1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
|
/*
* Front panel driver for Linux
* Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
* connected to a parallel printer port.
*
* The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
* serial module compatible with Samsung's KS0074. The pins may be connected in
* any combination, everything is programmable.
*
* The keypad consists in a matrix of push buttons connecting input pins to
* data output pins or to the ground. The combinations have to be hard-coded
* in the driver, though several profiles exist and adding new ones is easy.
*
* Several profiles are provided for commonly found LCD+keypad modules on the
* market, such as those found in Nexcom's appliances.
*
* FIXME:
* - the initialization/deinitialization process is very dirty and should
* be rewritten. It may even be buggy.
*
* TODO:
* - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
* - make the LCD a part of a virtual screen of Vx*Vy
* - make the inputs list smp-safe
* - change the keyboard to a double mapping : signals -> key_id -> values
* so that applications can change values without knowing signals
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/ctype.h>
#include <linux/parport.h>
#include <linux/list.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <generated/utsrelease.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#define LCD_MINOR 156
#define KEYPAD_MINOR 185
#define PANEL_VERSION "0.9.5"
#define LCD_MAXBYTES 256 /* max burst write */
#define KEYPAD_BUFFER 64
/* poll the keyboard this every second */
#define INPUT_POLL_TIME (HZ/50)
/* a key starts to repeat after this times INPUT_POLL_TIME */
#define KEYPAD_REP_START (10)
/* a key repeats this times INPUT_POLL_TIME */
#define KEYPAD_REP_DELAY (2)
/* keep the light on this times INPUT_POLL_TIME for each flash */
#define FLASH_LIGHT_TEMPO (200)
/* converts an r_str() input to an active high, bits string : 000BAOSE */
#define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
#define PNL_PBUSY 0x80 /* inverted input, active low */
#define PNL_PACK 0x40 /* direct input, active low */
#define PNL_POUTPA 0x20 /* direct input, active high */
#define PNL_PSELECD 0x10 /* direct input, active high */
#define PNL_PERRORP 0x08 /* direct input, active low */
#define PNL_PBIDIR 0x20 /* bi-directional ports */
/* high to read data in or-ed with data out */
#define PNL_PINTEN 0x10
#define PNL_PSELECP 0x08 /* inverted output, active low */
#define PNL_PINITP 0x04 /* direct output, active low */
#define PNL_PAUTOLF 0x02 /* inverted output, active low */
#define PNL_PSTROBE 0x01 /* inverted output */
#define PNL_PD0 0x01
#define PNL_PD1 0x02
#define PNL_PD2 0x04
#define PNL_PD3 0x08
#define PNL_PD4 0x10
#define PNL_PD5 0x20
#define PNL_PD6 0x40
#define PNL_PD7 0x80
#define PIN_NONE 0
#define PIN_STROBE 1
#define PIN_D0 2
#define PIN_D1 3
#define PIN_D2 4
#define PIN_D3 5
#define PIN_D4 6
#define PIN_D5 7
#define PIN_D6 8
#define PIN_D7 9
#define PIN_AUTOLF 14
#define PIN_INITP 16
#define PIN_SELECP 17
#define PIN_NOT_SET 127
#define LCD_FLAG_S 0x0001
#define LCD_FLAG_ID 0x0002
#define LCD_FLAG_B 0x0004 /* blink on */
#define LCD_FLAG_C 0x0008 /* cursor on */
#define LCD_FLAG_D 0x0010 /* display on */
#define LCD_FLAG_F 0x0020 /* large font mode */
#define LCD_FLAG_N 0x0040 /* 2-rows mode */
#define LCD_FLAG_L 0x0080 /* backlight enabled */
#define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
#define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
/* macros to simplify use of the parallel port */
#define r_ctr(x) (parport_read_control((x)->port))
#define r_dtr(x) (parport_read_data((x)->port))
#define r_str(x) (parport_read_status((x)->port))
#define w_ctr(x, y) do { parport_write_control((x)->port, (y)); } while (0)
#define w_dtr(x, y) do { parport_write_data((x)->port, (y)); } while (0)
/* this defines which bits are to be used and which ones to be ignored */
/* logical or of the output bits involved in the scan matrix */
static __u8 scan_mask_o;
/* logical or of the input bits involved in the scan matrix */
static __u8 scan_mask_i;
typedef __u64 pmask_t;
enum input_type {
INPUT_TYPE_STD,
INPUT_TYPE_KBD,
};
enum input_state {
INPUT_ST_LOW,
INPUT_ST_RISING,
INPUT_ST_HIGH,
INPUT_ST_FALLING,
};
struct logical_input {
struct list_head list;
pmask_t mask;
pmask_t value;
enum input_type type;
enum input_state state;
__u8 rise_time, fall_time;
__u8 rise_timer, fall_timer, high_timer;
union {
struct { /* valid when type == INPUT_TYPE_STD */
void (*press_fct) (int);
void (*release_fct) (int);
int press_data;
int release_data;
} std;
struct { /* valid when type == INPUT_TYPE_KBD */
/* strings can be non null-terminated */
char press_str[sizeof(void *) + sizeof(int)];
char repeat_str[sizeof(void *) + sizeof(int)];
char release_str[sizeof(void *) + sizeof(int)];
} kbd;
} u;
};
LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
/* physical contacts history
* Physical contacts are a 45 bits string of 9 groups of 5 bits each.
* The 8 lower groups correspond to output bits 0 to 7, and the 9th group
* corresponds to the ground.
* Within each group, bits are stored in the same order as read on the port :
* BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
* So, each __u64 (or pmask_t) is represented like this :
* 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
* <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
*/
/* what has just been read from the I/O ports */
static pmask_t phys_read;
/* previous phys_read */
static pmask_t phys_read_prev;
/* stabilized phys_read (phys_read|phys_read_prev) */
static pmask_t phys_curr;
/* previous phys_curr */
static pmask_t phys_prev;
/* 0 means that at least one logical signal needs be computed */
static char inputs_stable;
/* these variables are specific to the keypad */
static char keypad_buffer[KEYPAD_BUFFER];
static int keypad_buflen;
static int keypad_start;
static char keypressed;
static wait_queue_head_t keypad_read_wait;
/* lcd-specific variables */
/* contains the LCD config state */
static unsigned long int lcd_flags;
/* contains the LCD X offset */
static unsigned long int lcd_addr_x;
/* contains the LCD Y offset */
static unsigned long int lcd_addr_y;
/* current escape sequence, 0 terminated */
static char lcd_escape[LCD_ESCAPE_LEN + 1];
/* not in escape state. >=0 = escape cmd len */
static int lcd_escape_len = -1;
/*
* Bit masks to convert LCD signals to parallel port outputs.
* _d_ are values for data port, _c_ are for control port.
