1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* fscrypt_private.h
*
* Copyright (C) 2015, Google, Inc.
*
* Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
* Heavily modified since then.
*/
#ifndef _FSCRYPT_PRIVATE_H
#define _FSCRYPT_PRIVATE_H
#include <linux/fscrypt.h>
#include <linux/siphash.h>
#include <crypto/hash.h>
#define CONST_STRLEN(str) (sizeof(str) - 1)
#define FS_KEY_DERIVATION_NONCE_SIZE 16
#define FSCRYPT_MIN_KEY_SIZE 16
#define FSCRYPT_CONTEXT_V1 1
#define FSCRYPT_CONTEXT_V2 2
struct fscrypt_context_v1 {
u8 version; /* FSCRYPT_CONTEXT_V1 */
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
struct fscrypt_context_v2 {
u8 version; /* FSCRYPT_CONTEXT_V2 */
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
u8 __reserved[4];
u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
/*
* fscrypt_context - the encryption context of an inode
*
* This is the on-disk equivalent of an fscrypt_policy, stored alongside each
* encrypted file usually in a hidden extended attribute. It contains the
* fields from the fscrypt_policy, in order to identify the encryption algorithm
* and key with which the file is encrypted. It also contains a nonce that was
* randomly generated by fscrypt itself; this is used as KDF input or as a tweak
* to cause different files to be encrypted differently.
*/
union fscrypt_context {
u8 version;
struct fscrypt_context_v1 v1;
struct fscrypt_context_v2 v2;
};
/*
* Return the size expected for the given fscrypt_context based on its version
* number, or 0 if the context version is unrecognized.
*/
static inline int fscrypt_context_size(const union fscrypt_context *ctx)
{
switch (ctx->version) {
case FSCRYPT_CONTEXT_V1:
BUILD_BUG_ON(sizeof(ctx->v1) != 28);
return sizeof(ctx->v1);
case FSCRYPT_CONTEXT_V2:
BUILD_BUG_ON(sizeof(ctx->v2) != 40);
return sizeof(ctx->v2);
}
return 0;
}
/* Check whether an fscrypt_context has a recognized version number and size */
static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
int ctx_size)
{
return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
}
/* Retrieve the context's nonce, assuming the context was already validated */
static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
{
switch (ctx->version) {
case FSCRYPT_CONTEXT_V1:
return ctx->v1.nonce;
case FSCRYPT_CONTEXT_V2:
return ctx->v2.nonce;
}
WARN_ON(1);
return NULL;
}
#undef fscrypt_policy
union fscrypt_policy {
u8 version;
struct fscrypt_policy_v1 v1;
struct fscrypt_policy_v2 v2;
};
/*
* Return the size expected for the given fscrypt_policy based on its version
* number, or 0 if the policy version is unrecognized.
*/
static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return sizeof(policy->v1);
case FSCRYPT_POLICY_V2:
return sizeof(policy->v2);
}
return 0;
}
/* Return the contents encryption mode of a valid encryption policy */
static inline u8
fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return policy->v1.contents_encryption_mode;
case FSCRYPT_POLICY_V2:
return policy->v2.contents_encryption_mode;
}
BUG();
}
/* Return the filenames encryption mode of a valid encryption policy */
static inline u8
fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return policy->v1.filenames_encryption_mode;
case FSCRYPT_POLICY_V2:
return policy->v2.filenames_encryption_mode;
}
BUG();
}
/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
static inline u8
fscrypt_policy_flags(const union fscrypt_policy *policy)
{
switch (policy->version) {
case FSCRYPT_POLICY_V1:
return policy->v1.flags;
case FSCRYPT_POLICY_V2:
return policy->v2.flags;
}
BUG();
}
/*
* For encrypted symlinks, the ciphertext length is stored at the beginning
* of the string in little-endian format.
*/
struct fscrypt_symlink_data {
__le16 len;
char encrypted_path[1];
} __packed;
/*
* fscrypt_info - the "encryption key" for an inode
*
* When an encrypted file's key is made available, an instance of this struct is
* allocated and stored in ->i_crypt_info. Once created, it remains until the
* inode is evicted.
*/
struct fscrypt_info {
/* The actual crypto transform used for encryption and decryption */
struct crypto_skcipher *ci_ctfm;
/* True if the key should be freed when this fscrypt_info is freed */
bool ci_owns_key;
/*
* Encryption mode used for this inode. It corresponds to either the
* contents or filenames encryption mode, depending on the inode type.
