summaryrefslogtreecommitdiffstats
path: root/mm/kfence/core.c
blob: 96fd0411f5c5866d69913f6e6e8a87285e830aad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
// SPDX-License-Identifier: GPL-2.0
/*
 * KFENCE guarded object allocator and fault handling.
 *
 * Copyright (C) 2020, Google LLC.
 */

#define pr_fmt(fmt) "kfence: " fmt

#include <linux/atomic.h>
#include <linux/bug.h>
#include <linux/debugfs.h>
#include <linux/hash.h>
#include <linux/irq_work.h>
#include <linux/jhash.h>
#include <linux/kcsan-checks.h>
#include <linux/kfence.h>
#include <linux/kmemleak.h>
#include <linux/list.h>
#include <linux/lockdep.h>
#include <linux/log2.h>
#include <linux/memblock.h>
#include <linux/moduleparam.h>
#include <linux/notifier.h>
#include <linux/panic_notifier.h>
#include <linux/random.h>
#include <linux/rcupdate.h>
#include <linux/sched/clock.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>

#include <asm/kfence.h>

#include "kfence.h"

/* Disables KFENCE on the first warning assuming an irrecoverable error. */
#define KFENCE_WARN_ON(cond)                                                   \
	({                                                                     \
		const bool __cond = WARN_ON(cond);                             \
		if (unlikely(__cond)) {                                        \
			WRITE_ONCE(kfence_enabled, false);                     \
			disabled_by_warn = true;                               \
		}                                                              \
		__cond;                                                        \
	})

/* === Data ================================================================= */

static bool kfence_enabled __read_mostly;
static bool disabled_by_warn __read_mostly;

unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */

#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "kfence."

static int kfence_enable_late(void);
static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
{
	unsigned long num;
	int ret = kstrtoul(val, 0, &num);

	if (ret < 0)
		return ret;

	/* Using 0 to indicate KFENCE is disabled. */
	if (!num && READ_ONCE(kfence_enabled)) {
		pr_info("disabled\n");
		WRITE_ONCE(kfence_enabled, false);
	}

	*((unsigned long *)kp->arg) = num;

	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
		return disabled_by_warn ? -EINVAL : kfence_enable_late();
	return 0;
}

static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
{
	if (!READ_ONCE(kfence_enabled))
		return sprintf(buffer, "0\n");

	return param_get_ulong(buffer, kp);
}

static const struct kernel_param_ops sample_interval_param_ops = {
	.set = param_set_sample_interval,
	.get = param_get_sample_interval,
};
module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);

/* Pool usage% threshold when currently covered allocations are skipped. */
static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);

/* If true, use a deferrable timer. */
static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
module_param_named(deferrable, kfence_deferrable, bool, 0444);

/* If true, check all canary bytes on panic. */
static bool kfence_check_on_panic __read_mostly;
module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);

/* The pool of pages used for guard pages and objects. */
char *__kfence_pool __read_mostly;
EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */

/*
 * Per-object metadata, with one-to-one mapping of object metadata to
 * backing pages (in __kfence_pool).
 */
static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
struct kfence_metadata *kfence_metadata __read_mostly;

/*
 * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
 * So introduce kfence_metadata_init to initialize metadata, and then make
 * kfence_metadata visible after initialization is successful. This prevents
 * potential UAF or access to uninitialized metadata.
 */
static struct kfence_metadata *kfence_metadata_init __read_mostly;

/* Freelist with available objects. */
static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */

/*
 * The static key to set up a KFENCE allocation; or if static keys are not used
 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
 */
DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);

/* Gates the allocation, ensuring only one succeeds in a given period. */
atomic_t kfence_allocation_gate = ATOMIC_INIT(1);

/*
 * A Counting Bloom filter of allocation coverage: limits currently covered
 * allocations of the same source filling up the pool.
 *
 * Assuming a range of 15%-85% unique allocations in the pool at any point in
 * time, the below parameters provide a probablity of 0.02-0.33 for false
 * positive hits respectively:
 *
 *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
 */
#define ALLOC_COVERED_HNUM	2
#define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
#define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
#define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
#define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
static atomic_t alloc_covered[ALLOC_COVERED_SIZE];

/* Stack depth used to determine uniqueness of an allocation. */
#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)