* [0] = signal OFF, [1] = signal ON, [2] = mask
*/
#define BIT_CLR 0
#define BIT_SET 1
#define BIT_MSK 2
#define BIT_STATES 3
/*
* one entry for each bit on the LCD
*/
#define LCD_BIT_E 0
#define LCD_BIT_RS 1
#define LCD_BIT_RW 2
#define LCD_BIT_BL 3
#define LCD_BIT_CL 4
#define LCD_BIT_DA 5
#define LCD_BITS 6
/*
* each bit can be either connected to a DATA or CTRL port
*/
#define LCD_PORT_C 0
#define LCD_PORT_D 1
#define LCD_PORTS 2
static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
/*
* LCD protocols
*/
#define LCD_PROTO_PARALLEL 0
#define LCD_PROTO_SERIAL 1
#define LCD_PROTO_TI_DA8XX_LCD 2
/*
* LCD character sets
*/
#define LCD_CHARSET_NORMAL 0
#define LCD_CHARSET_KS0074 1
/*
* LCD types
*/
#define LCD_TYPE_NONE 0
#define LCD_TYPE_OLD 1
#define LCD_TYPE_KS0074 2
#define LCD_TYPE_HANTRONIX 3
#define LCD_TYPE_NEXCOM 4
#define LCD_TYPE_CUSTOM 5
/*
* keypad types
*/
#define KEYPAD_TYPE_NONE 0
#define KEYPAD_TYPE_OLD 1
#define KEYPAD_TYPE_NEW 2
#define KEYPAD_TYPE_NEXCOM 3
/*
* panel profiles
*/
#define PANEL_PROFILE_CUSTOM 0
#define PANEL_PROFILE_OLD 1
#define PANEL_PROFILE_NEW 2
#define PANEL_PROFILE_HANTRONIX 3
#define PANEL_PROFILE_NEXCOM 4
#define PANEL_PROFILE_LARGE 5
/*
* Construct custom config from the kernel's configuration
*/
#define DEFAULT_PROFILE PANEL_PROFILE_LARGE
#define DEFAULT_PARPORT 0
#define DEFAULT_LCD LCD_TYPE_OLD
#define DEFAULT_KEYPAD KEYPAD_TYPE_OLD
#define DEFAULT_LCD_WIDTH 40
#define DEFAULT_LCD_BWIDTH 40
#define DEFAULT_LCD_HWIDTH 64
#define DEFAULT_LCD_HEIGHT 2
#define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
#define DEFAULT_LCD_PIN_E PIN_AUTOLF
#define DEFAULT_LCD_PIN_RS PIN_SELECP
#define DEFAULT_LCD_PIN_RW PIN_INITP
#define DEFAULT_LCD_PIN_SCL PIN_STROBE
#define DEFAULT_LCD_PIN_SDA PIN_D0
#define DEFAULT_LCD_PIN_BL PIN_NOT_SET
#define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
#ifdef CONFIG_PANEL_PROFILE
#undef DEFAULT_PROFILE
#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
#endif
#ifdef CONFIG_PANEL_PARPORT
#undef DEFAULT_PARPORT
#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
#endif
#if DEFAULT_PROFILE == 0 /* custom */
#ifdef CONFIG_PANEL_KEYPAD
#undef DEFAULT_KEYPAD
#define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
#endif
#ifdef CONFIG_PANEL_LCD
#undef DEFAULT_LCD
#define DEFAULT_LCD CONFIG_PANEL_LCD
#endif
#ifdef CONFIG_PANEL_LCD_WIDTH
#undef DEFAULT_LCD_WIDTH
#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
#endif
#ifdef CONFIG_PANEL_LCD_BWIDTH
#undef DEFAULT_LCD_BWIDTH
#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
#endif
#ifdef CONFIG_PANEL_LCD_HWIDTH
#undef DEFAULT_LCD_HWIDTH
#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
#endif
#ifdef CONFIG_PANEL_LCD_HEIGHT
#undef DEFAULT_LCD_HEIGHT
#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
#endif
#ifdef CONFIG_PANEL_LCD_PROTO
#undef DEFAULT_LCD_PROTO
#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
#endif
#ifdef CONFIG_PANEL_LCD_PIN_E
#undef DEFAULT_LCD_PIN_E
#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
#endif
#ifdef CONFIG_PANEL_LCD_PIN_RS
#undef DEFAULT_LCD_PIN_RS
#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
#endif
#ifdef CONFIG_PANEL_LCD_PIN_RW
#undef DEFAULT_LCD_PIN_RW
#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
#endif
#ifdef CONFIG_PANEL_LCD_PIN_SCL
#undef DEFAULT_LCD_PIN_SCL
#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
#endif
#ifdef CONFIG_PANEL_LCD_PIN_SDA
#undef DEFAULT_LCD_PIN_SDA
#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
#endif
#ifdef CONFIG_PANEL_LCD_PIN_BL
#undef DEFAULT_LCD_PIN_BL
#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
#endif
#ifdef CONFIG_PANEL_LCD_CHARSET
#undef DEFAULT_LCD_CHARSET
#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
#endif
#endif /* DEFAULT_PROFILE == 0 */
/* global variables */
static int keypad_open_cnt; /* #times opened */
static int lcd_open_cnt; /* #times opened */
static struct pardevice *pprt;
static int lcd_initialized;
static int keypad_initialized;
static int light_tempo;
static char lcd_must_clear;
static char lcd_left_shift;
static char init_in_progress;
static void (*lcd_write_cmd) (int);
static void (*lcd_write_data) (int);
static void (*lcd_clear_fast) (void);
static DEFINE_SPINLOCK(pprt_lock);
static struct timer_list scan_timer;
MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
static int parport = -1;
module_param(parport, int, 0000);
MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
static int lcd_height = -1;
module_param(lcd_height, int, 0000);
MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
static int lcd_width = -1;
module_param(lcd_width, int, 0000);
MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
static int lcd_bwidth = -1; /* internal buffer width (usually 40) */
module_param(lcd_bwidth, int, 0000);
MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
static int lcd_hwidth = -1; /* hardware buffer width (usually 64) */
module_param(lcd_hwidth, int, 0000);
MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
static int lcd_enabled = -1;
module_param(lcd_enabled, int, 0000);
MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
static int keypad_enabled = -1;
module_param(keypad_enabled, int, 0000);
MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
static int lcd_type = -1;
module_param(lcd_type, int, 0000);
MODULE_PARM_DESC(lcd_type,
"LCD type: 0=none, 1=old //, 2=serial ks0074, "
"3=hantronix //, 4=nexcom //, 5=compiled-in");
static int lcd_proto = -1;
module_param(lcd_proto, int, 0000);
MODULE_PARM_DESC(lcd_proto,
"LCD communication: 0=parallel (//), 1=serial,"
"2=TI LCD Interface");
static int lcd_charset = -1;
module_param(lcd_charset, int, 0000);
MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
static int keypad_type = -1;
module_param(keypad_type, int, 0000);
MODULE_PARM_DESC(keypad_type,
"Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
"3=nexcom 4 keys");
static int profile = DEFAULT_PROFILE;
module_param(profile, int, 0000);
MODULE_PARM_DESC(profile,
"1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
"4=16x2 nexcom; default=40x2, old kp");
/*
* These are the parallel port pins the LCD control signals are connected to.
* Set this to 0 if the signal is not used. Set it to its opposite value
* (negative) if the signal is negated. -MAXINT is used to indicate that the
* pin has not been explicitly specified.
*
* WARNING! no check will be performed about collisions with keypad !
