summaryrefslogtreecommitdiffstats
path: root/kernel/sched/core_sched.c
blob: 1ef98a93eb1df6b82229a5e73dd43b7d94413ef2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// SPDX-License-Identifier: GPL-2.0-only

/*
 * A simple wrapper around refcount. An allocated sched_core_cookie's
 * address is used to compute the cookie of the task.
 */
struct sched_core_cookie {
	refcount_t refcnt;
};

static unsigned long sched_core_alloc_cookie(void)
{
	struct sched_core_cookie *ck = kmalloc(sizeof(*ck), GFP_KERNEL);
	if (!ck)
		return 0;

	refcount_set(&ck->refcnt, 1);
	sched_core_get();

	return (unsigned long)ck;
}

static void sched_core_put_cookie(unsigned long cookie)
{
	struct sched_core_cookie *ptr = (void *)cookie;

	if (ptr && refcount_dec_and_test(&ptr->refcnt)) {
		kfree(ptr);
		sched_core_put();
	}
}

static unsigned long sched_core_get_cookie(unsigned long cookie)
{
	struct sched_core_cookie *ptr = (void *)cookie;

	if (ptr)
		refcount_inc(&ptr->refcnt);

	return cookie;
}

/*
 * sched_core_update_cookie - replace the cookie on a task
 * @p: the task to update
 * @cookie: the new cookie
 *
 * Effectively exchange the task cookie; caller is responsible for lifetimes on
 * both ends.
 *
 * Returns: the old cookie
 */
static unsigned long sched_core_update_cookie(struct task_struct *p,
					      unsigned long cookie)
{
	unsigned long old_cookie;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(p, &rf);

	/*
	 * Since creating a cookie implies sched_core_get(), and we cannot set
	 * a cookie until after we've created it, similarly, we cannot destroy
	 * a cookie until after we've removed it, we must have core scheduling
	 * enabled here.
	 */
	SCHED_WARN_ON((p->core_cookie || cookie) && !sched_core_enabled(rq));

	if (sched_core_enqueued(p))
		sched_core_dequeue(rq, p, DEQUEUE_SAVE);

	old_cookie = p->core_cookie;
	p->core_cookie = cookie;

	/*
	 * Consider the cases: !prev_cookie and !cookie.
	 */
	if (cookie && task_on_rq_queued(p))
		sched_core_enqueue(rq, p);

	/*
	 * If task is currently running, it may not be compatible anymore after
	 * the cookie change, so enter the scheduler on its CPU to schedule it
	 * away.
	 *
	 * Note that it is possible that as a result of this cookie change, the
	 * core has now entered/left forced idle state. Defer accounting to the
	 * next scheduling edge, rather than always forcing a reschedule here.
	 */
	if (task_on_cpu(rq, p))
		resched_curr(rq);

	task_rq_unlock(rq, p, &rf);

	return old_cookie;
}

static unsigned long sched_core_clone_cookie(struct task_struct *p)
{
	unsigned long cookie, flags;

	raw_spin_lock_irqsave(&p->pi_lock, flags);
	cookie = sched_core_get_cookie(p->core_cookie);
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);

	return cookie;
}

void sched_core_fork(struct task_struct *p)
{
	RB_CLEAR_NODE(&p->core_node);
	p->core_cookie = sched_core_clone_cookie(current);
}

void sched_core_free(struct task_struct *p)
{
	sched_core_put_cookie(p->core_cookie);
}

static void __sched_core_set(struct task_struct *p, unsigned long cookie)
{
	cookie = sched_core_get_cookie(cookie);
	cookie = sched_core_update_cookie(p, cookie);
	sched_core_put_cookie(cookie);
}

/* Called from prctl interface: PR_SCHED_CORE */
int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
			 unsigned long uaddr)
{
	unsigned long cookie = 0, id = 0;
	struct task_struct *task, *p;
	struct pid *grp;
	int err = 0;

	if (!static_branch_likely(&sched_smt_present))
		return -ENODEV;

	BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_THREAD != PIDTYPE_PID);
	BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_THREAD_GROUP != PIDTYPE_TGID);
	BUILD_BUG_ON(PR_SCHED_CORE_SCOPE_PROCESS_GROUP != PIDTYPE_PGID);

	if (type > PIDTYPE_PGID || cmd >= PR_SCHED_CORE_MAX || pid < 0 ||
	    (cmd != PR_SCHED_CORE_GET && uaddr))
		return -EINVAL;

	rcu_read_lock();
	if (pid == 0) {
		task = current;
	} else {
		task = find_task_by_vpid(pid);
		if (!task) {
			rcu_read_unlock();
			return -ESRCH;
		}
	}
	get_task_struct(task);
	rcu_read_unlock();

	/*
	 * Check if this process has the right to modify the specified
	 * process. Use the regular "ptrace_may_access()" checks.
	 */
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
		err = -EPERM;
		goto out;
	}

	switch (cmd) {
	case PR_SCHED_CORE_GET:
		if (type != PIDTYPE_PID || uaddr & 7) {
			err = -EINVAL;
			goto out;
		}
		cookie = sched_core_clone_cookie(task);
		if (cookie) {
			/* XXX improve ? */
			ptr_to_hashval((void *)cookie, &id);
		}
		err = put_user(id, (u64 __user *)uaddr);
		goto out;

	case PR_SCHED_CORE_CREATE:
		cookie = sched_core_alloc_cookie();
		if (!cookie) {
			err = -ENOMEM;
			goto out;
		}
		break;

	case PR_SCHED_CORE_SHARE_TO:
		cookie = sched_core_clone_cookie(current);
		break;

	case PR_SCHED_CORE_SHARE_FROM:
		if (type != PIDTYPE_PID) {
			err = -EINVAL;
			goto out;
		}
		cookie = sched_core_clone_cookie(task);
		__sched_core_set(current, cookie);
		goto out;

	default:
		err = -EINVAL;
		goto out;
	}

	if (type == PIDTYPE_PID) {
		__sched_core_set(task, cookie);
		goto out;
	}

	read_lock(&tasklist_lock);
	grp = task_pid_type(task, type);

	do_each_pid_thread(grp, type, p) {
		if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS)) {
			err = -EPERM;
			goto out_tasklist;
		}
	} while_each_pid_thread(grp, type, p);

	do_each_pid_thread(grp, type, p) {
		__sched_core_set(p, cookie);
	} while_each_pid_thread(grp, type, p);
out_tasklist:
	read_unlock(&tasklist_lock);

out:
	sched_core_put_cookie(cookie);
	put_task_struct(task);
	return err;
}

#ifdef CONFIG_SCHEDSTATS

/* REQUIRES: rq->core's clock recently updated. */
void __sched_core_account_forceidle(struct rq *rq)
{
	const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq));
	u64 delta, now = rq_clock(rq->core);
	struct rq *rq_i;
	struct task_struct *p;
	int i;

	lockdep_assert_rq_held(rq);

	WARN_ON_ONCE(!rq->core->core_forceidle_count);

	if (rq->core->core_forceidle_start == 0)
		return;

	delta = now - rq->core->core_forceidle_start;
	if (unlikely((s64)delta <= 0))
		return;

	rq->core->core_forceidle_start = now;

	if (WARN_ON_ONCE(!rq->core->core_forceidle_occupation)) {
		/* can't be forced idle without a running task */
	} else if (rq->core->core_forceidle_count > 1 ||
		   rq->core->core_forceidle_occupation > 1) {
		/*
		 * For larger SMT configurations, we need to scale the charged
		 * forced idle amount since there can be more than one forced
		 * idle sibling and more than one running cookied task.
		 */
		delta *= rq->core->core_forceidle_count;
		delta = div_u64(delta, rq->core->core_forceidle_occupation);
	}

	for_each_cpu(i, smt_mask) {
		rq_i = cpu_rq(i);
		p = rq_i->core_pick ?: rq_i->curr;

		if (p == rq_i->idle)
			continue;

		/*
		 * Note: this will account forceidle to the current CPU, even
		 * if it comes from our SMT sibling.
		 */
		__account_forceidle_time(p, delta);
	}
}

void __sched_core_tick(struct rq *rq)
{
	if (!rq->core->core_forceidle_count)
		return;

	if (rq != rq->core)
		update_rq_clock(rq->core);

	__sched_core_account_forceidle(rq);
}

#endif /* CONFIG_SCHEDSTATS */