/*
 * Randomness for stack hashes, making the same collisions across reboots and
 * different machines less likely.
 */
static u32 stack_hash_seed __ro_after_init;

/* Statistics counters for debugfs. */
enum kfence_counter_id {
	KFENCE_COUNTER_ALLOCATED,
	KFENCE_COUNTER_ALLOCS,
	KFENCE_COUNTER_FREES,
	KFENCE_COUNTER_ZOMBIES,
	KFENCE_COUNTER_BUGS,
	KFENCE_COUNTER_SKIP_INCOMPAT,
	KFENCE_COUNTER_SKIP_CAPACITY,
	KFENCE_COUNTER_SKIP_COVERED,
	KFENCE_COUNTER_COUNT,
};
static atomic_long_t counters[KFENCE_COUNTER_COUNT];
static const char *const counter_names[] = {
	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
	[KFENCE_COUNTER_FREES]		= "total frees",
	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
	[KFENCE_COUNTER_BUGS]		= "total bugs",
	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
};
static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);

/* === Internals ============================================================ */

static inline bool should_skip_covered(void)
{
	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;

	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
}

static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
{
	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
	num_entries = filter_irq_stacks(stack_entries, num_entries);
	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
}

/*
 * Adds (or subtracts) count @val for allocation stack trace hash
 * @alloc_stack_hash from Counting Bloom filter.
 */
static void alloc_covered_add(u32 alloc_stack_hash, int val)
{
	int i;

	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
	}
}

/*
 * Returns true if the allocation stack trace hash @alloc_stack_hash is
 * currently contained (non-zero count) in Counting Bloom filter.
 */
static bool alloc_covered_contains(u32 alloc_stack_hash)
{
	int i;

	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
			return false;
		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
	}

	return true;
}

static bool kfence_protect(unsigned long addr)
{
	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
}

static bool kfence_unprotect(unsigned long addr)
{
	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
}

static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
{
	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];

	/* The checks do not affect performance; only called from slow-paths. */

	/* Only call with a pointer into kfence_metadata. */
	if (KFENCE_WARN_ON(meta < kfence_metadata ||
			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
		return 0;

	/*
	 * This metadata object only ever maps to 1 page; verify that the stored
	 * address is in the expected range.
	 */
	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
		return 0;

	return pageaddr;
}

/*
 * Update the object's metadata state, including updating the alloc/free stacks
 * depending on the state transition.
 */
static noinline void
metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
		      unsigned long *stack_entries, size_t num_stack_entries)
{
	struct kfence_track *track =
		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;

	lockdep_assert_held(&meta->lock);

	if (stack_entries) {
		memcpy(track->stack_entries, stack_entries,
		       num_stack_entries * sizeof(stack_entries[0]));
	} else {
		/*
		 * Skip over 1 (this) functions; noinline ensures we do not
		 * accidentally skip over the caller by never inlining.
		 */
		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
	}
	track->num_stack_entries = num_stack_entries;
	track->pid = task_pid_nr(current);
	track->cpu = raw_smp_processor_id();
	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */

	/*
	 * Pairs with READ_ONCE() in
	 *	kfence_shutdown_cache(),
	 *	kfence_handle_page_fault().
	 */
	WRITE_ONCE(meta->state, next);
}

/* Check canary byte at @addr. */
static inline bool check_canary_byte(u8 *addr)
{
	struct kfence_metadata *meta;
	unsigned long flags;

	if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
		return true;

	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);

	meta = addr_to_metadata((unsigned long)addr);
	raw_spin_lock_irqsave(&meta->lock, flags);
	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
	raw_spin_unlock_irqrestore(&meta->lock, flags);

	return false;
}

static inline void set_canary(const struct kfence_metadata *meta)
{
	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
	unsigned long addr = pageaddr;

	/*
	 * The canary may be written to part of the object memory, but it does
	 * not affect it. The user should initialize the object before using it.
	 */
	for (; addr < meta->addr; addr += sizeof(u64))
		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;

	addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
}

static inline void check_canary(const struct kfence_metadata *meta)
{
	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
	unsigned long addr = pageaddr;

	/*
	 * We'll iterate over each canary byte per-side until a corrupted byte
	 * is found. However, we'll still iterate over the canary bytes to the
	 * right of the object even if there was an error in the canary bytes to
	 * the left of the object. Specifically, if check_canary_byte()
	 * generates an error, showing both sides might give more clues as to
	 * what the error is about when displaying which bytes were corrupted.
	 */

