1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHEFS_BTREE_TYPES_H
#define _BCACHEFS_BTREE_TYPES_H
#include <linux/list.h>
#include <linux/rhashtable.h>
#include "bkey_methods.h"
#include "buckets_types.h"
#include "darray.h"
#include "journal_types.h"
#include "six.h"
struct open_bucket;
struct btree_update;
struct btree_trans;
#define MAX_BSETS 3U
struct btree_nr_keys {
/*
* Amount of live metadata (i.e. size of node after a compaction) in
* units of u64s
*/
u16 live_u64s;
u16 bset_u64s[MAX_BSETS];
/* live keys only: */
u16 packed_keys;
u16 unpacked_keys;
};
struct bset_tree {
/*
* We construct a binary tree in an array as if the array
* started at 1, so that things line up on the same cachelines
* better: see comments in bset.c at cacheline_to_bkey() for
* details
*/
/* size of the binary tree and prev array */
u16 size;
/* function of size - precalculated for to_inorder() */
u16 extra;
u16 data_offset;
u16 aux_data_offset;
u16 end_offset;
};
struct btree_write {
struct journal_entry_pin journal;
};
struct btree_alloc {
struct open_buckets ob;
__BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX);
};
struct btree_bkey_cached_common {
struct six_lock lock;
u8 level;
u8 btree_id;
};
struct btree {
struct btree_bkey_cached_common c;
struct rhash_head hash;
u64 hash_val;
unsigned long flags;
u16 written;
u8 nsets;
u8 nr_key_bits;
u16 version_ondisk;
struct bkey_format format;
struct btree_node *data;
void *aux_data;
/*
* Sets of sorted keys - the real btree node - plus a binary search tree
*
* set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
* to the memory we have allocated for this btree node. Additionally,
* set[0]->data points to the entire btree node as it exists on disk.
*/
struct bset_tree set[MAX_BSETS];
struct btree_nr_keys nr;
u16 sib_u64s[2];
u16 whiteout_u64s;
u8 byte_order;
u8 unpack_fn_len;
struct btree_write writes[2];
/* Key/pointer for this btree node */
__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
/*
* XXX: add a delete sequence number, so when bch2_btree_node_relock()
* fails because the lock sequence number has changed - i.e. the
* contents were modified - we can still relock the node if it's still
* the one we want, without redoing the traversal
*/
/*
* For asynchronous splits/interior node updates:
* When we do a split, we allocate new child nodes and update the parent
* node to point to them: we update the parent in memory immediately,
* but then we must wait until the children have been written out before
* the update to the parent can be written - this is a list of the
* btree_updates that are blocking this node from being
* written:
*/
struct list_head write_blocked;
/*
* Also for asynchronous splits/interior node updates:
* If a btree node isn't reachable yet, we don't want to kick off
* another write - because that write also won't yet be reachable and
* marking it as completed before it's reachable would be incorrect:
*/
unsigned long will_make_reachable;
struct open_buckets ob;
/* lru list */
struct list_head list;
};
struct btree_cache {
struct rhashtable table;
bool table_init_done;
/*
* We never free a struct btree, except on shutdown - we just put it on
* the btree_cache_freed list and reuse it later. This simplifies the
* code, and it doesn't cost us much memory as the memory usage is
* dominated by buffers that hold the actual btree node data and those
* can be freed - and the number of struct btrees allocated is
* effectively bounded.
*
* btree_cache_freeable effectively is a small cache - we use it because
* high order page allocations can be rather expensive, and it's quite
* common to delete and allocate btree nodes in quick succession. It
* should never grow past ~2-3 nodes in practice.