*/
static int lcd_e_pin = PIN_NOT_SET;
module_param(lcd_e_pin, int, 0000);
MODULE_PARM_DESC(lcd_e_pin,
"# of the // port pin connected to LCD 'E' signal, "
"with polarity (-17..17)");
static int lcd_rs_pin = PIN_NOT_SET;
module_param(lcd_rs_pin, int, 0000);
MODULE_PARM_DESC(lcd_rs_pin,
"# of the // port pin connected to LCD 'RS' signal, "
"with polarity (-17..17)");
static int lcd_rw_pin = PIN_NOT_SET;
module_param(lcd_rw_pin, int, 0000);
MODULE_PARM_DESC(lcd_rw_pin,
"# of the // port pin connected to LCD 'RW' signal, "
"with polarity (-17..17)");
static int lcd_bl_pin = PIN_NOT_SET;
module_param(lcd_bl_pin, int, 0000);
MODULE_PARM_DESC(lcd_bl_pin,
"# of the // port pin connected to LCD backlight, "
"with polarity (-17..17)");
static int lcd_da_pin = PIN_NOT_SET;
module_param(lcd_da_pin, int, 0000);
MODULE_PARM_DESC(lcd_da_pin,
"# of the // port pin connected to serial LCD 'SDA' "
"signal, with polarity (-17..17)");
static int lcd_cl_pin = PIN_NOT_SET;
module_param(lcd_cl_pin, int, 0000);
MODULE_PARM_DESC(lcd_cl_pin,
"# of the // port pin connected to serial LCD 'SCL' "
"signal, with polarity (-17..17)");
static unsigned char *lcd_char_conv;
/* for some LCD drivers (ks0074) we need a charset conversion table. */
static unsigned char lcd_char_conv_ks0074[256] = {
/* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
};
char old_keypad_profile[][4][9] = {
{"S0", "Left\n", "Left\n", ""},
{"S1", "Down\n", "Down\n", ""},
{"S2", "Up\n", "Up\n", ""},
{"S3", "Right\n", "Right\n", ""},
{"S4", "Esc\n", "Esc\n", ""},
{"S5", "Ret\n", "Ret\n", ""},
{"", "", "", ""}
};
/* signals, press, repeat, release */
char new_keypad_profile[][4][9] = {
{"S0", "Left\n", "Left\n", ""},
{"S1", "Down\n", "Down\n", ""},
{"S2", "Up\n", "Up\n", ""},
{"S3", "Right\n", "Right\n", ""},
{"S4s5", "", "Esc\n", "Esc\n"},
{"s4S5", "", "Ret\n", "Ret\n"},
{"S4S5", "Help\n", "", ""},
/* add new signals above this line */
{"", "", "", ""}
};
/* signals, press, repeat, release */
char nexcom_keypad_profile[][4][9] = {
{"a-p-e-", "Down\n", "Down\n", ""},
{"a-p-E-", "Ret\n", "Ret\n", ""},
{"a-P-E-", "Esc\n", "Esc\n", ""},
{"a-P-e-", "Up\n", "Up\n", ""},
/* add new signals above this line */
{"", "", "", ""}
};
static char (*keypad_profile)[4][9] = old_keypad_profile;
/* FIXME: this should be converted to a bit array containing signals states */
static struct {
unsigned char e; /* parallel LCD E (data latch on falling edge) */
unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
unsigned char cl; /* serial LCD clock (latch on rising edge) */
unsigned char da; /* serial LCD data */
} bits;
static void init_scan_timer(void);
/* sets data port bits according to current signals values */
static int set_data_bits(void)
{
int val, bit;
val = r_dtr(pprt);
for (bit = 0; bit < LCD_BITS; bit++)
val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
| lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
| lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
| lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
| lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
| lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
w_dtr(pprt, val);
return val;
}
/* sets ctrl port bits according to current signals values */
static int set_ctrl_bits(void)
{
int val, bit;
val = r_ctr(pprt);
for (bit = 0; bit < LCD_BITS; bit++)
val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
| lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
| lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
| lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
| lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
| lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
w_ctr(pprt, val);
return val;
}
/* sets ctrl & data port bits according to current signals values */
static void panel_set_bits(void)
{
set_data_bits();
set_ctrl_bits();
}
/*
* Converts a parallel port pin (from -25 to 25) to data and control ports
* masks, and data and control port bits. The signal will be considered
* unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
*
* Result will be used this way :
* out(dport, in(dport) & d_val[2] | d_val[signal_state])
* out(cport, in(cport) & c_val[2] | c_val[signal_state])
*/
void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
{
int d_bit, c_bit, inv;
d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
d_val[2] = c_val[2] = 0xFF;
if (pin == 0)
return;
inv = (pin < 0);
if (inv)
pin = -pin;
d_bit = c_bit = 0;
switch (pin) {
case PIN_STROBE: /* strobe, inverted */
c_bit = PNL_PSTROBE;
inv = !inv;
break;
case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
d_bit = 1 << (pin - 2);
break;
case PIN_AUTOLF: /* autofeed, inverted */
c_bit = PNL_PAUTOLF;
inv = !inv;
break;
case PIN_INITP: /* init, direct */
c_bit = PNL_PINITP;
break;
case PIN_SELECP: /* select_in, inverted */
c_bit = PNL_PSELECP;
inv = !inv;
break;
default: /* unknown pin, ignore */
break;
}
if (c_bit) {
c_val[2] &= ~c_bit;
c_val[!inv] = c_bit;
} else if (d_bit) {
d_val[2] &= ~d_bit;
d_val[!inv] = d_bit;
}
}
/* sleeps that many milliseconds with a reschedule */
static void long_sleep(int ms)
{
if (in_interrupt())
mdelay(ms);
else {
current->state = TASK_INTERRUPTIBLE;
schedule_timeout((ms * HZ + 999) / 1000);
}
}
/* send a serial byte to the LCD panel. The caller is responsible for locking
if needed. */
static void lcd_send_serial(int byte)
{
int bit;
/* the data bit is set on D0, and the clock on STROBE.
* LCD reads D0 on STROBE's rising edge. */
for (bit = 0; bit < 8; bit++) {
bits.cl = BIT_CLR; /* CLK low */
panel_set_bits();
bits.da = byte & 1;
panel_set_bits();
udelay(2); /* maintain the data during 2 us before CLK up */
bits.cl = BIT_SET; /* CLK high */
panel_set_bits();
udelay(1); /* maintain the strobe during 1 us */
byte >>= 1;
}
}
/* turn the backlight on or off */
static void lcd_backlight(int on)
{
if (lcd_bl_pin == PIN_NONE)
return;
/* The backlight is activated by setting the AUTOFEED line to +5V */
spin_lock(&pprt_lock);
bits.bl = on;
panel_set_bits();
spin_unlock(&pprt_lock);
}
/* send a command to the LCD panel in serial mode */
static void lcd_write_cmd_s(int cmd)
{
spin_lock(&pprt_lock);
lcd_send_serial(0x1F); /* R/W=W, RS=0 */
lcd_send_serial(cmd & 0x0F);
lcd_send_serial((cmd >> 4) & 0x0F);
udelay(40); /* the shortest command takes at least 40 us */
spin_unlock(&pprt_lock);
}
/* send data to the LCD panel in serial mode */
static void lcd_write_data_s(int data)
{
spin_lock(&pprt_lock);
lcd_send_serial(0x5F); /* R/W=W, RS=1 */
lcd_send_serial(data & 0x0F);
lcd_send_serial((data >> 4) & 0x0F);
udelay(40); /* the shortest data takes at least 40 us */
spin_unlock(&pprt_lock);
}
/* send a command to the LCD panel in 8 bits parallel mode */
static void lcd_write_cmd_p8(int cmd)
{
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, cmd);
udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET;
bits.rs = BIT_CLR;
bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(120); /* the shortest command takes at least 120 us */