	/* Apply to left of object. */
	for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
			break;
	}

	/*
	 * If the canary is corrupted in a certain 64 bytes, or the canary
	 * memory cannot be completely covered by multiple consecutive 64 bytes,
	 * it needs to be checked one by one.
	 */
	for (; addr < meta->addr; addr++) {
		if (unlikely(!check_canary_byte((u8 *)addr)))
			break;
	}

	/* Apply to right of object. */
	for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
		if (unlikely(!check_canary_byte((u8 *)addr)))
			return;
	}
	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {

			for (; addr - pageaddr < PAGE_SIZE; addr++) {
				if (!check_canary_byte((u8 *)addr))
					return;
			}
		}
	}
}

static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
				  unsigned long *stack_entries, size_t num_stack_entries,
				  u32 alloc_stack_hash)
{
	struct kfence_metadata *meta = NULL;
	unsigned long flags;
	struct slab *slab;
	void *addr;
	const bool random_right_allocate = get_random_u32_below(2);
	const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
				  !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);

	/* Try to obtain a free object. */
	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
	if (!list_empty(&kfence_freelist)) {
		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
		list_del_init(&meta->list);
	}
	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
	if (!meta) {
		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
		return NULL;
	}

	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
		/*
		 * This is extremely unlikely -- we are reporting on a
		 * use-after-free, which locked meta->lock, and the reporting
		 * code via printk calls kmalloc() which ends up in
		 * kfence_alloc() and tries to grab the same object that we're
		 * reporting on. While it has never been observed, lockdep does
		 * report that there is a possibility of deadlock. Fix it by
		 * using trylock and bailing out gracefully.
		 */
		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
		/* Put the object back on the freelist. */
		list_add_tail(&meta->list, &kfence_freelist);
		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);

		return NULL;
	}

	meta->addr = metadata_to_pageaddr(meta);
	/* Unprotect if we're reusing this page. */
	if (meta->state == KFENCE_OBJECT_FREED)
		kfence_unprotect(meta->addr);

	/*
	 * Note: for allocations made before RNG initialization, will always
	 * return zero. We still benefit from enabling KFENCE as early as
	 * possible, even when the RNG is not yet available, as this will allow
	 * KFENCE to detect bugs due to earlier allocations. The only downside
	 * is that the out-of-bounds accesses detected are deterministic for
	 * such allocations.
	 */
	if (random_right_allocate) {
		/* Allocate on the "right" side, re-calculate address. */
		meta->addr += PAGE_SIZE - size;
		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
	}

	addr = (void *)meta->addr;

	/* Update remaining metadata. */
	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
	WRITE_ONCE(meta->cache, cache);
	meta->size = size;
	meta->alloc_stack_hash = alloc_stack_hash;
	raw_spin_unlock_irqrestore(&meta->lock, flags);

	alloc_covered_add(alloc_stack_hash, 1);

	/* Set required slab fields. */
	slab = virt_to_slab((void *)meta->addr);
	slab->slab_cache = cache;
#if defined(CONFIG_SLUB)
	slab->objects = 1;
#elif defined(CONFIG_SLAB)
	slab->s_mem = addr;
#endif

	/* Memory initialization. */
	set_canary(meta);

	/*
	 * We check slab_want_init_on_alloc() ourselves, rather than letting
	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
	 * redzone.
	 */
	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
		memzero_explicit(addr, size);
	if (cache->ctor)
		cache->ctor(addr);

	if (random_fault)
		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */

	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);

	return addr;
}

static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
{
	struct kcsan_scoped_access assert_page_exclusive;
	unsigned long flags;
	bool init;

	raw_spin_lock_irqsave(&meta->lock, flags);

	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
		/* Invalid or double-free, bail out. */
		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
		kfence_report_error((unsigned long)addr, false, NULL, meta,
				    KFENCE_ERROR_INVALID_FREE);
		raw_spin_unlock_irqrestore(&meta->lock, flags);
		return;
	}

	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
				  &assert_page_exclusive);

	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */

	/* Restore page protection if there was an OOB access. */
	if (meta->unprotected_page) {
		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
		kfence_protect(meta->unprotected_page);
		meta->unprotected_page = 0;
	}

