summaryrefslogtreecommitdiffstats
path: root/include/linux/wait_bit.h
blob: 9cc82114dbcbdf11ea2dadb6954e7100ad027903 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#ifndef _LINUX_WAIT_BIT_H
#define _LINUX_WAIT_BIT_H

/*
 * Linux wait-bit related types and methods:
 */
#include <linux/wait.h>

struct wait_bit_key {
	void			*flags;
	int			bit_nr;
#define WAIT_ATOMIC_T_BIT_NR	-1
	unsigned long		timeout;
};

struct wait_bit_queue_entry {
	struct wait_bit_key	key;
	struct wait_queue_entry	wq_entry;
};

#define __WAIT_BIT_KEY_INITIALIZER(word, bit)					\
	{ .flags = word, .bit_nr = bit, }

#define __WAIT_ATOMIC_T_KEY_INITIALIZER(p)					\
	{ .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }

typedef int wait_bit_action_f(struct wait_bit_key *key, int mode);
void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit);
int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
void wake_up_bit(void *word, int bit);
void wake_up_atomic_t(atomic_t *p);
int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode);
int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout);
int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode);
int out_of_line_wait_on_atomic_t(atomic_t *p, int (*)(atomic_t *), unsigned int mode);
struct wait_queue_head *bit_waitqueue(void *word, int bit);
extern void __init wait_bit_init(void);

int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key);

#define DEFINE_WAIT_BIT(name, word, bit)					\
	struct wait_bit_queue_entry name = {					\
		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),			\
		.wq_entry = {							\
			.private	= current,				\
			.func		= wake_bit_function,			\
			.task_list	=					\
				LIST_HEAD_INIT((name).wq_entry.task_list),	\
		},								\
	}

extern int bit_wait(struct wait_bit_key *key, int bit);
extern int bit_wait_io(struct wait_bit_key *key, int bit);
extern int bit_wait_timeout(struct wait_bit_key *key, int bit);
extern int bit_wait_io_timeout(struct wait_bit_key *key, int bit);

/**
 * wait_on_bit - wait for a bit to be cleared
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @mode: the task state to sleep in
 *
 * There is a standard hashed waitqueue table for generic use. This
 * is the part of the hashtable's accessor API that waits on a bit.
 * For instance, if one were to have waiters on a bitflag, one would
 * call wait_on_bit() in threads waiting for the bit to clear.
 * One uses wait_on_bit() where one is waiting for the bit to clear,
 * but has no intention of setting it.
 * Returned value will be zero if the bit was cleared, or non-zero
 * if the process received a signal and the mode permitted wakeup
 * on that signal.
 */
static inline int
wait_on_bit(unsigned long *word, int bit, unsigned mode)
{
	might_sleep();
	if (!test_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit(word, bit,
				       bit_wait,
				       mode);
}

/**
 * wait_on_bit_io - wait for a bit to be cleared
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @mode: the task state to sleep in
 *
 * Use the standard hashed waitqueue table to wait for a bit
 * to be cleared.  This is similar to wait_on_bit(), but calls
 * io_schedule() instead of schedule() for the actual waiting.
 *
 * Returned value will be zero if the bit was cleared, or non-zero
 * if the process received a signal and the mode permitted wakeup
 * on that signal.
 */
static inline int
wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
{
	might_sleep();
	if (!test_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit(word, bit,
				       bit_wait_io,
				       mode);
}

/**
 * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @mode: the task state to sleep in
 * @timeout: timeout, in jiffies
 *
 * Use the standard hashed waitqueue table to wait for a bit
 * to be cleared. This is similar to wait_on_bit(), except also takes a
 * timeout parameter.
 *
 * Returned value will be zero if the bit was cleared before the
 * @timeout elapsed, or non-zero if the @timeout elapsed or process
 * received a signal and the mode permitted wakeup on that signal.
 */
static inline int
wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
		    unsigned long timeout)
{
	might_sleep();
	if (!test_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit_timeout(word, bit,
					       bit_wait_timeout,
					       mode, timeout);
}

/**
 * wait_on_bit_action - wait for a bit to be cleared
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @action: the function used to sleep, which may take special actions
 * @mode: the task state to sleep in
 *
 * Use the standard hashed waitqueue table to wait for a bit
 * to be cleared, and allow the waiting action to be specified.
 * This is like wait_on_bit() but allows fine control of how the waiting
 * is done.
 *
 * Returned value will be zero if the bit was cleared, or non-zero
 * if the process received a signal and the mode permitted wakeup
 * on that signal.
 */
static inline int
wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
		   unsigned mode)
{
	might_sleep();
	if (!test_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit(word, bit, action, mode);
}

/**
 * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @mode: the task state to sleep in
 *
 * There is a standard hashed waitqueue table for generic use. This
 * is the part of the hashtable's accessor API that waits on a bit
 * when one intends to set it, for instance, trying to lock bitflags.
 * For instance, if one were to have waiters trying to set bitflag
 * and waiting for it to clear before setting it, one would call
 * wait_on_bit() in threads waiting to be able to set the bit.
 * One uses wait_on_bit_lock() where one is waiting for the bit to
 * clear with the intention of setting it, and when done, clearing it.
 *
 * Returns zero if the bit was (eventually) found to be clear and was
 * set.  Returns non-zero if a signal was delivered to the process and
 * the @mode allows that signal to wake the process.
 */
static inline int
wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
{
	might_sleep();
	if (!test_and_set_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
}

/**
 * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @mode: the task state to sleep in
 *
 * Use the standard hashed waitqueue table to wait for a bit
 * to be cleared and then to atomically set it.  This is similar
 * to wait_on_bit(), but calls io_schedule() instead of schedule()
 * for the actual waiting.
 *
 * Returns zero if the bit was (eventually) found to be clear and was
 * set.  Returns non-zero if a signal was delivered to the process and
 * the @mode allows that signal to wake the process.
 */
static inline int
wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
{
	might_sleep();
	if (!test_and_set_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
}

/**
 * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 * @action: the function used to sleep, which may take special actions
 * @mode: the task state to sleep in
 *
 * Use the standard hashed waitqueue table to wait for a bit
 * to be cleared and then to set it, and allow the waiting action
 * to be specified.
 * This is like wait_on_bit() but allows fine control of how the waiting
 * is done.
 *
 * Returns zero if the bit was (eventually) found to be clear and was
 * set.  Returns non-zero if a signal was delivered to the process and
 * the @mode allows that signal to wake the process.
 */
static inline int
wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
			unsigned mode)
{
	might_sleep();
	if (!test_and_set_bit(bit, word))
		return 0;
	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
}

/**
 * wait_on_atomic_t - Wait for an atomic_t to become 0
 * @val: The atomic value being waited on, a kernel virtual address
 * @action: the function used to sleep, which may take special actions
 * @mode: the task state to sleep in
 *
 * Wait for an atomic_t to become 0.  We abuse the bit-wait waitqueue table for
 * the purpose of getting a waitqueue, but we set the key to a bit number
 * outside of the target 'word'.
 */
static inline
int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
{
	might_sleep();
	if (atomic_read(val) == 0)
		return 0;
	return out_of_line_wait_on_atomic_t(val, action, mode);
}

#endif /* _LINUX_WAIT_BIT_H */