spin_unlock(&pprt_lock);
}
/* send data to the LCD panel in 8 bits parallel mode */
static void lcd_write_data_p8(int data)
{
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, data);
udelay(20); /* maintain the data during 20 us before the strobe */
bits.e = BIT_SET;
bits.rs = BIT_SET;
bits.rw = BIT_CLR;
set_ctrl_bits();
udelay(40); /* maintain the strobe during 40 us */
bits.e = BIT_CLR;
set_ctrl_bits();
udelay(45); /* the shortest data takes at least 45 us */
spin_unlock(&pprt_lock);
}
/* send a command to the TI LCD panel */
static void lcd_write_cmd_tilcd(int cmd)
{
spin_lock(&pprt_lock);
/* present the data to the control port */
w_ctr(pprt, cmd);
udelay(60);
spin_unlock(&pprt_lock);
}
/* send data to the TI LCD panel */
static void lcd_write_data_tilcd(int data)
{
spin_lock(&pprt_lock);
/* present the data to the data port */
w_dtr(pprt, data);
udelay(60);
spin_unlock(&pprt_lock);
}
static void lcd_gotoxy(void)
{
lcd_write_cmd(0x80 /* set DDRAM address */
| (lcd_addr_y ? lcd_hwidth : 0)
/* we force the cursor to stay at the end of the
line if it wants to go farther */
| ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
(lcd_hwidth - 1) : lcd_bwidth - 1));
}
static void lcd_print(char c)
{
if (lcd_addr_x < lcd_bwidth) {
if (lcd_char_conv != NULL)
c = lcd_char_conv[(unsigned char)c];
lcd_write_data(c);
lcd_addr_x++;
}
/* prevents the cursor from wrapping onto the next line */
if (lcd_addr_x == lcd_bwidth)
lcd_gotoxy();
}
/* fills the display with spaces and resets X/Y */
static void lcd_clear_fast_s(void)
{
int pos;
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
spin_lock(&pprt_lock);
for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
lcd_send_serial(0x5F); /* R/W=W, RS=1 */
lcd_send_serial(' ' & 0x0F);
lcd_send_serial((' ' >> 4) & 0x0F);
udelay(40); /* the shortest data takes at least 40 us */
}
spin_unlock(&pprt_lock);
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
}
/* fills the display with spaces and resets X/Y */
static void lcd_clear_fast_p8(void)
{
int pos;
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
spin_lock(&pprt_lock);
for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
/* present the data to the data port */
w_dtr(pprt, ' ');
/* maintain the data during 20 us before the strobe */
udelay(20);
bits.e = BIT_SET;
bits.rs = BIT_SET;
bits.rw = BIT_CLR;
set_ctrl_bits();
/* maintain the strobe during 40 us */
udelay(40);
bits.e = BIT_CLR;
set_ctrl_bits();
/* the shortest data takes at least 45 us */
udelay(45);
}
spin_unlock(&pprt_lock);
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
}
/* fills the display with spaces and resets X/Y */
static void lcd_clear_fast_tilcd(void)
{
int pos;
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
spin_lock(&pprt_lock);
for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
/* present the data to the data port */
w_dtr(pprt, ' ');
udelay(60);
}
spin_unlock(&pprt_lock);
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
}
/* clears the display and resets X/Y */
static void lcd_clear_display(void)
{
lcd_write_cmd(0x01); /* clear display */
lcd_addr_x = lcd_addr_y = 0;
/* we must wait a few milliseconds (15) */
long_sleep(15);
}
static void lcd_init_display(void)
{
lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
| LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
long_sleep(20); /* wait 20 ms after power-up for the paranoid */
lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
long_sleep(10);
lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
long_sleep(10);
lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
long_sleep(10);
lcd_write_cmd(0x30 /* set font height and lines number */
| ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
| ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
);
long_sleep(10);
lcd_write_cmd(0x08); /* display off, cursor off, blink off */
long_sleep(10);
lcd_write_cmd(0x08 /* set display mode */
| ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
| ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
| ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
);
lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
long_sleep(10);
/* entry mode set : increment, cursor shifting */
lcd_write_cmd(0x06);
lcd_clear_display();
}
/*
* These are the file operation function for user access to /dev/lcd
* This function can also be called from inside the kernel, by
* setting file and ppos to NULL.
*
*/
static inline int handle_lcd_special_code(void)
{
/* LCD special codes */
int processed = 0;
char *esc = lcd_escape + 2;
int oldflags = lcd_flags;
/* check for display mode flags */
switch (*esc) {
case 'D': /* Display ON */
lcd_flags |= LCD_FLAG_D;
processed = 1;
break;
case 'd': /* Display OFF */
lcd_flags &= ~LCD_FLAG_D;
processed = 1;
break;
case 'C': /* Cursor ON */
lcd_flags |= LCD_FLAG_C;
processed = 1;
break;
case 'c': /* Cursor OFF */
lcd_flags &= ~LCD_FLAG_C;
processed = 1;
break;
case 'B': /* Blink ON */
lcd_flags |= LCD_FLAG_B;
processed = 1;
break;
case 'b': /* Blink OFF */
lcd_flags &= ~LCD_FLAG_B;
processed = 1;
break;
case '+': /* Back light ON */
lcd_flags |= LCD_FLAG_L;
processed = 1;
break;
case '-': /* Back light OFF */
lcd_flags &= ~LCD_FLAG_L;
processed = 1;
break;
case '*':
/* flash back light using the keypad timer */
if (scan_timer.function != NULL) {
if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
lcd_backlight(1);
light_tempo = FLASH_LIGHT_TEMPO;
}
processed = 1;
break;
case 'f': /* Small Font */
lcd_flags &= ~LCD_FLAG_F;
processed = 1;
break;
case 'F': /* Large Font */
lcd_flags |= LCD_FLAG_F;
processed = 1;
break;
case 'n': /* One Line */
lcd_flags &= ~LCD_FLAG_N;
processed = 1;
break;
case 'N': /* Two Lines */
lcd_flags |= LCD_FLAG_N;
break;
case 'l': /* Shift Cursor Left */
if (lcd_addr_x > 0) {
/* back one char if not at end of line */
if (lcd_addr_x < lcd_bwidth)
lcd_write_cmd(0x10);
lcd_addr_x--;
}
processed = 1;
break;
case 'r': /* shift cursor right */
if (lcd_addr_x < lcd_width) {
/* allow the cursor to pass the end of the line */
if (lcd_addr_x <
(lcd_bwidth - 1))
lcd_write_cmd(0x14);
lcd_addr_x++;
}
processed = 1;
break;
case 'L': /* shift display left */
lcd_left_shift++;
lcd_write_cmd(0x18);
processed = 1;
break;
case 'R': /* shift display right */
lcd_left_shift--;
lcd_write_cmd(0x1C);
processed = 1;
break;
case 'k': { /* kill end of line */
int x;
for (x = lcd_addr_x; x < lcd_bwidth; x++)
lcd_write_data(' ');
/* restore cursor position */
lcd_gotoxy();
processed = 1;
break;
}
case 'I': /* reinitialize display */
lcd_init_display();
lcd_left_shift = 0;
processed = 1;
break;
case 'G': {
/* Generator : LGcxxxxx...xx; must have <c> between '0'
* and '7', representing the numerical ASCII code of the
* redefined character, and <xx...xx> a sequence of 16
* hex digits representing 8 bytes for each character.
* Most LCDs will only use 5 lower bits of the 7 first
* bytes.