	/* Mark the object as freed. */
	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
	init = slab_want_init_on_free(meta->cache);
	raw_spin_unlock_irqrestore(&meta->lock, flags);

	alloc_covered_add(meta->alloc_stack_hash, -1);

	/* Check canary bytes for memory corruption. */
	check_canary(meta);

	/*
	 * Clear memory if init-on-free is set. While we protect the page, the
	 * data is still there, and after a use-after-free is detected, we
	 * unprotect the page, so the data is still accessible.
	 */
	if (!zombie && unlikely(init))
		memzero_explicit(addr, meta->size);

	/* Protect to detect use-after-frees. */
	kfence_protect((unsigned long)addr);

	kcsan_end_scoped_access(&assert_page_exclusive);
	if (!zombie) {
		/* Add it to the tail of the freelist for reuse. */
		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
		KFENCE_WARN_ON(!list_empty(&meta->list));
		list_add_tail(&meta->list, &kfence_freelist);
		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);

		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
	} else {
		/* See kfence_shutdown_cache(). */
		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
	}
}

static void rcu_guarded_free(struct rcu_head *h)
{
	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);

	kfence_guarded_free((void *)meta->addr, meta, false);
}

/*
 * Initialization of the KFENCE pool after its allocation.
 * Returns 0 on success; otherwise returns the address up to
 * which partial initialization succeeded.
 */
static unsigned long kfence_init_pool(void)
{
	unsigned long addr = (unsigned long)__kfence_pool;
	struct page *pages;
	int i;

	if (!arch_kfence_init_pool())
		return addr;

	pages = virt_to_page(__kfence_pool);

	/*
	 * Set up object pages: they must have PG_slab set, to avoid freeing
	 * these as real pages.
	 *
	 * We also want to avoid inserting kfence_free() in the kfree()
	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
	 * enters __slab_free() slow-path.
	 */
	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
		struct slab *slab = page_slab(nth_page(pages, i));

		if (!i || (i % 2))
			continue;

		__folio_set_slab(slab_folio(slab));
#ifdef CONFIG_MEMCG
		slab->memcg_data = (unsigned long)&kfence_metadata_init[i / 2 - 1].objcg |
				   MEMCG_DATA_OBJCGS;
#endif
	}

	/*
	 * Protect the first 2 pages. The first page is mostly unnecessary, and
	 * merely serves as an extended guard page. However, adding one
	 * additional page in the beginning gives us an even number of pages,
	 * which simplifies the mapping of address to metadata index.
	 */
	for (i = 0; i < 2; i++) {
		if (unlikely(!kfence_protect(addr)))
			return addr;

		addr += PAGE_SIZE;
	}

	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
		struct kfence_metadata *meta = &kfence_metadata_init[i];

		/* Initialize metadata. */
		INIT_LIST_HEAD(&meta->list);
		raw_spin_lock_init(&meta->lock);
		meta->state = KFENCE_OBJECT_UNUSED;
		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
		list_add_tail(&meta->list, &kfence_freelist);

		/* Protect the right redzone. */
		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
			goto reset_slab;

		addr += 2 * PAGE_SIZE;
	}

	/*
	 * Make kfence_metadata visible only when initialization is successful.
	 * Otherwise, if the initialization fails and kfence_metadata is freed,
	 * it may cause UAF in kfence_shutdown_cache().
	 */
	smp_store_release(&kfence_metadata, kfence_metadata_init);
	return 0;

reset_slab:
	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
		struct slab *slab = page_slab(nth_page(pages, i));

		if (!i || (i % 2))
			continue;
#ifdef CONFIG_MEMCG
		slab->memcg_data = 0;
#endif
		__folio_clear_slab(slab_folio(slab));
	}

	return addr;
}

static bool __init kfence_init_pool_early(void)
{
	unsigned long addr;

	if (!__kfence_pool)
		return false;

	addr = kfence_init_pool();

	if (!addr) {
		/*
		 * The pool is live and will never be deallocated from this point on.
		 * Ignore the pool object from the kmemleak phys object tree, as it would
		 * otherwise overlap with allocations returned by kfence_alloc(), which
		 * are registered with kmemleak through the slab post-alloc hook.
		 */
		kmemleak_ignore_phys(__pa(__kfence_pool));
		return true;
	}