*/
struct mutex lock;
struct list_head live;
struct list_head freeable;
struct list_head freed_pcpu;
struct list_head freed_nonpcpu;
/* Number of elements in live + freeable lists */
unsigned used;
unsigned reserve;
atomic_t dirty;
struct shrinker shrink;
/*
* If we need to allocate memory for a new btree node and that
* allocation fails, we can cannibalize another node in the btree cache
* to satisfy the allocation - lock to guarantee only one thread does
* this at a time:
*/
struct task_struct *alloc_lock;
struct closure_waitlist alloc_wait;
};
struct btree_node_iter {
struct btree_node_iter_set {
u16 k, end;
} data[MAX_BSETS];
};
/*
* Iterate over all possible positions, synthesizing deleted keys for holes:
*/
#define BTREE_ITER_SLOTS (1 << 0)
/*
* Indicates that intent locks should be taken on leaf nodes, because we expect
* to be doing updates:
*/
#define BTREE_ITER_INTENT (1 << 1)
/*
* Causes the btree iterator code to prefetch additional btree nodes from disk:
*/
#define BTREE_ITER_PREFETCH (1 << 2)
/*
* Indicates that this iterator should not be reused until transaction commit,
* either because a pending update references it or because the update depends
* on that particular key being locked (e.g. by the str_hash code, for hash
* table consistency)
*/
#define BTREE_ITER_KEEP_UNTIL_COMMIT (1 << 3)
/*
* Used in bch2_btree_iter_traverse(), to indicate whether we're searching for
* @pos or the first key strictly greater than @pos
*/
#define BTREE_ITER_IS_EXTENTS (1 << 4)
#define BTREE_ITER_NOT_EXTENTS (1 << 5)
#define BTREE_ITER_CACHED (1 << 6)
#define BTREE_ITER_CACHED_NOFILL (1 << 7)
#define BTREE_ITER_CACHED_NOCREATE (1 << 8)
#define BTREE_ITER_WITH_KEY_CACHE (1 << 9)
#define BTREE_ITER_WITH_UPDATES (1 << 10)
#define BTREE_ITER_WITH_JOURNAL (1 << 11)
#define __BTREE_ITER_ALL_SNAPSHOTS (1 << 12)
#define BTREE_ITER_ALL_SNAPSHOTS (1 << 13)
#define BTREE_ITER_FILTER_SNAPSHOTS (1 << 14)
#define BTREE_ITER_NOPRESERVE (1 << 15)
enum btree_path_uptodate {
BTREE_ITER_UPTODATE = 0,
BTREE_ITER_NEED_RELOCK = 1,
BTREE_ITER_NEED_TRAVERSE = 2,
};
#define BTREE_ITER_NO_NODE_GET_LOCKS ((struct btree *) 1)
#define BTREE_ITER_NO_NODE_DROP ((struct btree *) 2)
#define BTREE_ITER_NO_NODE_LOCK_ROOT ((struct btree *) 3)
#define BTREE_ITER_NO_NODE_UP ((struct btree *) 4)
#define BTREE_ITER_NO_NODE_DOWN ((struct btree *) 5)
#define BTREE_ITER_NO_NODE_INIT ((struct btree *) 6)
#define BTREE_ITER_NO_NODE_ERROR ((struct btree *) 7)
#define BTREE_ITER_NO_NODE_CACHED ((struct btree *) 8)
struct btree_path {
u8 idx;
u8 sorted_idx;
u8 ref;
u8 intent_ref;
/* btree_iter_copy starts here: */
struct bpos pos;
enum btree_id btree_id:4;
bool cached:1;
bool preserve:1;
enum btree_path_uptodate uptodate:2;
/*
* When true, failing to relock this path will cause the transaction to
* restart:
*/
bool should_be_locked:1;
unsigned level:3,
locks_want:4,
nodes_locked:4,
nodes_intent_locked:4;
struct btree_path_level {
struct btree *b;
struct btree_node_iter iter;
u32 lock_seq;
} l[BTREE_MAX_DEPTH];
#ifdef CONFIG_BCACHEFS_DEBUG
unsigned long ip_allocated;
#endif
};
static inline struct btree_path_level *path_l(struct btree_path *path)
{
return path->l + path->level;
}
/*
* @pos - iterator's current position
* @level - current btree depth
* @locks_want - btree level below which we start taking intent locks
* @nodes_locked - bitmask indicating which nodes in @nodes are locked
* @nodes_intent_locked - bitmask indicating which locks are intent locks
*/
struct btree_iter {
struct btree_trans *trans;
struct btree_path *path;
struct btree_path *update_path;
struct btree_path *key_cache_path;
enum btree_id btree_id:4;
unsigned min_depth:4;
/* btree_iter_copy starts here: */
u16 flags;
/* When we're filtering by snapshot, the snapshot ID we're looking for: */
unsigned snapshot;
struct bpos pos;
struct bpos pos_after_commit;
/*
* Current unpacked key - so that bch2_btree_iter_next()/
* bch2_btree_iter_next_slot() can correctly advance pos.