*/
struct fscrypt_mode *ci_mode;
/* Back-pointer to the inode */
struct inode *ci_inode;
/*
* The master key with which this inode was unlocked (decrypted). This
* will be NULL if the master key was found in a process-subscribed
* keyring rather than in the filesystem-level keyring.
*/
struct key *ci_master_key;
/*
* Link in list of inodes that were unlocked with the master key.
* Only used when ->ci_master_key is set.
*/
struct list_head ci_master_key_link;
/*
* If non-NULL, then encryption is done using the master key directly
* and ci_ctfm will equal ci_direct_key->dk_ctfm.
*/
struct fscrypt_direct_key *ci_direct_key;
/*
* This inode's hash key for filenames. This is a 128-bit SipHash-2-4
* key. This is only set for directories that use a keyed dirhash over
* the plaintext filenames -- currently just casefolded directories.
*/
siphash_key_t ci_dirhash_key;
bool ci_dirhash_key_initialized;
/* The encryption policy used by this inode */
union fscrypt_policy ci_policy;
/* This inode's nonce, copied from the fscrypt_context */
u8 ci_nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
typedef enum {
FS_DECRYPT = 0,
FS_ENCRYPT,
} fscrypt_direction_t;
/* crypto.c */
extern struct kmem_cache *fscrypt_info_cachep;
extern int fscrypt_initialize(unsigned int cop_flags);
extern int fscrypt_crypt_block(const struct inode *inode,
fscrypt_direction_t rw, u64 lblk_num,
struct page *src_page, struct page *dest_page,
unsigned int len, unsigned int offs,
gfp_t gfp_flags);
extern struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
extern void __printf(3, 4) __cold
fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
#define fscrypt_warn(inode, fmt, ...) \
fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
#define fscrypt_err(inode, fmt, ...) \
fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
#define FSCRYPT_MAX_IV_SIZE 32
union fscrypt_iv {
struct {
/* logical block number within the file */
__le64 lblk_num;
/* per-file nonce; only set in DIRECT_KEY mode */
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
u8 raw[FSCRYPT_MAX_IV_SIZE];
};
void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
const struct fscrypt_info *ci);
/* fname.c */
extern int fscrypt_fname_encrypt(const struct inode *inode,
const struct qstr *iname,
u8 *out, unsigned int olen);
extern bool fscrypt_fname_encrypted_size(const struct inode *inode,
u32 orig_len, u32 max_len,
u32 *encrypted_len_ret);
extern const struct dentry_operations fscrypt_d_ops;
/* hkdf.c */
struct fscrypt_hkdf {
struct crypto_shash *hmac_tfm;
};
extern int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
unsigned int master_key_size);
/*
* The list of contexts in which fscrypt uses HKDF. These values are used as
* the first byte of the HKDF application-specific info string to guarantee that
* info strings are never repeated between contexts. This ensures that all HKDF
* outputs are unique and cryptographically isolated, i.e. knowledge of one
* output doesn't reveal another.
*/
#define HKDF_CONTEXT_KEY_IDENTIFIER 1
#define HKDF_CONTEXT_PER_FILE_ENC_KEY 2
#define HKDF_CONTEXT_DIRECT_KEY 3
#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4
#define HKDF_CONTEXT_DIRHASH_KEY 5
extern int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
const u8 *info, unsigned int infolen,
u8 *okm, unsigned int okmlen);
extern void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
/* keyring.c */
/*
* fscrypt_master_key_secret - secret key material of an in-use master key
*/
struct fscrypt_master_key_secret {
/*
* For v2 policy keys: HKDF context keyed by this master key.
* For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
*/
struct fscrypt_hkdf hkdf;
/* Size of the raw key in bytes. Set even if ->raw isn't set. */
u32 size;
/* For v1 policy keys: the raw key. Wiped for v2 policy keys. */
u8 raw[FSCRYPT_MAX_KEY_SIZE];
} __randomize_layout;
/*
* fscrypt_master_key - an in-use master key
*
* This represents a master encryption key which has been added to the
* filesystem and can be used to "unlock" the encrypted files which were
* encrypted with it.