	/*
	 * Only release unprotected pages, and do not try to go back and change
	 * page attributes due to risk of failing to do so as well. If changing
	 * page attributes for some pages fails, it is very likely that it also
	 * fails for the first page, and therefore expect addr==__kfence_pool in
	 * most failure cases.
	 */
	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
	__kfence_pool = NULL;

	memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
	kfence_metadata_init = NULL;

	return false;
}

/* === DebugFS Interface ==================================================== */

static int stats_show(struct seq_file *seq, void *v)
{
	int i;

	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(stats);

/*
 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
 * start_object() and next_object() return the object index + 1, because NULL is used
 * to stop iteration.
 */
static void *start_object(struct seq_file *seq, loff_t *pos)
{
	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
		return (void *)((long)*pos + 1);
	return NULL;
}

static void stop_object(struct seq_file *seq, void *v)
{
}

static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
{
	++*pos;
	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
		return (void *)((long)*pos + 1);
	return NULL;
}

static int show_object(struct seq_file *seq, void *v)
{
	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
	unsigned long flags;

	raw_spin_lock_irqsave(&meta->lock, flags);
	kfence_print_object(seq, meta);
	raw_spin_unlock_irqrestore(&meta->lock, flags);
	seq_puts(seq, "---------------------------------\n");

	return 0;
}

static const struct seq_operations objects_sops = {
	.start = start_object,
	.next = next_object,
	.stop = stop_object,
	.show = show_object,
};
DEFINE_SEQ_ATTRIBUTE(objects);

static int kfence_debugfs_init(void)
{
	struct dentry *kfence_dir;

	if (!READ_ONCE(kfence_enabled))
		return 0;

	kfence_dir = debugfs_create_dir("kfence", NULL);
	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
	return 0;
}

late_initcall(kfence_debugfs_init);

/* === Panic Notifier ====================================================== */

static void kfence_check_all_canary(void)
{
	int i;

	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
		struct kfence_metadata *meta = &kfence_metadata[i];

		if (meta->state == KFENCE_OBJECT_ALLOCATED)
			check_canary(meta);
	}
}

static int kfence_check_canary_callback(struct notifier_block *nb,
					unsigned long reason, void *arg)
{
	kfence_check_all_canary();
	return NOTIFY_OK;
}

static struct notifier_block kfence_check_canary_notifier = {
	.notifier_call = kfence_check_canary_callback,
};

/* === Allocation Gate Timer ================================================ */

static struct delayed_work kfence_timer;

#ifdef CONFIG_KFENCE_STATIC_KEYS
/* Wait queue to wake up allocation-gate timer task. */
static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);

static void wake_up_kfence_timer(struct irq_work *work)
{
	wake_up(&allocation_wait);
}
static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
#endif

/*
 * Set up delayed work, which will enable and disable the static key. We need to
 * use a work queue (rather than a simple timer), since enabling and disabling a
 * static key cannot be done from an interrupt.
 *
 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
 * more aggressive sampling intervals), we could get away with a variant that
 * avoids IPIs, at the cost of not immediately capturing allocations if the
 * instructions remain cached.
 */
static void toggle_allocation_gate(struct work_struct *work)
{
	if (!READ_ONCE(kfence_enabled))
		return;

	atomic_set(&kfence_allocation_gate, 0);
#ifdef CONFIG_KFENCE_STATIC_KEYS
	/* Enable static key, and await allocation to happen. */
	static_branch_enable(&kfence_allocation_key);

	wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));

	/* Disable static key and reset timer. */
	static_branch_disable(&kfence_allocation_key);
#endif
	queue_delayed_work(system_unbound_wq, &kfence_timer,
			   msecs_to_jiffies(kfence_sample_interval));
}

/* === Public interface ===================================================== */

void __init kfence_alloc_pool_and_metadata(void)
{
	if (!kfence_sample_interval)
		return;

	/*
	 * If the pool has already been initialized by arch, there is no need to
	 * re-allocate the memory pool.
	 */
	if (!__kfence_pool)
		__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);

	if (!__kfence_pool) {
		pr_err("failed to allocate pool\n");
		return;
	}

	/* The memory allocated by memblock has been zeroed out. */
	kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
	if (!kfence_metadata_init) {
		pr_err("failed to allocate metadata\n");
		memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
		__kfence_pool = NULL;
	}
}

static void kfence_init_enable(void)
{
	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
		static_branch_enable(&kfence_allocation_key);

	if (kfence_deferrable)
		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
	else
		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);

	if (kfence_check_on_panic)
		atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);