*/
unsigned char cgbytes[8];
unsigned char cgaddr;
int cgoffset;
int shift;
char value;
int addr;
if (strchr(esc, ';') == NULL)
break;
esc++;
cgaddr = *(esc++) - '0';
if (cgaddr > 7) {
processed = 1;
break;
}
cgoffset = 0;
shift = 0;
value = 0;
while (*esc && cgoffset < 8) {
shift ^= 4;
if (*esc >= '0' && *esc <= '9')
value |= (*esc - '0') << shift;
else if (*esc >= 'A' && *esc <= 'Z')
value |= (*esc - 'A' + 10) << shift;
else if (*esc >= 'a' && *esc <= 'z')
value |= (*esc - 'a' + 10) << shift;
else {
esc++;
continue;
}
if (shift == 0) {
cgbytes[cgoffset++] = value;
value = 0;
}
esc++;
}
lcd_write_cmd(0x40 | (cgaddr * 8));
for (addr = 0; addr < cgoffset; addr++)
lcd_write_data(cgbytes[addr]);
/* ensures that we stop writing to CGRAM */
lcd_gotoxy();
processed = 1;
break;
}
case 'x': /* gotoxy : LxXXX[yYYY]; */
case 'y': /* gotoxy : LyYYY[xXXX]; */
if (strchr(esc, ';') == NULL)
break;
while (*esc) {
if (*esc == 'x') {
esc++;
if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
break;
} else if (*esc == 'y') {
esc++;
if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
break;
} else
break;
}
lcd_gotoxy();
processed = 1;
break;
}
/* Check wether one flag was changed */
if (oldflags != lcd_flags) {
/* check whether one of B,C,D flags were changed */
if ((oldflags ^ lcd_flags) &
(LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
/* set display mode */
lcd_write_cmd(0x08
| ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
| ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
| ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
/* check whether one of F,N flags was changed */
else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
lcd_write_cmd(0x30
| ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
| ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
/* check wether L flag was changed */
else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
if (lcd_flags & (LCD_FLAG_L))
lcd_backlight(1);
else if (light_tempo == 0)
/* switch off the light only when the tempo
lighting is gone */
lcd_backlight(0);
}
}
return processed;
}
static ssize_t lcd_write(struct file *file,
const char *buf, size_t count, loff_t *ppos)
{
const char *tmp = buf;
char c;
for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
/* let's be a little nice with other processes
that need some CPU */
schedule();
if (ppos == NULL && file == NULL)
/* let's not use get_user() from the kernel ! */
c = *tmp;
else if (get_user(c, tmp))
return -EFAULT;
/* first, we'll test if we're in escape mode */
if ((c != '\n') && lcd_escape_len >= 0) {
/* yes, let's add this char to the buffer */
lcd_escape[lcd_escape_len++] = c;
lcd_escape[lcd_escape_len] = 0;
} else {
/* aborts any previous escape sequence */
lcd_escape_len = -1;
switch (c) {
case LCD_ESCAPE_CHAR:
/* start of an escape sequence */
lcd_escape_len = 0;
lcd_escape[lcd_escape_len] = 0;
break;
case '\b':
/* go back one char and clear it */
if (lcd_addr_x > 0) {
/* check if we're not at the
end of the line */
if (lcd_addr_x < lcd_bwidth)
/* back one char */
lcd_write_cmd(0x10);
lcd_addr_x--;
}
/* replace with a space */
lcd_write_data(' ');
/* back one char again */
lcd_write_cmd(0x10);
break;
case '\014':
/* quickly clear the display */
lcd_clear_fast();
break;
case '\n':
/* flush the remainder of the current line and
go to the beginning of the next line */
for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
lcd_write_data(' ');
lcd_addr_x = 0;
lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
lcd_gotoxy();
break;
case '\r':
/* go to the beginning of the same line */
lcd_addr_x = 0;
lcd_gotoxy();
break;
case '\t':
/* print a space instead of the tab */
lcd_print(' ');
break;
default:
/* simply print this char */
lcd_print(c);
break;
}
}
/* now we'll see if we're in an escape mode and if the current
escape sequence can be understood. */
if (lcd_escape_len >= 2) {
int processed = 0;
if (!strcmp(lcd_escape, "[2J")) {
/* clear the display */
lcd_clear_fast();
processed = 1;
} else if (!strcmp(lcd_escape, "[H")) {
/* cursor to home */
lcd_addr_x = lcd_addr_y = 0;
lcd_gotoxy();
processed = 1;
}
/* codes starting with ^[[L */
else if ((lcd_escape_len >= 3) &&
(lcd_escape[0] == '[') &&
(lcd_escape[1] == 'L')) {
processed = handle_lcd_special_code();
}
/* LCD special escape codes */
/* flush the escape sequence if it's been processed
or if it is getting too long. */
if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
lcd_escape_len = -1;
} /* escape codes */
}
return tmp - buf;
}
static int lcd_open(struct inode *inode, struct file *file)
{
if (lcd_open_cnt)
return -EBUSY; /* open only once at a time */
if (file->f_mode & FMODE_READ) /* device is write-only */
return -EPERM;
if (lcd_must_clear) {
lcd_clear_display();
lcd_must_clear = 0;
}
lcd_open_cnt++;
return nonseekable_open(inode, file);
}
static int lcd_release(struct inode *inode, struct file *file)
{
lcd_open_cnt--;
return 0;
}
static const struct file_operations lcd_fops = {
.write = lcd_write,
.open = lcd_open,
.release = lcd_release,
.llseek = no_llseek,
};
static struct miscdevice lcd_dev = {
LCD_MINOR,
"lcd",
&lcd_fops
};
/* public function usable from the kernel for any purpose */
void panel_lcd_print(char *s)
{
if (lcd_enabled && lcd_initialized)
lcd_write(NULL, s, strlen(s), NULL);
}
/* initialize the LCD driver */
void lcd_init(void)
{
switch (lcd_type) {
case LCD_TYPE_OLD:
/* parallel mode, 8 bits */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0)
lcd_charset = LCD_CHARSET_NORMAL;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = PIN_STROBE;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = PIN_AUTOLF;
if (lcd_width < 0)
lcd_width = 40;
if (lcd_bwidth < 0)
lcd_bwidth = 40;
if (lcd_hwidth < 0)
lcd_hwidth = 64;
if (lcd_height < 0)
lcd_height = 2;
break;
case LCD_TYPE_KS0074:
/* serial mode, ks0074 */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_SERIAL;
if (lcd_charset < 0)
lcd_charset = LCD_CHARSET_KS0074;
if (lcd_bl_pin == PIN_NOT_SET)
lcd_bl_pin = PIN_AUTOLF;
if (lcd_cl_pin == PIN_NOT_SET)
lcd_cl_pin = PIN_STROBE;
if (lcd_da_pin == PIN_NOT_SET)
lcd_da_pin = PIN_D0;
if (lcd_width < 0)
lcd_width = 16;
if (lcd_bwidth < 0)
lcd_bwidth = 40;
if (lcd_hwidth < 0)
lcd_hwidth = 16;
if (lcd_height < 0)
lcd_height = 2;
break;
case LCD_TYPE_NEXCOM:
/* parallel mode, 8 bits, generic */
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0)
lcd_charset = LCD_CHARSET_NORMAL;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = PIN_AUTOLF;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = PIN_SELECP;
if (lcd_rw_pin == PIN_NOT_SET)
lcd_rw_pin = PIN_INITP;
if (lcd_width < 0)
lcd_width = 16;
if (lcd_bwidth < 0)
lcd_bwidth = 40;
if (lcd_hwidth < 0)
lcd_hwidth = 64;
if (lcd_height < 0)
lcd_height = 2;
break;
case LCD_TYPE_CUSTOM:
/* customer-defined */
if (lcd_proto < 0)
lcd_proto = DEFAULT_LCD_PROTO;
if (lcd_charset < 0)
lcd_charset = DEFAULT_LCD_CHARSET;
/* default geometry will be set later */
break;
case LCD_TYPE_HANTRONIX:
/* parallel mode, 8 bits, hantronix-like */
default:
if (lcd_proto < 0)
lcd_proto = LCD_PROTO_PARALLEL;
if (lcd_charset < 0)
lcd_charset = LCD_CHARSET_NORMAL;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = PIN_STROBE;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = PIN_SELECP;
if (lcd_width < 0)
lcd_width = 16;
if (lcd_bwidth < 0)
lcd_bwidth = 40;
if (lcd_hwidth < 0)
lcd_hwidth = 64;
if (lcd_height < 0)
lcd_height = 2;
break;
}
/* this is used to catch wrong and default values */
if (lcd_width <= 0)
lcd_width = DEFAULT_LCD_WIDTH;
if (lcd_bwidth <= 0)
lcd_bwidth = DEFAULT_LCD_BWIDTH;
if (lcd_hwidth <= 0)
lcd_hwidth = DEFAULT_LCD_HWIDTH;
if (lcd_height <= 0)
lcd_height = DEFAULT_LCD_HEIGHT;
if (lcd_proto == LCD_PROTO_SERIAL) { /* SERIAL */
lcd_write_cmd = lcd_write_cmd_s;
lcd_write_data = lcd_write_data_s;
lcd_clear_fast = lcd_clear_fast_s;
if (lcd_cl_pin == PIN_NOT_SET)
lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
if (lcd_da_pin == PIN_NOT_SET)
lcd_da_pin = DEFAULT_LCD_PIN_SDA;
} else if (lcd_proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
lcd_write_cmd = lcd_write_cmd_p8;
lcd_write_data = lcd_write_data_p8;
lcd_clear_fast = lcd_clear_fast_p8;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = DEFAULT_LCD_PIN_E;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = DEFAULT_LCD_PIN_RS;
if (lcd_rw_pin == PIN_NOT_SET)
lcd_rw_pin = DEFAULT_LCD_PIN_RW;
} else {
lcd_write_cmd = lcd_write_cmd_tilcd;
lcd_write_data = lcd_write_data_tilcd;
lcd_clear_fast = lcd_clear_fast_tilcd;
}
if (lcd_bl_pin == PIN_NOT_SET)
lcd_bl_pin = DEFAULT_LCD_PIN_BL;
if (lcd_e_pin == PIN_NOT_SET)
lcd_e_pin = PIN_NONE;
if (lcd_rs_pin == PIN_NOT_SET)
lcd_rs_pin = PIN_NONE;
if (lcd_rw_pin == PIN_NOT_SET)
lcd_rw_pin = PIN_NONE;
if (lcd_bl_pin == PIN_NOT_SET)
lcd_bl_pin = PIN_NONE;
if (lcd_cl_pin == PIN_NOT_SET)
lcd_cl_pin = PIN_NONE;
if (lcd_da_pin == PIN_NOT_SET)
lcd_da_pin = PIN_NONE;
if (lcd_charset < 0)
lcd_charset = DEFAULT_LCD_CHARSET;
if (lcd_charset == LCD_CHARSET_KS0074)
lcd_char_conv = lcd_char_conv_ks0074;
else
lcd_char_conv = NULL;
if (lcd_bl_pin != PIN_NONE)
init_scan_timer();
pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
lcd_bits[LCD_PORT_C][LCD_BIT_E]);
pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
/* before this line, we must NOT send anything to the display.
* Since lcd_init_display() needs to write data, we have to
* enable mark the LCD initialized just before. */
lcd_initialized = 1;
lcd_init_display();
/* display a short message */
#ifdef CONFIG_PANEL_CHANGE_MESSAGE
#ifdef CONFIG_PANEL_BOOT_MESSAGE
panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
#endif
#else
panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
PANEL_VERSION);
#endif
lcd_addr_x = lcd_addr_y = 0;
/* clear the display on the next device opening */
lcd_must_clear = 1;
lcd_gotoxy();
}
/*
* These are the file operation function for user access to /dev/keypad
*/
static ssize_t keypad_read(struct file *file,
char *buf, size_t count, loff_t *ppos)
{
unsigned i = *ppos;
char *tmp = buf;
if (keypad_buflen == 0) {
if (file->f_flags & O_NONBLOCK)
return -EAGAIN;
interruptible_sleep_on(&keypad_read_wait);
if (signal_pending(current))
return -EINTR;
}
for (; count-- > 0 && (keypad_buflen > 0);
++i, ++tmp, --keypad_buflen) {
put_user(keypad_buffer[keypad_start], tmp);
keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
}
*ppos = i;
return tmp - buf;
}
static int keypad_open(struct inode *inode, struct file *file)
{
if (keypad_open_cnt)
return -EBUSY; /* open only once at a time */
if (file->f_mode & FMODE_WRITE) /* device is read-only */
return -EPERM;
keypad_buflen = 0; /* flush the buffer on opening */
keypad_open_cnt++;
return 0;
}
static int keypad_release(struct inode *inode, struct file *file)
{
keypad_open_cnt--;
return 0;
}
static const struct file_operations keypad_fops = {
.read = keypad_read, /* read */
.open = keypad_open, /* open */
.release = keypad_release, /* close */
.llseek = default_llseek,
};
static struct miscdevice keypad_dev = {
KEYPAD_MINOR,
"keypad",
&keypad_fops
};
static void keypad_send_key(char *string, int max_len)
{
if (init_in_progress)
return;
/* send the key to the device only if a process is attached to it. */
if (keypad_open_cnt > 0) {
while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
keypad_buffer[(keypad_start + keypad_buflen++) %
KEYPAD_BUFFER] = *string++;
}
wake_up_interruptible(&keypad_read_wait);
}
}
/* this function scans all the bits involving at least one logical signal,
* and puts the results in the bitfield "phys_read" (one bit per established
* contact), and sets "phys_read_prev" to "phys_read".
*
* Note: to debounce input signals, we will only consider as switched a signal
* which is stable across 2 measures. Signals which are different between two
* reads will be kept as they previously were in their logical form (phys_prev).
* A signal which has just switched will have a 1 in
* (phys_read ^ phys_read_prev).
*/
static void phys_scan_contacts(void)
{
int bit, bitval;
char oldval;
char bitmask;
char gndmask;
phys_prev = phys_curr;
phys_read_prev = phys_read;
phys_read = 0; /* flush all signals */
/* keep track of old value, with all outputs disabled */
oldval = r_dtr(pprt) | scan_mask_o;
/* activate all keyboard outputs (active low) */
w_dtr(pprt, oldval & ~scan_mask_o);
/* will have a 1 for each bit set to gnd */
bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
/* disable all matrix signals */
w_dtr(pprt, oldval);
/* now that all outputs are cleared, the only active input bits are
* directly connected to the ground
*/
/* 1 for each grounded input */
gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
/* grounded inputs are signals 40-44 */
phys_read |= (pmask_t) gndmask << 40;
if (bitmask != gndmask) {
/* since clearing the outputs changed some inputs, we know
* that some input signals are currently tied to some outputs.
* So we'll scan them.
*/
for (bit = 0; bit < 8; bit++) {
bitval = 1 << bit;
if (!(scan_mask_o & bitval)) /* skip unused bits */
continue;
w_dtr(pprt, oldval & ~bitval); /* enable this output */
bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
phys_read |= (pmask_t) bitmask << (5 * bit);
}
w_dtr(pprt, oldval); /* disable all outputs */
}
/* this is easy: use old bits when they are flapping,
* use new ones when stable */
phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
(phys_read & ~(phys_read ^ phys_read_prev));
}
static inline int input_state_high(struct logical_input *input)
{
#if 0
/* FIXME:
* this is an invalid test. It tries to catch
* transitions from single-key to multiple-key, but
* doesn't take into account the contacts polarity.
* The only solution to the problem is to parse keys
* from the most complex to the simplest combinations,
* and mark them as 'caught' once a combination
* matches, then unmatch it for all other ones.
*/
/* try to catch dangerous transitions cases :
* someone adds a bit, so this signal was a false
* positive resulting from a transition. We should
* invalidate the signal immediately and not call the
* release function.
* eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
*/
if (((phys_prev & input->mask) == input->value)
&& ((phys_curr & input->mask) > input->value)) {
input->state = INPUT_ST_LOW; /* invalidate */
return 1;
}
#endif
if ((phys_curr & input->mask) == input->value) {
if ((input->type == INPUT_TYPE_STD) &&
(input->high_timer == 0)) {
input->high_timer++;
if (input->u.std.press_fct != NULL)
input->u.std.press_fct(input->u.std.press_data);
} else if (input->type == INPUT_TYPE_KBD) {
/* will turn on the light */
keypressed = 1;
if (input->high_timer == 0) {
char *press_str = input->u.kbd.press_str;
if (press_str[0])
keypad_send_key(press_str,
sizeof(press_str));
}
if (input->u.kbd.repeat_str[0]) {
char *repeat_str = input->u.kbd.repeat_str;
if (input->high_timer >= KEYPAD_REP_START) {
input->high_timer -= KEYPAD_REP_DELAY;
keypad_send_key(repeat_str,
sizeof(repeat_str));
}
/* we will need to come back here soon */
inputs_stable = 0;
}
if (input->high_timer < 255)
input->high_timer++;
}
return 1;
} else {
/* else signal falling down. Let's fall through. */
input->state = INPUT_ST_FALLING;
input->fall_timer = 0;
}
return 0;
}
static inline void input_state_falling(struct logical_input *input)
{
#if 0
/* FIXME !!! same comment as in input_state_high */
if (((phys_prev & input->mask) == input->value)
&& ((phys_curr & input->mask) > input->value)) {
input->state = INPUT_ST_LOW; /* invalidate */
return;
}
#endif
if ((phys_curr & input->mask) == input->value) {
if (input->type == INPUT_TYPE_KBD) {
/* will turn on the light */
keypressed = 1;
if (input->u.kbd.repeat_str[0]) {
char *repeat_str = input->u.kbd.repeat_str;
if (input->high_timer >= KEYPAD_REP_START)
input->high_timer -= KEYPAD_REP_DELAY;
keypad_send_key(repeat_str,
sizeof(repeat_str));
/* we will need to come back here soon */
inputs_stable = 0;
}
if (input->high_timer < 255)
input->high_timer++;
}
input->state = INPUT_ST_HIGH;
} else if (input->fall_timer >= input->fall_time) {
/* call release event */
if (input->type == INPUT_TYPE_STD) {
void (*release_fct)(int) = input->u.std.release_fct;
if (release_fct != NULL)
release_fct(input->u.std.release_data);
} else if (input->type == INPUT_TYPE_KBD) {
char *release_str = input->u.kbd.release_str;
if (release_str[0])
keypad_send_key(release_str,
sizeof(release_str));
}
input->state = INPUT_ST_LOW;
} else {
input->fall_timer++;
inputs_stable = 0;
}
}
static void panel_process_inputs(void)
{
struct list_head *item;
struct logical_input *input;
#if 0
printk(KERN_DEBUG
"entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
phys_prev, phys_curr);
#endif
keypressed = 0;
inputs_stable = 1;
list_for_each(item, &logical_inputs) {
input = list_entry(item, struct logical_input, list);
switch (input->state) {
case INPUT_ST_LOW:
if ((phys_curr & input->mask) != input->value)
break;
/* if all needed ones were already set previously,
* this means that this logical signal has been
* activated by the releasing of another combined
* signal, so we don't want to match.
* eg: AB -(release B)-> A -(release A)-> 0 :
* don't match A.
*/
if ((phys_prev & input->mask) == input->value)
break;
input->rise_timer = 0;
input->state = INPUT_ST_RISING;
/* no break here, fall through */
case INPUT_ST_RISING:
if ((phys_curr & input->mask) != input->value) {
input->state = INPUT_ST_LOW;
break;
}
if (input->rise_timer < input->rise_time) {
inputs_stable = 0;
input->rise_timer++;
break;
}
input->high_timer = 0;
input->state = INPUT_ST_HIGH;
/* no break here, fall through */
case INPUT_ST_HIGH:
if (input_state_high(input))
break;
/* no break here, fall through */
case INPUT_ST_FALLING:
input_state_falling(input);
}
}
}
static void panel_scan_timer(void)
{
if (keypad_enabled && keypad_initialized) {
if (spin_trylock(&pprt_lock)) {
phys_scan_contacts();
/* no need for the parport anymore */
spin_unlock(&pprt_lock);
}
if (!inputs_stable || phys_curr != phys_prev)
panel_process_inputs();
}
if (lcd_enabled && lcd_initialized) {
if (keypressed) {
if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
lcd_backlight(1);
light_tempo = FLASH_LIGHT_TEMPO;
} else if (light_tempo > 0) {
light_tempo--;
if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
lcd_backlight(0);
}
}
mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
}
static void init_scan_timer(void)
{
if (scan_timer.function != NULL)
return; /* already started */
init_timer(&scan_timer);
scan_timer.expires = jiffies + INPUT_POLL_TIME;
scan_timer.data = 0;
scan_timer.function = (void *)&panel_scan_timer;
add_timer(&scan_timer);
}
/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
* if <omask> or <imask> are non-null, they will be or'ed with the bits
* corresponding to out and in bits respectively.
* returns 1 if ok, 0 if error (in which case, nothing is written).
*/
static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
char *imask, char *omask)
{
static char sigtab[10] = "EeSsPpAaBb";
char im, om;
pmask_t m, v;
om = im = m = v = 0ULL;
while (*name) {
int in, out, bit, neg;
for (in = 0; (in < sizeof(sigtab)) &&
(sigtab[in] != *name); in++)
;
if (in >= sizeof(sigtab))
return 0; /* input name not found */
neg = (in & 1); /* odd (lower) names are negated */
in >>= 1;
im |= (1 << in);
name++;
if (isdigit(*name)) {
out = *name - '0';
om |= (1 << out);
} else if (*name == '-')
out = 8;
else
return 0; /* unknown bit name */
bit = (out * 5) + in;
m |= 1ULL << bit;
if (!neg)
v |= 1ULL << bit;
name++;
}
*mask = m;
*value = v;
if (imask)
*imask |= im;
if (omask)
*omask |= om;
return 1;
}
/* tries to bind a key to the signal name <name>. The key will send the
* strings <press>, <repeat>, <release> for these respective events.
* Returns the pointer to the new key if ok, NULL if the key could not be bound.
*/
static struct logical_input *panel_bind_key(char *name, char *press,
char *repeat, char *release)
{
struct logical_input *key;
key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
if (!key) {
printk(KERN_ERR "panel: not enough memory\n");
return NULL;
}
if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
&scan_mask_o)) {
kfree(key);
return NULL;
}
key->type = INPUT_TYPE_KBD;
key->state = INPUT_ST_LOW;
key->rise_time = 1;
key->fall_time = 1;
#if 0
printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
key->value);
#endif
strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
strncpy(key->u.kbd.release_str, release,
sizeof(key->u.kbd.release_str));
list_add(&key->list, &logical_inputs);
return key;
}
#if 0
/* tries to bind a callback function to the signal name <name>. The function
* <press_fct> will be called with the <press_data> arg when the signal is
* activated, and so on for <release_fct>/<release_data>
* Returns the pointer to the new signal if ok, NULL if the signal could not
* be bound.