*/
struct bkey k;
};
struct btree_key_cache {
struct mutex lock;
struct rhashtable table;
bool table_init_done;
struct list_head freed;
struct shrinker shrink;
unsigned shrink_iter;
size_t nr_freed;
atomic_long_t nr_keys;
atomic_long_t nr_dirty;
};
struct bkey_cached_key {
u32 btree_id;
struct bpos pos;
} __attribute__((packed, aligned(4)));
#define BKEY_CACHED_ACCESSED 0
#define BKEY_CACHED_DIRTY 1
struct bkey_cached {
struct btree_bkey_cached_common c;
unsigned long flags;
u16 u64s;
bool valid;
u32 btree_trans_barrier_seq;
struct bkey_cached_key key;
struct rhash_head hash;
struct list_head list;
struct journal_preres res;
struct journal_entry_pin journal;
u64 seq;
struct bkey_i *k;
};
struct btree_insert_entry {
unsigned flags;
u8 bkey_type;
enum btree_id btree_id:8;
u8 level:4;
bool cached:1;
bool insert_trigger_run:1;
bool overwrite_trigger_run:1;
bool key_cache_already_flushed:1;
/*
* @old_k may be a key from the journal; @old_btree_u64s always refers
* to the size of the key being overwritten in the btree:
*/
u8 old_btree_u64s;
struct bkey_i *k;
struct btree_path *path;
/* key being overwritten: */
struct bkey old_k;
const struct bch_val *old_v;
unsigned long ip_allocated;
};
#ifndef CONFIG_LOCKDEP
#define BTREE_ITER_MAX 64
#else
#define BTREE_ITER_MAX 32
#endif
struct btree_trans_commit_hook;
typedef int (btree_trans_commit_hook_fn)(struct btree_trans *, struct btree_trans_commit_hook *);
struct btree_trans_commit_hook {
btree_trans_commit_hook_fn *fn;
struct btree_trans_commit_hook *next;
};
#define BTREE_TRANS_MEM_MAX (1U << 14)
struct btree_trans {
struct bch_fs *c;
const char *fn;
struct list_head list;
struct btree *locking;
unsigned locking_path_idx;
struct bpos locking_pos;
u8 locking_btree_id;
u8 locking_level;
u8 locking_lock_type;
pid_t pid;
int srcu_idx;
u8 nr_sorted;
u8 nr_updates;
bool used_mempool:1;
bool in_traverse_all:1;
bool restarted:1;
bool paths_sorted:1;
bool memory_allocation_failure:1;
bool journal_transaction_names:1;
bool journal_replay_not_finished:1;
/*
* For when bch2_trans_update notices we'll be splitting a compressed
* extent:
*/
unsigned extra_journal_res;
u64 paths_allocated;
unsigned mem_top;
unsigned mem_bytes;
void *mem;
u8 sorted[BTREE_ITER_MAX + 8];
struct btree_path *paths;
struct btree_insert_entry *updates;
/* update path: */
struct btree_trans_commit_hook *hooks;
DARRAY(u64) extra_journal_entries;
struct journal_entry_pin *journal_pin;
struct journal_res journal_res;
struct journal_preres journal_preres;
u64 *journal_seq;
struct disk_reservation *disk_res;
unsigned flags;
unsigned journal_u64s;
unsigned journal_preres_u64s;
struct replicas_delta_list *fs_usage_deltas;
};
#define BTREE_FLAGS() \
x(read_in_flight) \
x(read_error) \
x(dirty) \
x(need_write) \
x(write_blocked) \
x(will_make_reachable) \
x(noevict) \
x(write_idx) \
x(accessed) \
x(write_in_flight) \
x(write_in_flight_inner) \
x(just_written) \
x(dying) \
x(fake) \
x(need_rewrite) \
x(never_write)
enum btree_flags {
#define x(flag) BTREE_NODE_##flag,
BTREE_FLAGS()
#undef x
};
#define x(flag) \
static inline bool btree_node_ ## flag(struct btree *b) \
{ return test_bit(BTREE_NODE_ ## flag, &b->flags); } \
\