	WRITE_ONCE(kfence_enabled, true);
	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);

	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
}

void __init kfence_init(void)
{
	stack_hash_seed = get_random_u32();

	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
	if (!kfence_sample_interval)
		return;

	if (!kfence_init_pool_early()) {
		pr_err("%s failed\n", __func__);
		return;
	}

	kfence_init_enable();
}

static int kfence_init_late(void)
{
	const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
	const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
	unsigned long addr = (unsigned long)__kfence_pool;
	unsigned long free_size = KFENCE_POOL_SIZE;
	int err = -ENOMEM;

#ifdef CONFIG_CONTIG_ALLOC
	struct page *pages;

	pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
				   NULL);
	if (!pages)
		return -ENOMEM;

	__kfence_pool = page_to_virt(pages);
	pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
				   NULL);
	if (pages)
		kfence_metadata_init = page_to_virt(pages);
#else
	if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
	    nr_pages_meta > MAX_ORDER_NR_PAGES) {
		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
		return -EINVAL;
	}

	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
	if (!__kfence_pool)
		return -ENOMEM;

	kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
#endif

	if (!kfence_metadata_init)
		goto free_pool;

	memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
	addr = kfence_init_pool();
	if (!addr) {
		kfence_init_enable();
		kfence_debugfs_init();
		return 0;
	}

	pr_err("%s failed\n", __func__);
	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
	err = -EBUSY;

#ifdef CONFIG_CONTIG_ALLOC
	free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
			  nr_pages_meta);
free_pool:
	free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
			  free_size / PAGE_SIZE);
#else
	free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
free_pool:
	free_pages_exact((void *)addr, free_size);
#endif

	kfence_metadata_init = NULL;
	__kfence_pool = NULL;
	return err;
}

static int kfence_enable_late(void)
{
	if (!__kfence_pool)
		return kfence_init_late();

	WRITE_ONCE(kfence_enabled, true);
	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
	pr_info("re-enabled\n");
	return 0;
}

void kfence_shutdown_cache(struct kmem_cache *s)
{
	unsigned long flags;
	struct kfence_metadata *meta;
	int i;

	/* Pairs with release in kfence_init_pool(). */
	if (!smp_load_acquire(&kfence_metadata))
		return;

	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
		bool in_use;

		meta = &kfence_metadata[i];

		/*
		 * If we observe some inconsistent cache and state pair where we
		 * should have returned false here, cache destruction is racing
		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
		 * the lock will not help, as different critical section
		 * serialization will have the same outcome.
		 */
		if (READ_ONCE(meta->cache) != s ||
		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
			continue;

		raw_spin_lock_irqsave(&meta->lock, flags);
		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
		raw_spin_unlock_irqrestore(&meta->lock, flags);

		if (in_use) {
			/*
			 * This cache still has allocations, and we should not
			 * release them back into the freelist so they can still
			 * safely be used and retain the kernel's default
			 * behaviour of keeping the allocations alive (leak the
			 * cache); however, they effectively become "zombie
			 * allocations" as the KFENCE objects are the only ones
			 * still in use and the owning cache is being destroyed.
			 *
			 * We mark them freed, so that any subsequent use shows
			 * more useful error messages that will include stack
			 * traces of the user of the object, the original
			 * allocation, and caller to shutdown_cache().
			 */
			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
		}
	}

	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
		meta = &kfence_metadata[i];

		/* See above. */
		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
			continue;

		raw_spin_lock_irqsave(&meta->lock, flags);
		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
			meta->cache = NULL;
		raw_spin_unlock_irqrestore(&meta->lock, flags);
	}
}

void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
{
	unsigned long stack_entries[KFENCE_STACK_DEPTH];
	size_t num_stack_entries;
	u32 alloc_stack_hash;

	/*
	 * Perform size check before switching kfence_allocation_gate, so that
	 * we don't disable KFENCE without making an allocation.
	 */
	if (size > PAGE_SIZE) {
		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
		return NULL;
	}

