUTY last.
*
* The hardware can ensures that current running period is completed
* before changing a new configuration to avoid mixed settings.
*/
sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
return 0;
}
static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct sprd_pwm_chip *spc =
container_of(chip, struct sprd_pwm_chip, chip);
struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
struct pwm_state *cstate = &pwm->state;
int ret;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
if (state->enabled) {
if (!cstate->enabled) {
/*
* The clocks to PWM channel has to be enabled first
* before writing to the registers.
*/
ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
chn->clks);
if (ret) {
dev_err(spc->dev,
"failed to enable pwm%u clocks\n",
pwm->hwpwm);
return ret;
}
}
ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
state->period);
if (ret)
return ret;
sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
} else if (cstate->enabled) {
/*
* Note: After setting SPRD_PWM_ENABLE to zero, the controller
* will not wait for current period to be completed, instead it
* will stop the PWM channel immediately.
*/
sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
}
return 0;
}
static const struct pwm_ops sprd_pwm_ops = {
.apply = sprd_pwm_apply,
.get_state = sprd_pwm_get_state,
.owner = THIS_MODULE,
};
static int sprd_pwm_clk_init(struct sprd_pwm_chip *spc)
{
struct clk *clk_pwm;
int ret, i;
for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
struct sprd_pwm_chn *chn = &spc->chn[i];
int j;
for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
chn->clks[j].id =
sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
ret = devm_clk_bulk_get(spc->dev, SPRD_PWM_CHN_CLKS_NUM,
chn->clks);
if (ret) {
if (ret == -ENOENT)
break;
return dev_err_probe(spc->dev, ret,
"failed to get channel clocks\n");
}
clk_pwm = chn->clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
chn->clk_rate = clk_get_rate(clk_pwm);
}
if (!i) {
dev_err(spc->dev, "no available PWM channels\n");
return -ENODEV;
}
spc->num_pwms = i;
return 0;
}
static int sprd_pwm_probe(struct platform_device *pdev)
{
struct sprd_pwm_chip *spc;
int ret;
spc = devm_kzalloc(&pdev->dev, sizeof(*spc), GFP_KERNEL);
if (!spc)
return -ENOMEM;
spc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(spc->base))
return PTR_ERR(spc->base);
spc->dev = &pdev->dev;
platform_set_drvdata(pdev, spc);
ret = sprd_pwm_clk_init(spc);
if (ret)
return ret;
spc->chip.dev = &pdev->dev;
spc->chip.ops = &sprd_pwm_ops;
spc->chip.npwm = spc->num_pwms;
ret = pwmchip_add(&spc->chip);
if (ret)
dev_err(&pdev->dev, "failed to add PWM chip\n");
return ret;
}
static int sprd_pwm_remove(struct platform_device *pdev)
{
struct sprd_pwm_chip *spc = platform_get_drvdata(pdev);
pwmchip_remove(&spc->chip);
return 0;
}
static const struct of_device_id sprd_pwm_of_match[] = {
{ .compatible = "sprd,ums512-pwm", },
{ },
};
MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
static struct platform_driver sprd_pwm_driver = {
.driver = {
.name = "sprd-pwm",
.of_match_table = sprd_pwm_of_match,
},
.probe = sprd_pwm_probe,
.remove = sprd_pwm_remove,
};
module_platform_driver(sprd_pwm_driver);
MODULE_DESCRIPTION("Spreadtrum PWM Driver");
MODULE_LICENSE("GPL v2");
|