static inline void set_btree_node_ ## flag(struct btree *b) \
{ set_bit(BTREE_NODE_ ## flag, &b->flags); } \
\
static inline void clear_btree_node_ ## flag(struct btree *b) \
{ clear_bit(BTREE_NODE_ ## flag, &b->flags); }
BTREE_FLAGS()
#undef x
static inline struct btree_write *btree_current_write(struct btree *b)
{
return b->writes + btree_node_write_idx(b);
}
static inline struct btree_write *btree_prev_write(struct btree *b)
{
return b->writes + (btree_node_write_idx(b) ^ 1);
}
static inline struct bset_tree *bset_tree_last(struct btree *b)
{
EBUG_ON(!b->nsets);
return b->set + b->nsets - 1;
}
static inline void *
__btree_node_offset_to_ptr(const struct btree *b, u16 offset)
{
return (void *) ((u64 *) b->data + 1 + offset);
}
static inline u16
__btree_node_ptr_to_offset(const struct btree *b, const void *p)
{
u16 ret = (u64 *) p - 1 - (u64 *) b->data;
EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p);
return ret;
}
static inline struct bset *bset(const struct btree *b,
const struct bset_tree *t)
{
return __btree_node_offset_to_ptr(b, t->data_offset);
}
static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t)
{
t->end_offset =
__btree_node_ptr_to_offset(b, vstruct_last(bset(b, t)));
}
static inline void set_btree_bset(struct btree *b, struct bset_tree *t,
const struct bset *i)
{
t->data_offset = __btree_node_ptr_to_offset(b, i);
set_btree_bset_end(b, t);
}
static inline struct bset *btree_bset_first(struct btree *b)
{
return bset(b, b->set);
}
static inline struct bset *btree_bset_last(struct btree *b)
{
return bset(b, bset_tree_last(b));
}
static inline u16
__btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k)
{
return __btree_node_ptr_to_offset(b, k);
}
static inline struct bkey_packed *
__btree_node_offset_to_key(const struct btree *b, u16 k)
{
return __btree_node_offset_to_ptr(b, k);
}
static inline unsigned btree_bkey_first_offset(const struct bset_tree *t)
{
return t->data_offset + offsetof(struct bset, _data) / sizeof(u64);
}
#define btree_bkey_first(_b, _t) \
({ \
EBUG_ON(bset(_b, _t)->start != \
__btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\
\
bset(_b, _t)->start; \
})
#define btree_bkey_last(_b, _t) \
({ \
EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) != \
vstruct_last(bset(_b, _t))); \
\
__btree_node_offset_to_key(_b, (_t)->end_offset); \
})
static inline unsigned bset_u64s(struct bset_tree *t)
{
return t->end_offset - t->data_offset -
sizeof(struct bset) / sizeof(u64);
}
static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t)
{
return bset_u64s(t) - b->nr.bset_u64s[t - b->set];
}
static inline unsigned bset_byte_offset(struct btree *b, void *i)
{
return i - (void *) b->data;
}
enum btree_node_type {
#define x(kwd, val) BKEY_TYPE_##kwd = val,
BCH_BTREE_IDS()
#undef x
BKEY_TYPE_btree,
};
/* Type of a key in btree @id at level @level: */
static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id)
{
return level ? BKEY_TYPE_btree : (enum btree_node_type) id;
}
/* Type of keys @b contains: */
static inline enum btree_node_type btree_node_type(struct btree *b)
{
return __btree_node_type(b->c.level, b->c.btree_id);
}
static inline bool btree_node_type_is_extents(enum btree_node_type type)
{
switch (type) {