	/*
	 * Skip allocations from non-default zones, including DMA. We cannot
	 * guarantee that pages in the KFENCE pool will have the requested
	 * properties (e.g. reside in DMAable memory).
	 */
	if ((flags & GFP_ZONEMASK) ||
	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
		return NULL;
	}

	/*
	 * Skip allocations for this slab, if KFENCE has been disabled for
	 * this slab.
	 */
	if (s->flags & SLAB_SKIP_KFENCE)
		return NULL;

	if (atomic_inc_return(&kfence_allocation_gate) > 1)
		return NULL;
#ifdef CONFIG_KFENCE_STATIC_KEYS
	/*
	 * waitqueue_active() is fully ordered after the update of
	 * kfence_allocation_gate per atomic_inc_return().
	 */
	if (waitqueue_active(&allocation_wait)) {
		/*
		 * Calling wake_up() here may deadlock when allocations happen
		 * from within timer code. Use an irq_work to defer it.
		 */
		irq_work_queue(&wake_up_kfence_timer_work);
	}
#endif

	if (!READ_ONCE(kfence_enabled))
		return NULL;

	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);

	/*
	 * Do expensive check for coverage of allocation in slow-path after
	 * allocation_gate has already become non-zero, even though it might
	 * mean not making any allocation within a given sample interval.
	 *
	 * This ensures reasonable allocation coverage when the pool is almost
	 * full, including avoiding long-lived allocations of the same source
	 * filling up the pool (e.g. pagecache allocations).
	 */
	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
		return NULL;
	}

	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
				    alloc_stack_hash);
}

size_t kfence_ksize(const void *addr)
{
	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);

	/*
	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
	 * either a use-after-free or invalid access.
	 */
	return meta ? meta->size : 0;
}

void *kfence_object_start(const void *addr)
{
	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);

	/*
	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
	 * either a use-after-free or invalid access.
	 */
	return meta ? (void *)meta->addr : NULL;
}

void __kfence_free(void *addr)
{
	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);

#ifdef CONFIG_MEMCG
	KFENCE_WARN_ON(meta->objcg);
#endif
	/*
	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
	 * the object, as the object page may be recycled for other-typed
	 * objects once it has been freed. meta->cache may be NULL if the cache
	 * was destroyed.
	 */
	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
		call_rcu(&meta->rcu_head, rcu_guarded_free);
	else
		kfence_guarded_free(addr, meta, false);
}

bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
{
	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
	struct kfence_metadata *to_report = NULL;
	enum kfence_error_type error_type;
	unsigned long flags;

	if (!is_kfence_address((void *)addr))
		return false;

	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
		return kfence_unprotect(addr); /* ... unprotect and proceed. */

	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);

	if (page_index % 2) {
		/* This is a redzone, report a buffer overflow. */
		struct kfence_metadata *meta;
		int distance = 0;

		meta = addr_to_metadata(addr - PAGE_SIZE);
		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
			to_report = meta;
			/* Data race ok; distance calculation approximate. */
			distance = addr - data_race(meta->addr + meta->size);
		}

		meta = addr_to_metadata(addr + PAGE_SIZE);
		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
			/* Data race ok; distance calculation approximate. */
			if (!to_report || distance > data_race(meta->addr) - addr)
				to_report = meta;
		}

		if (!to_report)
			goto out;

		raw_spin_lock_irqsave(&to_report->lock, flags);
		to_report->unprotected_page = addr;
		error_type = KFENCE_ERROR_OOB;

		/*
		 * If the object was freed before we took the look we can still
		 * report this as an OOB -- the report will simply show the
		 * stacktrace of the free as well.
		 */
	} else {
		to_report = addr_to_metadata(addr);
		if (!to_report)
			goto out;

		raw_spin_lock_irqsave(&to_report->lock, flags);
		error_type = KFENCE_ERROR_UAF;
		/*
		 * We may race with __kfence_alloc(), and it is possible that a
		 * freed object may be reallocated. We simply report this as a
		 * use-after-free, with the stack trace showing the place where
		 * the object was re-allocated.
		 */
	}

out:
	if (to_report) {
		kfence_report_error(addr, is_write, regs, to_report, error_type);
		raw_spin_unlock_irqrestore(&to_report->lock, flags);
	} else {
		/* This may be a UAF or OOB access, but we can't be sure. */
		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
	}

	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
}