*/
static struct logical_input *panel_bind_callback(char *name,
void (*press_fct) (int),
int press_data,
void (*release_fct) (int),
int release_data)
{
struct logical_input *callback;
callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
if (!callback) {
printk(KERN_ERR "panel: not enough memory\n");
return NULL;
}
memset(callback, 0, sizeof(struct logical_input));
if (!input_name2mask(name, &callback->mask, &callback->value,
&scan_mask_i, &scan_mask_o))
return NULL;
callback->type = INPUT_TYPE_STD;
callback->state = INPUT_ST_LOW;
callback->rise_time = 1;
callback->fall_time = 1;
callback->u.std.press_fct = press_fct;
callback->u.std.press_data = press_data;
callback->u.std.release_fct = release_fct;
callback->u.std.release_data = release_data;
list_add(&callback->list, &logical_inputs);
return callback;
}
#endif
static void keypad_init(void)
{
int keynum;
init_waitqueue_head(&keypad_read_wait);
keypad_buflen = 0; /* flushes any eventual noisy keystroke */
/* Let's create all known keys */
for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
panel_bind_key(keypad_profile[keynum][0],
keypad_profile[keynum][1],
keypad_profile[keynum][2],
keypad_profile[keynum][3]);
}
init_scan_timer();
keypad_initialized = 1;
}
/**************************************************/
/* device initialization */
/**************************************************/
static int panel_notify_sys(struct notifier_block *this, unsigned long code,
void *unused)
{
if (lcd_enabled && lcd_initialized) {
switch (code) {
case SYS_DOWN:
panel_lcd_print
("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
break;
case SYS_HALT:
panel_lcd_print
("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
break;
case SYS_POWER_OFF:
panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
break;
default:
break;
}
}
return NOTIFY_DONE;
}
static struct notifier_block panel_notifier = {
panel_notify_sys,
NULL,
0
};
static void panel_attach(struct parport *port)
{
if (port->number != parport)
return;
if (pprt) {
printk(KERN_ERR
"panel_attach(): port->number=%d parport=%d, "
"already registered !\n",
port->number, parport);
return;
}
pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
NULL,
/*PARPORT_DEV_EXCL */
0, (void *)&pprt);
if (pprt == NULL) {
pr_err("panel_attach(): port->number=%d parport=%d, "
"parport_register_device() failed\n",
port->number, parport);
return;
}
if (parport_claim(pprt)) {
printk(KERN_ERR
"Panel: could not claim access to parport%d. "
"Aborting.\n", parport);
goto err_unreg_device;
}
/* must init LCD first, just in case an IRQ from the keypad is
* generated at keypad init
*/
if (lcd_enabled) {
lcd_init();
if (misc_register(&lcd_dev))
goto err_unreg_device;
}
if (keypad_enabled) {
keypad_init();
if (misc_register(&keypad_dev))
goto err_lcd_unreg;
}
return;
err_lcd_unreg:
if (lcd_enabled)
misc_deregister(&lcd_dev);
err_unreg_device:
parport_unregister_device(pprt);
pprt = NULL;
}
static void panel_detach(struct parport *port)
{
if (port->number != parport)
return;
if (!pprt) {
printk(KERN_ERR
"panel_detach(): port->number=%d parport=%d, "
"nothing to unregister.\n",
port->number, parport);
return;
}
if (keypad_enabled && keypad_initialized) {
misc_deregister(&keypad_dev);
keypad_initialized = 0;
}
if (lcd_enabled && lcd_initialized) {
misc_deregister(&lcd_dev);
lcd_initialized = 0;
}
parport_release(pprt);
parport_unregister_device(pprt);
pprt = NULL;
}
static struct parport_driver panel_driver = {
.name = "panel",
.attach = panel_attach,
.detach = panel_detach,
};
/* init function */
int panel_init(void)
{
/* for backwards compatibility */
if (keypad_type < 0)
keypad_type = keypad_enabled;
if (lcd_type < 0)
lcd_type = lcd_enabled;
if (parport < 0)
parport = DEFAULT_PARPORT;
/* take care of an eventual profile */
switch (profile) {
case PANEL_PROFILE_CUSTOM:
/* custom profile */
if (keypad_type < 0)
keypad_type = DEFAULT_KEYPAD;
if (lcd_type < 0)
lcd_type = DEFAULT_LCD;
break;
case PANEL_PROFILE_OLD:
/* 8 bits, 2*16, old keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_OLD;
if (lcd_type < 0)
lcd_type = LCD_TYPE_OLD;
if (lcd_width < 0)
lcd_width = 16;
if (lcd_hwidth < 0)
lcd_hwidth = 16;
break;
case PANEL_PROFILE_NEW:
/* serial, 2*16, new keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NEW;
if (lcd_type < 0)
lcd_type = LCD_TYPE_KS0074;
break;
case PANEL_PROFILE_HANTRONIX:
/* 8 bits, 2*16 hantronix-like, no keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NONE;
if (lcd_type < 0)
lcd_type = LCD_TYPE_HANTRONIX;
break;
case PANEL_PROFILE_NEXCOM:
/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_NEXCOM;
if (lcd_type < 0)
lcd_type = LCD_TYPE_NEXCOM;
break;
case PANEL_PROFILE_LARGE:
/* 8 bits, 2*40, old keypad */
if (keypad_type < 0)
keypad_type = KEYPAD_TYPE_OLD;
if (lcd_type < 0)
lcd_type = LCD_TYPE_OLD;
break;
}
lcd_enabled = (lcd_type > 0);
keypad_enabled = (keypad_type > 0);
switch (keypad_type) {
case KEYPAD_TYPE_OLD:
keypad_profile = old_keypad_profile;
break;
case KEYPAD_TYPE_NEW:
keypad_profile = new_keypad_profile;
break;
case KEYPAD_TYPE_NEXCOM:
keypad_profile = nexcom_keypad_profile;
break;
default:
keypad_profile = NULL;
break;
}
/* tells various subsystems about the fact that we are initializing */
init_in_progress = 1;
if (parport_register_driver(&panel_driver)) {
printk(KERN_ERR
"Panel: could not register with parport. Aborting.\n");
return -EIO;
}
if (!lcd_enabled && !keypad_enabled) {
/* no device enabled, let's release the parport */
if (pprt) {
parport_release(pprt);
parport_unregister_device(pprt);
pprt = NULL;
}
parport_unregister_driver(&panel_driver);
printk(KERN_ERR "Panel driver version " PANEL_VERSION
" disabled.\n");
return -ENODEV;
}
register_reboot_notifier(&panel_notifier);
if (pprt)
printk(KERN_INFO "Panel driver version " PANEL_VERSION
" registered on parport%d (io=0x%lx).\n", parport,
pprt->port->base);
else
printk(KERN_INFO "Panel driver version " PANEL_VERSION
" not yet registered\n");
/* tells various subsystems about the fact that initialization
is finished */
init_in_progress = 0;
return 0;
}
static int __init panel_init_module(void)
{
return panel_init();
}
static void __exit panel_cleanup_module(void)
{
unregister_reboot_notifier(&panel_notifier);
if (scan_timer.function != NULL)
del_timer(&scan_timer);
if (pprt != NULL) {
if (keypad_enabled) {
misc_deregister(&keypad_dev);
keypad_initialized = 0;
}
if (lcd_enabled) {
panel_lcd_print("\x0cLCD driver " PANEL_VERSION
"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
misc_deregister(&lcd_dev);
lcd_initialized = 0;
}
/* TODO: free all input signals */
parport_release(pprt);
parport_unregister_device(pprt);
pprt = NULL;
}
parport_unregister_driver(&panel_driver);
}
module_init(panel_init_module);
module_exit(panel_cleanup_module);
MODULE_AUTHOR("Willy Tarreau");
MODULE_LICENSE("GPL");
/*
* Local variables:
* c-indent-level: 4
* tab-width: 8
* End:
*/
|