case BKEY_TYPE_extents:
case BKEY_TYPE_reflink:
return true;
default:
return false;
}
}
static inline bool btree_node_is_extents(struct btree *b)
{
return btree_node_type_is_extents(btree_node_type(b));
}
#define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS \
((1U << BKEY_TYPE_extents)| \
(1U << BKEY_TYPE_inodes)| \
(1U << BKEY_TYPE_stripes)| \
(1U << BKEY_TYPE_reflink)| \
(1U << BKEY_TYPE_btree))
#define BTREE_NODE_TYPE_HAS_MEM_TRIGGERS \
((1U << BKEY_TYPE_alloc)| \
(1U << BKEY_TYPE_inodes)| \
(1U << BKEY_TYPE_stripes)| \
(1U << BKEY_TYPE_snapshots))
#define BTREE_NODE_TYPE_HAS_TRIGGERS \
(BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS| \
BTREE_NODE_TYPE_HAS_MEM_TRIGGERS)
#define BTREE_ID_HAS_SNAPSHOTS \
((1U << BTREE_ID_extents)| \
(1U << BTREE_ID_inodes)| \
(1U << BTREE_ID_dirents)| \
(1U << BTREE_ID_xattrs))
#define BTREE_ID_HAS_PTRS \
((1U << BTREE_ID_extents)| \
(1U << BTREE_ID_reflink))
static inline bool btree_type_has_snapshots(enum btree_id id)
{
return (1 << id) & BTREE_ID_HAS_SNAPSHOTS;
}
enum btree_update_flags {
__BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE,
__BTREE_UPDATE_NOJOURNAL,
__BTREE_UPDATE_KEY_CACHE_RECLAIM,
__BTREE_UPDATE_NO_KEY_CACHE_COHERENCY,
__BTREE_TRIGGER_NORUN, /* Don't run triggers at all */
__BTREE_TRIGGER_INSERT,
__BTREE_TRIGGER_OVERWRITE,
__BTREE_TRIGGER_GC,
__BTREE_TRIGGER_BUCKET_INVALIDATE,
__BTREE_TRIGGER_NOATOMIC,
};
#define BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE (1U << __BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE)
#define BTREE_UPDATE_NOJOURNAL (1U << __BTREE_UPDATE_NOJOURNAL)
#define BTREE_UPDATE_KEY_CACHE_RECLAIM (1U << __BTREE_UPDATE_KEY_CACHE_RECLAIM)
#define BTREE_UPDATE_NO_KEY_CACHE_COHERENCY \
(1U << __BTREE_UPDATE_NO_KEY_CACHE_COHERENCY)
#define BTREE_TRIGGER_NORUN (1U << __BTREE_TRIGGER_NORUN)
#define BTREE_TRIGGER_INSERT (1U << __BTREE_TRIGGER_INSERT)
#define BTREE_TRIGGER_OVERWRITE (1U << __BTREE_TRIGGER_OVERWRITE)
#define BTREE_TRIGGER_GC (1U << __BTREE_TRIGGER_GC)
#define BTREE_TRIGGER_BUCKET_INVALIDATE (1U << __BTREE_TRIGGER_BUCKET_INVALIDATE)
#define BTREE_TRIGGER_NOATOMIC (1U << __BTREE_TRIGGER_NOATOMIC)
#define BTREE_TRIGGER_WANTS_OLD_AND_NEW \
((1U << KEY_TYPE_alloc)| \
(1U << KEY_TYPE_alloc_v2)| \
(1U << KEY_TYPE_alloc_v3)| \
(1U << KEY_TYPE_alloc_v4)| \
(1U << KEY_TYPE_stripe)| \
(1U << KEY_TYPE_inode)| \
(1U << KEY_TYPE_inode_v2)| \
(1U << KEY_TYPE_snapshot))
static inline bool btree_node_type_needs_gc(enum btree_node_type type)
{
return BTREE_NODE_TYPE_HAS_TRIGGERS & (1U << type);
}
struct btree_root {
struct btree *b;
/* On disk root - see async splits: */
__BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX);
u8 level;
u8 alive;
s8 error;
};
enum btree_insert_ret {
BTREE_INSERT_OK,
/* leaf node needs to be split */
BTREE_INSERT_BTREE_NODE_FULL,
BTREE_INSERT_NEED_MARK_REPLICAS,
BTREE_INSERT_NEED_JOURNAL_RES,
BTREE_INSERT_NEED_JOURNAL_RECLAIM,
};
enum btree_gc_coalesce_fail_reason {
BTREE_GC_COALESCE_FAIL_RESERVE_GET,
BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC,
BTREE_GC_COALESCE_FAIL_FORMAT_FITS,
};
enum btree_node_sibling {
btree_prev_sib,
btree_next_sib,
};
#endif /* _BCACHEFS_BTREE_TYPES_H */
|