summaryrefslogtreecommitdiffstats
path: root/lib/find_bit.c
blob: 4a8751010d59ffb08f7bf8f25c82096ceaf12398 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// SPDX-License-Identifier: GPL-2.0-or-later
/* bit search implementation
 *
 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * Copyright (C) 2008 IBM Corporation
 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
 * (Inspired by David Howell's find_next_bit implementation)
 *
 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
 * size and improve performance, 2015.
 */

#include <linux/bitops.h>
#include <linux/bitmap.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/minmax.h>

#if !defined(find_next_bit) || !defined(find_next_zero_bit) ||			\
	!defined(find_next_bit_le) || !defined(find_next_zero_bit_le) ||	\
	!defined(find_next_and_bit)
/*
 * This is a common helper function for find_next_bit, find_next_zero_bit, and
 * find_next_and_bit. The differences are:
 *  - The "invert" argument, which is XORed with each fetched word before
 *    searching it for one bits.
 *  - The optional "addr2", which is anded with "addr1" if present.
 */
static unsigned long _find_next_bit(const unsigned long *addr1,
		const unsigned long *addr2, unsigned long nbits,
		unsigned long start, unsigned long invert, unsigned long le)
{
	unsigned long tmp, mask;

	if (unlikely(start >= nbits))
		return nbits;

	tmp = addr1[start / BITS_PER_LONG];
	if (addr2)
		tmp &= addr2[start / BITS_PER_LONG];
	tmp ^= invert;

	/* Handle 1st word. */
	mask = BITMAP_FIRST_WORD_MASK(start);
	if (le)
		mask = swab(mask);

	tmp &= mask;

	start = round_down(start, BITS_PER_LONG);

	while (!tmp) {
		start += BITS_PER_LONG;
		if (start >= nbits)
			return nbits;

		tmp = addr1[start / BITS_PER_LONG];
		if (addr2)
			tmp &= addr2[start / BITS_PER_LONG];
		tmp ^= invert;
	}

	if (le)
		tmp = swab(tmp);

	return min(start + __ffs(tmp), nbits);
}
#endif

#ifndef find_next_bit
/*
 * Find the next set bit in a memory region.
 */
unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
			    unsigned long offset)
{
	return _find_next_bit(addr, NULL, size, offset, 0UL, 0);
}
EXPORT_SYMBOL(find_next_bit);
#endif

#ifndef find_next_zero_bit
unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
				 unsigned long offset)
{
	return _find_next_bit(addr, NULL, size, offset, ~0UL, 0);
}
EXPORT_SYMBOL(find_next_zero_bit);
#endif

#if !defined(find_next_and_bit)
unsigned long find_next_and_bit(const unsigned long *addr1,
		const unsigned long *addr2, unsigned long size,
		unsigned long offset)
{
	return _find_next_bit(addr1, addr2, size, offset, 0UL, 0);
}
EXPORT_SYMBOL(find_next_and_bit);
#endif

#ifndef find_first_bit
/*
 * Find the first set bit in a memory region.
 */
unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
{
	unsigned long idx;

	for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
		if (addr[idx])
			return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size);
	}

	return size;
}
EXPORT_SYMBOL(find_first_bit);
#endif

#ifndef find_first_zero_bit
/*
 * Find the first cleared bit in a memory region.
 */
unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
{
	unsigned long idx;

	for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
		if (addr[idx] != ~0UL)
			return min(idx * BITS_PER_LONG + ffz(addr[idx]), size);
	}

	return size;
}
EXPORT_SYMBOL(find_first_zero_bit);
#endif

#ifndef find_last_bit
unsigned long find_last_bit(const unsigned long *addr, unsigned long size)
{
	if (size) {
		unsigned long val = BITMAP_LAST_WORD_MASK(size);
		unsigned long idx = (size-1) / BITS_PER_LONG;

		do {
			val &= addr[idx];
			if (val)
				return idx * BITS_PER_LONG + __fls(val);

			val = ~0ul;
		} while (idx--);
	}
	return size;
}
EXPORT_SYMBOL(find_last_bit);
#endif

#ifdef __BIG_ENDIAN

#ifndef find_next_zero_bit_le
unsigned long find_next_zero_bit_le(const void *addr, unsigned
		long size, unsigned long offset)
{
	return _find_next_bit(addr, NULL, size, offset, ~0UL, 1);
}
EXPORT_SYMBOL(find_next_zero_bit_le);
#endif

#ifndef find_next_bit_le
unsigned long find_next_bit_le(const void *addr, unsigned
		long size, unsigned long offset)
{
	return _find_next_bit(addr, NULL, size, offset, 0UL, 1);
}
EXPORT_SYMBOL(find_next_bit_le);
#endif

#endif /* __BIG_ENDIAN */

unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr,
			       unsigned long size, unsigned long offset)
{
	offset = find_next_bit(addr, size, offset);
	if (offset == size)
		return size;

	offset = round_down(offset, 8);
	*clump = bitmap_get_value8(addr, offset);

	return offset;
}
EXPORT_SYMBOL(find_next_clump8);