*/
struct fscrypt_master_key {
/*
* The secret key material. After FS_IOC_REMOVE_ENCRYPTION_KEY is
* executed, this is wiped and no new inodes can be unlocked with this
* key; however, there may still be inodes in ->mk_decrypted_inodes
* which could not be evicted. As long as some inodes still remain,
* FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
* FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
*
* Locking: protected by key->sem (outer) and mk_secret_sem (inner).
* The reason for two locks is that key->sem also protects modifying
* mk_users, which ranks it above the semaphore for the keyring key
* type, which is in turn above page faults (via keyring_read). But
* sometimes filesystems call fscrypt_get_encryption_info() from within
* a transaction, which ranks it below page faults. So we need a
* separate lock which protects mk_secret but not also mk_users.
*/
struct fscrypt_master_key_secret mk_secret;
struct rw_semaphore mk_secret_sem;
/*
* For v1 policy keys: an arbitrary key descriptor which was assigned by
* userspace (->descriptor).
*
* For v2 policy keys: a cryptographic hash of this key (->identifier).
*/
struct fscrypt_key_specifier mk_spec;
/*
* Keyring which contains a key of type 'key_type_fscrypt_user' for each
* user who has added this key. Normally each key will be added by just
* one user, but it's possible that multiple users share a key, and in
* that case we need to keep track of those users so that one user can't
* remove the key before the others want it removed too.
*
* This is NULL for v1 policy keys; those can only be added by root.
*
* Locking: in addition to this keyrings own semaphore, this is
* protected by the master key's key->sem, so we can do atomic
* search+insert. It can also be searched without taking any locks, but
* in that case the returned key may have already been removed.
*/
struct key *mk_users;
/*
* Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
* Once this goes to 0, the master key is removed from ->s_master_keys.
* The 'struct fscrypt_master_key' will continue to live as long as the
* 'struct key' whose payload it is, but we won't let this reference
* count rise again.
*/
refcount_t mk_refcount;
/*
* List of inodes that were unlocked using this key. This allows the
* inodes to be evicted efficiently if the key is removed.
*/
struct list_head mk_decrypted_inodes;
spinlock_t mk_decrypted_inodes_lock;
/* Crypto API transforms for DIRECT_KEY policies, allocated on-demand */
struct crypto_skcipher *mk_direct_tfms[__FSCRYPT_MODE_MAX + 1];
/*
* Crypto API transforms for filesystem-layer implementation of
* IV_INO_LBLK_64 policies, allocated on-demand.
*/
struct crypto_skcipher *mk_iv_ino_lblk_64_tfms[__FSCRYPT_MODE_MAX + 1];
} __randomize_layout;
static inline bool
is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
{
/*
* The READ_ONCE() is only necessary for fscrypt_drop_inode() and
* fscrypt_key_describe(). These run in atomic context, so they can't
* take ->mk_secret_sem and thus 'secret' can change concurrently which
* would be a data race. But they only need to know whether the secret
* *was* present at the time of check, so READ_ONCE() suffices.
*/
return READ_ONCE(secret->size) != 0;
}
static inline const char *master_key_spec_type(
const struct fscrypt_key_specifier *spec)
{
switch (spec->type) {
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
return "descriptor";
case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
return "identifier";
}
return "[unknown]";
}
static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
{
switch (spec->type) {
case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
return FSCRYPT_KEY_DESCRIPTOR_SIZE;
case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
return FSCRYPT_KEY_IDENTIFIER_SIZE;
}
return 0;
}
extern struct key *
fscrypt_find_master_key(struct super_block *sb,
const struct fscrypt_key_specifier *mk_spec);
extern int fscrypt_verify_key_added(struct super_block *sb,
const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
extern int __init fscrypt_init_keyring(void);
/* keysetup.c */
struct fscrypt_mode {
const char *friendly_name;
const char *cipher_str;
int keysize;
int ivsize;
int logged_impl_name;
};
extern struct fscrypt_mode fscrypt_modes[];
extern struct crypto_skcipher *
fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
const struct inode *inode);
extern int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci,
const u8 *raw_key);
extern int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
const struct fscrypt_master_key *mk);
/* keysetup_v1.c */
extern void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
extern int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
const u8 *raw_master_key);
extern int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
struct fscrypt_info *ci);
/* policy.c */
extern bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
const union fscrypt_policy *policy2);
extern bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
const struct inode *inode);
extern int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
const union fscrypt_context *ctx_u,
int ctx_size);
#endif /* _FSCRYPT_PRIVATE_H */
|